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Note on the Gammoids Arising from Undirected Graphs.

D0103NUT MARCU (*)

1. Introduction.

In this note, we consider strict gammoids, which arise from un-
directed graphs. We exhibit a minimal example of a strict gammoid,
which cannot arise in this way and we interpret the Ingleton and
Pif’s characterization (see [1]) of the strict gammoids for the un-
directed case. In a directed graph D = (V, F), we say that X C V
is linked into Y C V, if there exists a set of mutually disjoint paths
in D, whose set of the initial vertices is ~ and whose set of the ter-
minal vertices is a subset of Y. Given A, B C V, the collection of all
subsets of .A, which can be linked into B, is a special type of matroid,
known as a gammoid. In the case when A = V, the gammoid is said

to be strict. This concept translates naturally to an undirected graph G.
One can either replace paths by undirected paths, in the definitions,
or one can regard G as a directed graph, in which each of its edges
~u, vl is replaced by two directed edges uv and vu. This latter com-

ment was made by Woodall in [3] and he called (strict) gammoids
arising from undirected graphs, undirected (strict) gammoids. In [3],
Woodall gave an example of a strict gammoid, which was not an un-
directed gammoid, and, in this note, we exhibit a minimal such example
and, in passing, we interpret the Ingleton and Piff’s characterization
of the strict gammoids for the undirected case.

(*) Indirizzo dell’A.: Str. Pasului 3, Sect. 2, 70241 Bucharest, Romania.
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2. The main results.

THEOREM 1. Any matroid of rank c 2 is an undirected strict

gammoid.

PROOF. Let .M be the matroid in question, let V be its underlying
set and let X be those points of V, which form independent singletons
in M. Then, the relation  ~ &#x3E;&#x3E;, defined on X by

or if ~x, y~ is a circuit of M, y ,

is easily seen to be an equivalence relation on ~. Let its distinct

equivalence classes be [zi], ... , [xn] and let G be the undirected graph
with the vertex set V and the edge set given by

Then, it is straightforward to check that if consists precisely of those
subsets of V linked into B in G, where B is any subset of ~xl , ... , 
of cardinality equal to the rank of M. Hence, M is an undirected strict
gammoid. Cf

A transversal of a family of sets A = (AI, ..., An) is a set of n
elements {Xl 7 ... , with xi E A i , for each i. A partial transversal
of A is a transversal of some subfamily of A. It is well known that
the set of the partial transversal of A form a matroid, and one aris-
ing in this way is called a transversal matroid. In this case,
~ _ (A, ... , An) is a presentation of the matroid and it is well known
that a transversal matroid of rank n has a presentation of a family
consisting of precisely n sets. Of the many presentations of a trans-
versal matroid M one is called a minimal presentation, if it uses the
smallest number of sets possible and if none of the sets used can be
replaced by a proper subset to give another presentation of M. Now,
a family A = (A,,..., will be called symmetric, if there exist dis-
tinct xl , ... , xn , with for and implies that
x~ E A i , for 1  i7 j  n. A transversal matroid will be called symmetric,
if it possesses such a presentation. So, for example, a transversal
matroid of rank c 2 is symmetric, a minimal presentation providing
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the required symmetric presentation. For, if (AI, A2) is a minimal

presentation of a matroid, then it is easy to check that neither A i
is a subset of the other. Hence, there exist x, E and X2 E A2"’AI’
from which the symmetry is clear.

THEOREM 2. The duals of the undirected strict gammoids acre pre-
cisely the symmetric trangversal matroids.

PROOF. In [1], Ingleton and Piff have shown that the duals of the
transversal matroids are precisely the strict gammoids. More parti-
cularly, it follows, from a version of their result in [2, pag. 217], that
if ~ (on the set V) has the presentation A = (A1, ... , and a trans-
versal ~xl, ... , xn~, with Xi E Ai for each i, and if D = ( V, F) is the

directed graph given by

then X c V is linked into B = ... , x%~ if and only if V’BX
contains a transversal of A. It is therefore easy to check that, in
the special case when A is symmetric (and the xi’s are chosen ac-
cordingly), the same result holds for the corresponding undirected
graph. Hence, the dual of a symmetric transversal matroid is an
undirected strict gammoid. Conversely, if the dual of ~ is an un-
directed strict gammoid and consists of the sets linked into B in the
undirected graph G = (V, .E), then, from the same result referred to
above, it can be deduced that has exactly n distinct elements
xl , ... , xn and that M is the transversal matroid with the presentation
A = (A1, ... , A~ ), where

It is clear that A is symmetric, and the result follows.0

We have remarked above that the transversal matroids of rank  2
are symmetric, and we now see that sufficiently small transversal
matroids of rank 3 are also symmetric.

THEOREM 3. A transversal matroid of rank 3, on a set of 6 or fewer
points, is symmetric.
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PROOF. Let if be the matroid in question and let (At, A2, A3)
be a minimal presentation of ~. Then, in particular, if I

it follows that

(1)

and

Now, in cases, we exhibit a symmetric presentation of M.

In this case, of course, there exist

and it is clear that (Ai, A2 , A3 ) is symmetric.

In this case, there exist

If there exists xl E A1 n A2 n Aa, then the symmetry of (A1, Az , 
is clear. So, we may assume that A1 n A2 n A3 = 07 such that

, then there exist distinct

x2 ~ A1 n and U A2) and, again,
the symmetry of is clear. So, finally, we may suppose
that and, similarly, that Then, using (2),
it is easy to see that there exist four elements ~, x2, x3, x4, such that
Ai x"~ ~x~~ x~r~ ~ and ~x~~ x~~~ C If we now re-

place the element x"1 of A2 by x"2, we get a symmetric presentation of M,
with representatives x~ , x3 
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In this case, there exist distinct xl, x2 E (Ai U A2 U 
= = and x3 U Å2) and, again, the sym-
metry of (AI, A2, Aa) is clear.

It is not difficult to see that, in this case, any subset of A1 u
U A2 U Aa, which has cardinality at most three and is dependent,
must be contained in two of the sets A2 and A3 and be disjoint
from the third. But then, (1) and (2) lead to a contradiction, in this
particular case. Hence, every subset of A1 U of cardinality
at most three, is in M and so .l~ has the symmetric presentation

It is immediate, from the above results, that a strict gammoid,.
which is not an undirected gammoid, must be of rank at least 3 and
on a set of at least 7 elements; below, we present such a gammoid of
rank precisely 3 and on a set of precisely 7 elements.

EXAMPLE. A minimal strict gammoid, which is not an undirected
gammoid. Let ~ be the strict gammoid of sets linked into 1, 3, 3",
in the directed graph illustrated in the figure:
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Then, the circuits of of cardinality 3, are precisely {1, 2, 3},
{I, 2’, 3’}, (1 , 2", 3"} and {3, 3’, 3"~ ; all other sets of cardinality  3
are independent. This example (and the verification below that IT
is not an undirected gammoid) is not dissimilar to Woodall’s, in [3].

Assume that If is an undirected gammoid, consisting of the sub-
sets of {I, 2, 3, 1’, 2’, 3’, 1", 2", 3"~ (~ V) linked into a set B of cardinal-
ity 3, in the undirected graph G = (V, E). Then, since {3, 3’, 3’} is
a circuit of M, it follows, from the Menger’s Theorem, that there
exist x, y E V, such that every path from {3, 3’, 3’1 to B, in G, uses
at least one of x and y. This means that, in addition, every path
from f3, 3’, 3"~ to {1, 2, 1’, 2’, 1", 2"~ uses at least one of x and y,
since, for example, the existence of a path from 3 to 1 avoiding x
and y, together with the independence of 1, 3’, 3", would imply the
existence of a path from 3 to B avoiding x and y. Now, let us call
a path from v to {x, y}, which meets ~x, y} only at its terminal vertex,
a v-x path or a v-y path, depending upon which member of ~x, y~
it uses. Then, since ~3, 1, 2’} E M but {3’, 1, 2’} ft M, it follows that
either there exists a 3-x path but no 3’-x path or that there exists
a 3-y path but no 3’-y path. Let us assume the former. A similar

argument, applied to ~3’,1, 2} E M and ~3, 1, 2} ft .l.Yl, shows that
there exists a 3’-y path but no 3-y path. Similar arguments, with
respect to the pairs 3, 3" and 3’, 3", show that there exists no 3n-x
path and no 3"-y path and, hence, no path from 3" to B.

This contradiction shows that M is not an undirected gammoid.
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