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Parametrization of Carathéodory Multifunctions.

ANTÓNIO ORNELAS (*)

1. Introduction.

Let F: be a multifunction which is Lipschitz with con-
stant I and has values bounded by m. We show that co 
can be represented as f (x, U), with U the unit closed ball in Rn and f
Lipschitz with constant 6n(21 + m). Existing representations were:
either with U the unit closed ball in Rn but f just continuous in (x, u)
(Ekeland-Valadier [3]); or with f Lipschitz in (x, u) but U in some
infinite dimensional space (LeDonne-Marchi [6]).

More generally, let F: be a multifunction with .F’( ~ , x)
measurable and .F(t, ~ ) uniformly continuous. We show that co F(t, x)
can be represented as f (t, x, U), where U is either the unit closed ball
in Rn (in case the values F(t, x) are compact) or U = Rn (in case the
values F(t, x) are unbounded). As to f, we obtain f(., x, u) meas-
urable and f (t, ~ , ~ ) uniformly continuous (with modulus of con-

tinuity equal to that of F(t, ·) multiplied by a constant).
A consequence of this is that differential inclusions in R" with con-

vex valued multifunctions, continuous in x, do not generalize diffe-
rential equations with control in Rn. In fact, consider the Cauchy
problem in R"

(*) Indirizzo dell’A.: Dept. Matematica, Universidade de Evora, Largo
dos Colegiais, 7000 Evora, Portogallo.

Also on leave from Universidade de tvora and supported by Instituto
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with F(t, x) measurable in t and continuous in x. As above we can
construct a function u) and a convex closed set U in Rn such
that co F(t, x) = f (t, x, U). Moreover U is compact provided the
values F(t, x) are compact, and t(t, ~ , u) is Lipschitz provided .F’(t, ~ )
is Lipschitz. Finally by an implicit function lemma of the Filippov
type we show that any solution of (CP) also solves the differential
equation with control in R" :

Reduction of differential inclusions in Rn (with continuous convex-
valued multifunctions) to control differential equations was known,
but the regularity conditions were not completely satisfactory. Namely,
either f was non-Lipschitz for Lipschitz F (Ekeland-Valadier [3])
or U was infinite dimensional (LeDonne-Marchi [6] or Lojasiewicz-
Plis-Suarez [8] added to loffe [5]).

General information on multifunctions and differential inclusions
can be found in [1].

2. Assumptions.

Let I be a Lebesgue measurable set in llgn (or, more generally,
a separable metrizable space together with a a-algebra A which is
the completion of the Borel a-algebra of I relative to a locally finite
positive measure p). Let X be an open or closed set in Rn (or, more
generally, a separable space metrizable complete, with a distance d
and Borel a-algebra We consider multifunctions .F’ with values

I’(t, x) either bounded by a linear growth condition-hypothesis
(FLB)-or unbounded-hypothesis (FU).

HYPOTHESIS (FLB). F: is a multifunction with:

(a) values F(t, X) compact;

(b) F(-, x) measurable;

(c) 3a, ~n : I - R+ measurable such that
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(d) X is compact, I is a-compact, F(t, ·) is continuous for a.e. t.

HYPOTHESIS is a multifunction with:

(a’) values F(t, x) closed;

(b’) I’{ ~ , x) measurable;

(d’) 3w: I X R+ - R+ such that: dl(F(t, x), F(t, x))  w(t, d(x, x)) ,
with w( ~ , r) measurable, ~(~ ’) continuous concave, w(t, 0) = 0
for a.e. t.

We denote by co .F the multifunction such that each value
co F(t, x) is the closed convex hull of F(t, x). It is well known that
co .F verifies hypothesis (FLB) or (FU) provided .F does (see [4]).

PROPOSITION 1. verify hypothesis (FLB).
Then 1~’ verifies hypthesis (FU) also, namely it verifies (d’) with

3. Parametrization of multifunctions.

THEOREM 1. Let .F’ verify hypothesis (FU). Suppose moreover
that each value F(t, x) is compact, and set

Then there exists a function the unit
closed ball in Rn, such that:

(ii) f ( ~ , x, ~c) is measurable;

If moreover .F’, zv are jointly continuous then f is continuous.
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COROLLARY 1. - Let F verify hypothesis (FU).
Let U be a convex closed set in and let 

verify:

has inverse

for a.e. t;

(y) h( ~, x, ~) and h-1( ~, x, ~) are measurable;

are jointly continuous for a.e. t.

Then there exists a function such that (i), (ii)
of Th. 1 hold and:

COROLLARY 2. verify hypothesis (FU).
Then, setting h(t, x, u) = u in Corollary 1, the conclusions of

Theorem 1 hold with U = and x) - 1. (The final part pro-
vided F is jointly h-continuous.)

THEOREM 2. Let I’ verify hypothesis (FU) and let I be or-compact
Then there exists a a-compact set E in a Banach space, a function

99: X xE -+ Rn and a multifunction I -+ E such that:

(ii) ’l1(.) is measurable with convex closed values;

(iii) q;(x, .) is linear nonexpansive;

(iv) Iq;(x, ~c) - u) 1: 6nw(t, d(x, x)), VUE for a.e. t.

If moreover .1~ is integrably bounded then the values flL(t) are

compact for a.e. t.

4. Intermediate results and proofs.

PROOF OF PROPOSITION 1. Apply the Scorza-Dragoni property in
1.2 (ii) to obtain a sequence (Ik) of compact disjoint sets such that
I = Io u X, X is a null set, Io = and coFl1kxx, rnllk
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are continuous. Set 2 and:

It is clear that vk( ~ ) is nondecreasing and vk(r)  2ak r + 2mk . Since Ik, I
X are compact and I’k is jointly h-continuous, we must have vk(r) - 0
as r ~ 0, otherwise a contradiction would follow. By a lemma of
McShane [9], there exists a continuous concave function R+ ~ R+

such that Wk(O) = 0, 1 ~ vk(r), hence

LEMMA 1. Let 3l be any family of nonempty closed /convex sets in
Rn such that dl (K, .K)  oo in K. Let B(y, g) be the closed
ball around y with radius r(y, .K) : _ v3d(y, K).

Then the map

is well defined, verifies P(y, IT) === fy} whenever y e K, and:

REMARK. This lemma refines and simplifies the construction of
LeDonne-Marchi. We have changed the expansion constant from 2
to ~/3 in the definition of the radius r because we believe this value
to be the best possible. More precisely, we believe that the Lipschitz
constant 3 for the above intersection cannot be improved, and that

it is not obtainable unless one uses the expansion constant 
Moreover, in the definition of the radius r we do not use the

Hausdorff distance between two sets, as LeDonne-Marchi, but rather
the distance from a point to a set. This is not only conceptually aim-
pler but also seems better fitted for applications (as in Theorem 1).

PROOF.

(a) First we fix y* in Rn and prove that
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Choose any K, K in ~ and any y E P(y* , K). Set E* : = d(y* , .g),
F.:= dl (K, .g). We may suppose that E* , E &#x3E; 0, otherwise just take
y : = y* , y respectively. To prove the above inequality we need only
find a point y in P(y*, K) such that 

To find y, choose points yi , y, in K such that

If ~y* - y2 ~ ~ ~/3 ~* then take y : = y2 . Otherwise but

in the segment ]yl, y,[ certainly there exists some point y such that
Iy* - y == ý3 E* , hence y E P(y*, K). If ly - y  3e then (a) is proved.
Otherwise by the claim below we have

But this is absurd because y E P(y* , .K) hence

Therefore (a) is proved.
Trigonometrical claim : If yi &#x3E; 3E then 3z E ]y* , y[ such that:

In fact, as we prove below, in the triangle y, y, y* the angle
0 + at y verifies sen 0 &#x3E; 1/~/3, in particular 6 &#x3E; 0. Therefore in
the segment ]y* , y[ certainly there exists a point z such that in the
triangle y* , y, z the angle at y is ~/2. This implies that 
&#x3E; ly* - y [ = ý3e*, and since

we have Iz - y~ &#x3E; ý3£.
To prove sen 0 &#x3E; 1/ý3, set

and notice that we only need to show that 0 &#x3E; (Xo. Since ao - j8o =
- ao --~- ~ j2, it is enough to prove that 6-)-yr/2&#x3E;~2013Xo2013~o’ To
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prove this notice that in the triangle y* , y, yl the angle a at y verifies
= 1/V3, hence a ~ ao . In fact we must have

0 c a ao and ao  because the later is incompatible with
the fact that the angle a has an adjacent side which is larger that the
opposite side. Similarly, in the triangle y, y, y, the angle @ at y verifies

In fact we must have 
inside the claim and because the later would imply

hence y - y - y2 ~ c ~. Finally, to show that 0 + n/2 &#x3E;

&#x3E; ~ - ao - we distinguish the following possibilities:

(i) let y be in the y*, y,, y2-plane, in the same side of the yi , y,-
line as y* ; then the inequality 6 + n/2 = n - &#x3E;

&#x3E; ao - ~o is obvious;

(ii) let y be in the 2/~~iy y2-plane, in the side of the y2-line
opposite to y* , and let then 6 --E- = ~z - oc +

(iii) as in (ii) but with a c ~8  ~80; then

(iv) let y be outside the y*, y2-plane and let the projection y’
of y onto that plane fall in the side of the y2-line opposite
to y* and let the angle projection of the angle fl on that
plane, verify 0  #’ cx; then 0 + n/2 &#x3E; ~ - ceo &#x3E; ao - 

(v) as in (iv) but then

(vi) as in (iv) but y’ in the same side as y*; then it is clear that
the situation is similar to that in (i), the difference being
that 0 + 

This proves the claim.

(b) Now consider points y, y in and sets K, K in Jt. Setting
E : = K), e : = K), and using (a) one obtains:

To prove Theorem 1 we need the following result:
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PROPOSITION 2 (Bressan [2]). Denote by Xn the family of non-
empty compact convex sets in R". Then there exists a map or: Rn

that selects a point E g for each g and verifies:

PROOF OF THEOREM 1. Clearly M(., x) is measurable and

Consider the function h : I X U --~ h(t, x, u) : = .M~(t, x) u.
Clearly h(t, x, ~ ) is an homeomorphism between the ball TJ and the

ball of radius 1tl (t, x) ; let hw(t, x, y) : = M(t, be the inverse

homeomorphism.
Project now h(t, x, u) into co I’(t, x), i.e. set

where a is the selection in Proposition 2 and P is the multivalued
projection in Lemma 2.

CZairn. /(’ x, u) is measurable.

To prove this, notice first that l~lo( ~ ) is measurable by Himmel-
berg [4, Theorem 5.8]. Then M( ~ , x) and h( ~ , x, u) are measurable.
Consider the closed ball B(., x, u) of radius

around h( ~ , x, u). Then r( ~ , x, u) is measurable by Himmelberg [4,
Theorem 3.5, Theorem 6.5], and since

by Himmelberg [4, Theorem 3.5, Theorem 4.1], B( ~, x, u) and its

intersection with co .F( ~ , x) are measurable. Therefore this inter-

section is a measurable map: 7 2013~J~; and since a: is con-

tinuous, /(’ x, u) is measurable.
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It is easy to prove (iii) using the Lipschitz properties of or and P :

It is clear that if 1~ is jointly h-continuous then .1V1° ( ~ ) is continuous;
and if also w is jointly continuous then If is jointly continuous hence h
is jointly continuous. Then the ball B is continuous and its intersec-
tion with co .F’ is continuous, by the h-continuity of co .F. This means
that the intersection is a continuous map: I x -2T X U - and since
or: is continuous, y f is jointly continuous.

To prove (i) fix some te7y x E X ; then for any y E co F(t, x),
set u := h- 1 (t, x, y), obtaining u E U, h(t, x, u) = y, hence f (t, x, u) =
= aoP(y, co F(t, x)) = y because y E co I’(t, x) already. This means

that co I’(t, x) c f (t, x, U), and since the opposite inclusion is obvious,
(i) is proved. +

PROOF OF THEOREM 2. Since I is a-compact, we can use the Scorza-
Dragoni property in [7] to write JY’ a null set and

10 = U Ik, where (Ik) is a sequence of compact disjoint sets such that
Fk : = is tsc with closed graph, Wk:== is continuous.
If moreover there exists m: I -R+ such that 

c m(t), and m is measurable then we may also suppose that mIlle is
continuous. Let C°(X, R") be the Banach space of continuous bounded
maps u : X --~ Rn with the usual sup norm. Set, for t E 7o ?

and, in case .h is integrably bounded, 

Set Ek : = U E(t), and let E be the closed convex hull of U Clearly
telk kEN

each bounded subset of E(t) is totally bounded, in particular E(t)
is compact provided F is integrably bounded; in general E(t) is

a-compact. Since Ik is compact and wk is jointly continuous, each
bounded subset of Ek is totally bounded; in particular Ek is or-compact,
hence E is cr-compact.
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Define the function to be the evaluation map u) := 
then clearly (iii) holds. Define the multifunction ’l1 by:

Since c E(t), (iv) holds. Since co F(t, x) and E(t) are convex

closed, %(t) is convex closed. In particular flL(t) is compact in case F
is integrably bounded. Set now ~. Since Fk, Wk, mk have
closed graph, one easily shows that %k has closed graph. In particular
%0:= has measurable graph. By Himmelberg [4, Theorem 3.5],
U0 is measurable hence U is measurable.

Finally, to prove (i), fix any t E Io , then, for any
set u(x) := aroP(y, co F(t, x)). Clearly u E E(t), and

u E flL(t) ; moreover u) = u(x) = y, so that co F(t, x) c %(t)).
Since the opposite inclusion is obvious, (i) is proved. +

5. Application to differential inclusions.

Let I be an interval, bounded or unbounded, and let S2 be an open
or closed set in Let 1~ : I x ~2 -~ Rn be a multifunction with values
either bounded by a linear growth condition-hypothesis (FLB)-or
unbounded-hypothesis (FU). Notice that hypothesis (FLB) (d) now
simply asks the boundedness of I and the continuity of .F’(t, ~ ) ; in
fact I is already a-compact, and for X we can take an adequate com-
pact subset of S~, using an exponential a priori estimate for solutions
of (CP) based on Gronwall’s inequality (see [1, Theorem 2.4.1] for
example), and supposing either Q large enough or I small enough.

COROLLARY 3. - Let F verify hypothesis (FU).
Then the Cauchy problem (CP) has the same absolutely continuous

solutions as the control differential equation

where f , U are as in Theorem 1 or Corollary 1 or Corollary 2.
If moreover .F’, w are j ointly h-continuous then for each continu-

ously differentiable solution x of (CP) there exists a continuous con-
trol u : I ~ ZT such that
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A special case which appears more commonly in applications is
covered by the simpler:

COROLLARY 4. Let F: be a multifunction with com-

pact values F(t, x) bounded by m(t), such that F(., x) is measurable
and T’(t, ~ ) is Lipschitz with constant Z(t), with ?~(’) and Z( - ) integrable.

Then the Cauchy problem ( CP) has the same absolutely con-

tinuous solutions as the control differential equation

where is measurable in t and Lipschitz in (x, u)
with constant 6n[2l(t) + m(t)], and B is the unit closed ball in Rn.

PROPOSITION 3. Let F verify hypothesis (FU).
Let f , U be as in Theorem 1 or Corollary 1 or Corollary 2.
Then for each x : I --~- ~, measurable verifying y(t) E

E co F(t, x(t)) a.e. there exists u: I - U measurable such that y(t) =

If moreover F, ware jointly h-continuous and x, y are continuous
then u is continuous.

PROOF. Consider the homeomorphism h as in Corollary 1 or Corol-
lary 2 or Theorem 1, and set u(t) := h-1 (t, x(t), y(t)) .

PROOF OF COROLLARY 3. For each solution x of (CPR) set

y(t) : = x’(t) and apply Proposition 3.

Acknowledgement. I wish to thank Professor Arrigo Cellina and an
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REFERENCES

[1] J. P. AUBIN - A. CELLINA, Differential inclusions, Springer, 1984.
[2] A. BRESSAN, Misure di curvatura e selezione Lipschitziane, preprint 1979.
[3] I. EKELAND - M. VALADIER, Representation of set-valued maps, J. Math.

Anal. Appl., 35 (1971), pp. 621-629.
[4] C. J. HIMMELBERG, Measurable relations, Fund. Math., 87 (1975), pp. 53-72.



44

[5] A. D. IOFFE, Representation of set-valued mappings. - II : Application to

differential inclusions, SIAM J. Control Optim., 21 (1983), pp. 641-651.
[6] A. LEDONNE - M. V. MARCHI, Representation of Lipschitz compact convex

valued mappings, Rend. Ac. Naz. Lincei, 68 (1980), pp. 278-280.
[7] S. LOJASIEWICZ jr., Some theorems of Scorza-Dragoni type for multifunctions

with applications to the problem of existence of solutions for differential
multivalued equations, preprint 255 (1982), Inst. of Math., Polish Ac. Sci.,
Warsaw.

[8] S. LOJASIEWICZ jr. - A. PLIS - R. SUAREZ, Necessary conditions for non-
linear control systems, preprint 139 (1979), Inst. of Math., Polish Ac. of
Sciences, Warsaw.

[9] E. J. MCSHANE, Extension of the range of functions, Bull. Amer. Math.
Soc., 40 (1934), pp. 837-842.

[10] S. LOJASIEWICZ jr., Parametrization of convex sets, submitted to J. Ap-
proximation Theory.

REMARKS ADDED IN PROOF:

(a) after sending this paper for publication I have constructed an example
showing that the Lipschitz constant 3 for the multivalued projection
(Lemma 1) is best possible;

(b) four months after sending this paper for publication I have received the
preprint [10] which extends my multivalued projection to Hilbert space.
Using the same proof as in Lemma 1 the extension to Hilbert space is

trivial.

Manoscritto pervenuto in redazione il 16 dicembre 1988.


