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On Chains of Purely Transcendental Field Extensions.

G. G. BASTOS - L. FUCHS - T. M. VISWANATHAN (*)

ABSTRACT - Conditions are given under which the union of an ascending chain
of purely transcendental extensions of a ground field k is again a purely
transcendental extension of k.

In an attempt to solve a problem posed by Anderson and Ohm on
semi-valuations of group rings [1], we came across the following pro-
blem. Suppose that is a countable ascending
chain of fields such that (i) each .gn is a purely transcendental
extension of Ko , and (ii) Kn is algebraically closed in for each

n &#x3E; 0. Is the union .g likewise a purely transcendental ex-
n

tension of Though the answer to this question was not needed
in the solution of the Anderson-Ohm problem (cf. Bastos-Viswana-
than [2]), we have found the question interesting enough to look
into it.

In this note we give a complete answer to this question under the
hypothesis that K is the field of quotients of a group algebra (of a
torsion-free abelian group). We will prove in Theorem 1 that in this
case the answer is in the affirmative. However, the situation changes
if uncountable chains are admitted as is shown by Example 2.

(*) Indirizzo degli AA.: G. G. Bastos: Departamento de Matematica,
Universidade Federal do Ceara, 60000 Fortaleza CE, Brazil; L. Fuchs: De-
partment of Mathematics, Tulane University, New Orleans, LA 70118, U.S.A.;
T. M. Viswanathan: IMECC, Departamento de Matematica, Universidade Esta-
dual de Campinas, C.P. 6065, 13081 Campinas, S.P., Brazil.

The second author was supported in part by NSF Grant DMS-8620379*
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Our results rely heavily on well-known theorems on torsion-free
abelian groups. The connection with abelian group theory can be
utilized to establish certain properties of what we call almost purely
transcendental extensions; see Theorem 3.

1. - The main result.

For a field k and a torsion-free abelian group A, the group al-

gebra k[A] is a domain. Its field of quotients is denoted by k(A).
If A is a free abelian group then k(A) is a purely transcendental
extension of k and a basis of A is a transcendence base for k(A)lk.

Our main goal is to prove the following theorem.

THEOREM 1. - Zet k be any fields, A a torsion- f ree abelian group,
and B a subgroup of A. Suppose that

is an ascending chain of fields such that

(i) .gn is a purely transcendental extension o f .Ko (n  

(ii) K n is algebraically closed in K n+l (n  

Thetl, AfB is a f ree abelian group and k(A)lk(B) is a purely transcen-
dental extension.

PROOF. The chain (1) gives rise to an ascending chain of abelian
groups in the following way. Consider the multiplicative groups Kt
of the fields Kn modK:. From (1 ) we obtain an ascending chain

Conditions (i)-(iii) translate into (i*)-(iii*) as follows.

(i*) All are free abelian groups.

In fact, it is well known that a polynomial ring over any field
-with an arbitrary (even infinite) number of indeterminates is a UFD.



173

Therefore, the multiplicative group of its field of quotients mod that
of the ground field is freely generated by a set of irreducible poly-
nomials over .Ko .

(ii*) is a pure subgroup of K:+I/K: (n  a~).

This is obvious, since because of (ii) the m-th roots of elements
of gn which are contained in are already in K*. n (Thus (ii) can
be weakened by assuming only that g~ is closed under taking roots
of elements in .gn+1.)

A well-known theorem by Hill [5] states that the union of a

countable ascending chain of free abelian groups where each member
is a pure subgroup in its successor is itself free. Hence is a

free abelian group. Now observe that is a subgroup of K*IK*;
therefore it is a free abelian group.

If A IB is free, then B is a direct factor of A, A = B for a free

subgroup F of ..A . It follows that k(A) = [k(B)](F). Since the

adjunction of a free abelian group is nothing else than a purely
transcendental extension, the proof is completed. 0

One wonders if the last theorem can be improved. As we have
noticed in the introduction, we do not know if the condition g = k(A)
can be dropped. (Of course, the freeness of K*jX: follows, but this
alone does not imply that is a purely transcendental extension.)
But we do know that the countability of the chain (1) is relevant.
In fact, the following example shows that Theorem 1 is in general
not valid for uncountable chains of fields.

E XAMPLE 2. Let

be a continuous well-ordered ascending chain of countable free abelian
groups Aa (continuity means A.a = for limit ordinals a and co,

Ba
is the first uncountable ordinal) where each Aa is pure in Sup-
pose that the set
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is stationary in (It is easy to construct such a chain, e.g. by taking
a projective resolution of C:02013~o2013~-Fi-~-~-~0 and embedding
ÅIX in A«+i in the very same way Fo is embedded in Fi, for each
cx  It is well-known (see Eklof [3]) that under these circum-

stances, A = U Aa is not a free abelian group.
aw1

Now, for any field k, define .ga = k(A,,), Then the chain

satisfies conditions (i), (ii), (iii) above. Since A is not free, can-

not be a purely transcendental extension. 0

2. - Almost purely transcendental extensions.

A closer look at the preceding example reveals that, though the
union .g is not a purely transcendental extension of Ko , it is close to
being one: every subfield of .g that contains .Ko and has countable
transcendence degree over .go can be embedded in a countably gen-
erated purely transcendental extension of .go in K.

Let us call an extension g of a field Ko almost purely transcendental
if the transcendence degree of K over go is an infinite cardinal A and
every subextension L of .go in K with transcendence degree C ~, can
be embedded in a purely transcendental extension of K0 in K.

We are now going to verify (for the needed set-theoretical concepts,
see [7]) :

THEOREM 3. (a) Let ~, be an uncountable regular cardinal which
is not weakly compact. Then every field Ko has an almost purely tran-
scendental extension K of transcendence degree A which is not purely
transcendental.

(b) If A is a singular cardinal, then every almost purely transcen-
dental extension of transcendence degree A is necessarily purely tran-
scendental.

PROOF. (a) Gregory [4] has proved that for every regular, not
weakly compact cardinal ~, there is a non-free abelian group A of

cardinality 2 all of whose subgroups of cardinalities C ~, are free.
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Choose .g = go(A) with such an .A. Then .~ is not a purely transcen-
dental extension of Ko , since K*jK: contains the non-free subgroup A .
Now if L is a subextension in .g, of transcendence degree x  A
over .Ko , then an easy cardinality argument shows that 
for a subgroup B of A, of cardinality x. As B must be f ree, 
is a purely transcendental extension of Ko that contains L.

(b) This part was proved by Hodges [6], p. 218. It is a conse-

quence of his version of Shelah’s compactness theorem for singular
cardinals. We refer to [6] for details. CJ
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