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Extreme Elements of Finite p-Groups.

AVINOAM MANN (*)

In this paper we consider only finite p-groups. Such a group is
said to have equal centralizers, if all non central elements have cen-
tralizers of the same size. It is said to have independent centralizers,
if of any two centralizers, which are distinet and different from the
whole group, none contains the other. These two classes (of which
the second obviously contains the first) were first considered by
N. Ito [I]. In [M1] it was shown, sharpening a result of [I], that if G
has independent centralizers, then either G has an Abelian maximal
subgroup, or G/Z(@) is of exponent p. Another subclass of the groups
with independent centralizers, namely groups with Abelian centralizers
(each centralizer different from G is Abelian), was investigated by
D. M. Rocke [R]. Recently, the aforementioned result of [M1] was
reproved by L. Verardi for groups with equal centralizers [V] (this
author seems to be unaware of [M1]), using a different method, which
employes a certain inequality for centralizers. In Proposition 1 below,
we generalize this inequality to all p-groups, and then consider the
case of equality. This turns out to be a very strong assumption: in
groups with equal centralizers it implies that the nilpotency class is
two, and in general such a group is metabelian, usually of class at
most p, the central factor group has Abelian centralizers, ete. (Pro-
position 2 and Theorem 3).

(*) Indirizzo dell’A.: Department of Mathematics, Hebrew University
Jerusalem (Israele).

This paper was written while the author was visiting the Department of
Mathematics of the University of Trento. The author wishes to thank this
Department, and in particular C. Scoppola, for their warm hospitality.
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The paper [V] contains also a result of H. Heineken, showing that
elements centralizing G in groups with equal centralizers must belong
to the second centre. Proceeding by contradiction, this proof shows,
on the way, that if one of the relevant elements is not in Z,(@), then
its centralizer in the central factor group is just the image of the
original centralizer. It turns out that the argument showing this
remarkable property can also be generalized to all p-groups, for an
appropriate type of an element—the extreme elements of the title—
which are defined as elements whose centralizers have a certain maxi-
mality property. We open the paper by defining extreme elements
and developing their properties. We can. e.g., generalize Heineken’s
result, by showing, that in groups with independent centralizers C(G')
is often contained in the p-th centre. Extreme elements are also ap-
plied in the proofs of the results mentioned in the previous paragraph.

An interesting feature of the situation described in Theorem 3
is, that one is led to consider two natural generalizations of earlier
concepts, namely groups in which the centralizers have class at most 2,
and groups in which the centralizers have at most two distinct sizes.
We do not pursue this line here.

The notation is mostly standard. We usually write C(z) for Cg(x).
When we say that an element has a maximal centralizer, we mean
that the element is not central, and the centralizer is maximal relative
to other centralizers, not necessarily among all subgroups. The breadth
b(x) of an element z is defined by |G:C(x)| = p*®, and we denote
Z(x) = Z(C(w)).

1. — DEFINITION. An element « of a p-group G is called extreme if
a) x ¢ Z(@).

b) If y = [=, ty, ..., t;] is not central (for some elements %,, ..., &),
then Cq(y) = Ceo(x).

Non central elements of Z,(@) are trivially extreme. As another
example, let # be a non central element with a maximal centralizer
among the elements of C(@'). Then C(x)<@, so also Z(z)<tG. There-
fore all commutators ¥ as in b) are in Z(z), so CO(y) 2 C(x), and the
maximality of C(z) shows that C(y) = C(x), and x is extreme. In
the same way we see that if x is an element whose centralizer is both
maximal and normal, then z is extreme, but we shall see below that
the extra generality of this example is only apparent, and the previous
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example is rather typical. If G has independent centralizers, all ele-
ments of C(G') are of this type.

If x is extreme, and @ € H C (¢, then z is either central or extreme
in H. Also, an element y as in b) of the definition is extreme.

An extreme element, which does not belong to Z,(G), will be called
a proper extreme element.

If @ = G, X @, it is easy to see that a (non central) element x =
= (2, ;) is extreme if an only if it either belongs to Z,(@), or one of
the components is extreme, and the other one is central. In parti-
cular, if G,, say, contains proper extreme elements, and @, is not
Abelian, then the extreme elements of G (together with Z(@)) do not
form a subgroup.

Pl. If x is extreme, the C(x) is & normal subgroup.

ProoF. Let te @, and consider zt= z[x,t]. If [x,?]€ Z@G), then
certainly CO(xt) = C(x). If [«,t]¢ Z(&), then condition b) of the defi-
nition implies that C(x)C C(x!), and hence C(x) = C(x!). In either
case, C(x)t= C(x*) = C(x).

P2. If x is extreme, there exists an element z € Z,(@), such that x
and z have the same centralizer. In particular, x € C(G').

ProoF. Let x € Z,(@), with ¢ minimal. If > 2, there exists an
element ¢, such that y = [#,t] ¢ Z(G). Then C(y) = C(x), and y €
€ Z;1(@), so induction on ¢ yields our claim.

COROLLARY. If G has independent centralizers, the extreme elements
are exactly the non central elements of C(G').

Property P2 justifies our previous claim, that the second example
given after the definition of extreme elements is typical. In that
example we considered elements of C(G') with a maximal centralizer,
and it is easy to see that the maximality is equivalent to all elements
of Z(»)-Z(@) having the same centralizer C(z), so P2 shows that the
definition of extreme elements just generalizes slightly this example.

P3. If x is proper extreme, then Cg e (®Z(G)) = Co(w)/Z(G).
Proor. Choose an element ¢ such that y = [, t] is not central,

and assume that [z, 4] € Z(G). Then [z, u,?] =1, and [u,t, 2] =1,
by P2, so [t,x,u] =1, ie. ue Cy) = C(x).

P4. If x is proper extreme, then xZ(@Q) is extreme in G[Z(G).
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Proor. Part a) of the definition is assumed, and b) follows from P3,
applied for both z and y.

P5. If x is extreme, and x ¢ Z,(G), then x centralizes Z,(@Q).

ProoF. Apply P3 and P4 several times, until we reach G/Z,.,(G).

P6. If x is a proper ewtreme element, then |Z(x).Z(G)| < p*@.

Proor. As in the proof of P2, we may assume that x e Z;(G).
By P3, z has exactly p*® conjugates (mod Z(@)). These conjugates
constitute a subgroup of Z,(@)/Z(@), and this subgroup is contained
in the normal subgroup Z(z), and does not contain z itself, hence our
assertion.

Now if even x ¢ Z;(@), we can assume x € Z,(@), and use a similar
argument, working (mod Z,(@)), to get |Z(x) N Z;(G): Z(x) N Zy(G)|>
>p*@, ete. Thus we obtain

P7. Let x be a proper extreme element, such that x ¢ Z.,(G). Then
[Z(x):Z(G)| > p*@.

On the other hand we have

P8. Let x be as in P7, and let y not commute with . Then b(y) >
> ib(x).

Proor. First, let x € Z;(@), so + = 1. Then we consider the com-
mutators of x. All of these have the same centralizer as x, so they
do not commute with y. Thus the subgroup that these elements form
(mod Z(@)) acts regularly on the conjugacy class of y, and gives p*®@
distinet conjugates of y. All of these conjugates are congruent to y
(mod Z(@)), but y= is not, by P3. Thus y has more than p*® conjugates.
For the general case, we get, by induction in G/Z(@), that y has more
than pt-1%@ conjugates, which are distinet (mod Z(@)), while each
of these has p*® conjugates congruent to it (mod Z(@)), by the pre-
vious argument.

COROLLARY. In a group with equal centralizers, all extreme elements
belong to Z,(G), and thus C(Q') = Zy(G).
(This is the result of Heineken referred to in the introduction).
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P9. A proper extreme element commutes with all elements whose
breadth is not more than its own. In particular, a proper extreme element
commutes with all extreme elements.

Indeed, of any two proper extreme elements, one has a breadth
at most as large as the other’s, so they commute, and they commute
also with elements of Z,(@), by P5.

COROLLARY. Let G have independent centralizers. If C(G') = Zy(@),
then C(G') is Abelian.

Indeed, in that case C(G') is generated by its elements outside
Z,(@), which are all proper extreme (Corollary to P2), and so com-
mute with each other.

P10. Let x be an extreme element satisfying x ¢ Z, (@), for some k,
and let t, ¢ C(@), ..., 4 ¢ C(x). Then [x,t, ...,8]~ 1.

Proor. If k =1, this is obvious. Let ©>1. Then induction,
using P3 and P4, shows that y = [z, {,, ..., ti— ] ¢ Z(G), so O(y) = C(x)
and [y, ] 1.

P11. In a group G of exponent p, all extreme elements lie in Z,_,(G),

Proor. Let = be extreme, and let y not commute with . Suppose
that x € Z,(G) — Z,—(@). Let H = {w,y). Letting all ¢; be equal to ¥
in P10, we see that ¢l H = ¢, and that if r<¢, then the commutator
z =[x, ¥, ...,y], with » — 1 ¢’s, lies in H, but not in H,,. But for
r = p, we know that 2 lies in H, ,, [H, II1.9.7]. Thus ¢ < p.

COROLLARY. If G has independent centralizers, and does not contain
an Abelian maximal subgroup, then C(G')C Z ().

This follows from P11 by combining the facts that in such a group
all elements of C(@') are extreme, and that G/Z has exponent p.

2. — We now pass to the inequality mentioned in the introduction.

PRrOPOSITION 1. Let x be a non central element of the p-group G,
such that C(x) 18 maximal, and let y ¢ C(x). Then |Z(x).Z(G)|<p?®.
Equality holds if and only if G = Z(x)C(y).
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Proor. The maximality of C(x) implies that, if ¢ e Z(z) — Z(G),
then C(t) = C(x), and so Z(z) N Cly) = Z(@). Thus |Z(x):Z(G)| =
= |Z(z):Z(x) N C(y)|<|@:C(y)|, with equality if and only if G =
= Z(z)C(y).

We consider the case of equality in this Proposition, starting with
groups with equal centralizers, for which the result is particularly
simple.

PROPOSITION 2. Let G be a group with equal centralizers, and sup-
pose that |Z(x):Z(Q)| = p*», for some non central elements x and y.
Then G has class 2.

Proor. Of course, the equality holds for all elements y, because
b(y) is constant. In particular, let y be any element outside C(x).
Then G = Z(x) C(y), so all conjugates of y are conjugates under Z(x).
It follows that, like y, none of these conjugates lies in C(x). Thus
the complement of C(x) is a union of conjugacy classes. But then so
is O(x), i.e. C(x)<x@. By Heineken’s result (Corollary to P8), z € Z,(@),
and, since all elements of Z(x) have the same centralizer, Z(x) C Z,(G).
We then have [y, @] =1[y, Z(x)]1C [y, Z,(G)]C Z(@), i.e. yeE ZyG).
Since the elements of type y, i.e. elements outside C(x), generate G,
we have G = Z,(G).

THEOREM 3. Let x be an element with a maximal centralizer of the
p-group G, let y have maximal breadth among all elements not commuting
with x, and suppose that |Z(x).Z(G)| = p*w. For simplicity, assume also
that c1 G > 2. Then

a) G is metabelian; indeed Z(x) is a normal Abelian subgroup,
with an Abelian factor group.

b) If |@G:C(x)| > p, then cl G<p, and G|Z(G) has exponent p.

o) If t¢ Z,(@), then either CO(t)C C(xz), or |C@t)| = |C(y)|]. In
either case, cl O(t)<?2.

d) G/Z(@) is a group with Abelian centralizers, in which the non
central elements have at most two distinct breadths.

Proor. Denote b = b(y). By assumption, 2 commutes with all
elements of breadth greater than b, and by Proposition 1, it com-
mutes with all those of smaller breadth. Thus each element ¢ outside
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C(z) has breadth b, and for each such element G = Z(x)C(t). The
argument of Proposition 2 shows that C(x) is normal, hence so is Z(x),
and we have [, @] = [¢, Z(x)]C Z(x). Since the elements ¢ outside
C(x) generate @, we see that G/Z(x) is Abelian. This proves a).

Note that as C(x) is maximal, the normality of C(x) shows that x
is extreme. If Z(z) C Z,(G@), we have above [t, Z(x)] C Z(G), and ¢l G<2.
Since we have excluded this case, Z(z) is not contained in Z,(G@), and
we may as well assume z ¢ Z,(@), so v is a proper extreme element.

Let K = C(z) N O(y), then K<1((y), and K centralizes Z(x), so
K<@. Next,

[K, G] = [K, Z(x)C(y)] = [K, O(y)] € G' N Cy) € Z(x) N Cy) = Z(G)

and thus K C Z,(@). The inclusion is proper, because Z,(G) also inter-
sects Z(x) outside Z(G). As Z,(@)C C(zx), by P5, we have C(x) =
= Z,(G)Z(%), Z,(G) = K(Zy(@) N Z(x)), and ¢l C(x)<2.

Let again t¢ C(x). Then we have seen that G = Z(x)C(#) and
Z(x) N O(t) = Z(G). But C(t)' C O(@) N Z(x), so cl C(t)<2. Now let
te C(x) — Zy(@). Write ¢t = uz, with uw e Z(x), 2€ K. Then u ¢ Z,(@),
and so u is a proper extreme element. Suppose that [s,?] =
= [s, u][s, 2] € Z(G), for some s, then [s, u] € Z(G), so P3 shows that
se€ C(x). In particular, C(?) C C(x).

The last argument shows also, that in H = G/Z(G), the subgroup
C = C(x)/Z(@) (which is Abelian) is the centralizer of each of its non
central elements. Let a = tZ(@G)e H— C. Then this implies that
Ci(a)=Z(H). Since G = C(t)C(x), we see that Cy(a)=Z(H). C4(t)/Z(G)
is Abelian. This proves d. Now [R, 3.13 and 3.16] shows that if
|G:C(x)| > p, then el G<p + 1 and exp G/Z,(G) = p, but these claims
can be improved. We start by employing a variation of the argument
of [M1] to show that exp G/Z(G) = p (similar variations appear in [M2]
and [M3]).

To this end, consider Z(y). If we Z(y) N K, then u centralizes
both C(y) and Z(x), and thus u e Z(G@), so Z(y) N C(z) C Z(y) N K =
= Z(G). Moreover, we have also Z(t) N C(x) = Z(@) for any ¢ ¢ C(x),
as we have remarked that such a ¢t behaves exactly like y. This in
turn shows, that if se Z(t) — Z(G), then C(s) = C(t) and Z(s) = Z(t).
Therefore for any two elements ¢, s outside O(x), either Z(t) = Z(s)
or Z(t) N Z(s) = Z(@). Thus the subgroup C(z), together with the
various subgroups Z(f), partition H = G/Z(@).

Now suppose exp H > p. By [B, 5.6], one of the components of
the partition contains all elements of H of order greater than p, as
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well as Z(H). This component is then C(x)/Z(G). But in the meta-
belian group H, all elements of order greater than p generate a
subgroup of index at most p[G], so if |G:C(x)]>p, we have
exp G/Z(@) = p.

Let ¢l G =¢. We have seen that G'= [Z(x), G], and therefore
Z(x) is not contained in Z,,(@), and we may as well assume that
v ¢ Z,,(G). Then P10 shows that [x,y,...,y]s 1, where y is re-
peated ¢ — 1 times, so cl (x, y> = ¢. But in the metabelian group H,
of exponent p, the images of # and y generate a subgroup of class at
most p — 1, and thus cl {x, ¥> <p. This ends the proof.

CoROLLARY 1. Under the assumptions and notations of Theorem 3,
the subgroup K is the core of Cly), and Z(K) = Z(G).

Proor. Since C(x) = Z(»)K, we have Z(K)C Z(C(x)), so Z(K) =
= Z(@). Next, if L is a normal subgroup contained in O(y), then P3
shows that LC C(z), so LC K.

COROLLARY 2. A group such as in Theorem 3 has independent cen-
tralizers if and only if C(x) is Abelian, which is equivalent to K = Z(@G).
In this case all centralizers are of class 2, and have exactly two distinct
indices. Conversely, if all centralizers are of class 2, then the centralizers
are independent.

Proor. If the centralizers are independent, then C(z) is Abelian
by the corollary to P9. Conversely, if C(x) = Z(x) is Abelian, it is
the centralizer of each of its non central elements, and this, together
with Theorem 3 ¢), shows that the centralizers are independent, of
clags <2, and of indices p*® or p*», which are distinet, by P8. Corol-
lary 1 shows that C(x) is Abelian if and only if K = Z(@).

Now suppose that the centralizers are not independent, and let
be a non central element of K. Then C = C(u) contains both Z(x)
and y, and therefore C'2[Z(x),y] = [@,y]. If C is of class 2, then
0’ C C(y), so [G,y]C Cy) N\ Z(x) and y € Z,(G), which does not hold.

We note also, that the defining property of @& in Theorem 3 is
shared by G//Z and G/K, the last group having also Abelian centralizers,
as KNG CKNLZx) = Z(@), and so centralizers (mod K) and
(mod Z(@)) coincide.

Finally, we give the conditions that the abstract groups Z(x) and
C(y) have to satisfy, in order for a group @ of the relevant type to
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exist. We do not attempt the more difficult problem of describing
« concretely » all such pairs, and thus «classifying » completely our
groups. The following may rather be thought of as the first step in
such a classification.

For this end, let us denote 4 = Z(x), B = C(y), Z = N = Z(@),
where we use Z if we consider Z(@) as a subgroup of 4, and N if we
consider it as a subgroup of B, and let K be as above. Then the fol-
lowing properties hold:

I. A is an Abelian group with a subgroup Z.
II. B is a group with subgroups N C K, and N C Z(B).
ITI. There is an isomorphism ¢ between Z and N.

IV. B acts on A, with kernel K, in such a way, that for each
be B— K we have (O (b) = Cu(B) = Z.

V. Z(K) = N, but N is a proper subgroup of Z(B).

(Condition V) holds in @, because y is in Z(B)). The group G is
obtained from A and B by forming first the split extension of 4 by B,
and then amalgamating Z and N according to ¢.

Given any two groups A and B satisfying I) to IV), we can form
an « amalgamated split extension » G as above. The given conditions
imply that C(z) = AK, while Z(x) = A follows from Z(K) = N. The
second half of V gives us an element y such that C(y) = B. It remains
to control the size of the centralizers. Let then ¢ = wve G, with
weB, veAd.

VI. If t ¢ O(x) (i.e. u ¢ K), then [t, B]C [t, A].

These commutators are, of course, calculated inside the group G.
Note that VI implies that B has class 2. Condition VI shows, that
given any element b of B, we can find an element @ in 4, such that ¢
commutes with ab. By IV, b determines a uniquely (mod Z), and so
|C(t)| = |C(y)|]. Thus all assumptions of Theorem 3 are guaranteed.

A more elegant condition than VI would be the same condition
stated only for elements of B, because this can be formulated using
only the groups A4, B, Z, N, and the isomorphism @. It is not clear
to us if this weaker version of VI implies the full one.

To conclude, let us draw attention to two interesting special cases:
when K = N, which is the case of independent centralizers (Co-
rollary 2), and when N is a direct factor of B: the groups G/K and
G/Z (@) (for ¢ > 1) are of this type.
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