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On a Characterization of the Preisach Model
for Hysteresis.

MARTIN BROKATE (*)

1. - Introduction.

In [6], Preisach formulated a mathematical model in order to
describe hysteresis loops arising in ferromagnetism. It can be viewed
as an operator W, which maps an input function u: [o,1~ -&#x3E; R, rep-
resenting the (scalar) magnetic induction, to an output function
w: [o,1] ~ R, representing the magnetization. Usually one de-

fines W by

where p is a finite Borel measure on the Preisach plane

and Wr denotes an elementary switch with hysteresis, switching to
the value 1 when u(t) increases to the value r2 and to the value - 1
when decreases to rl. In addition, an initial condition has to be
specified for each elementary switch.

Since the action of an ideal switch is instantaneous, y this model

obviously is rate independent, i.e.

(*) Indirizzo dell’A.: Fachbereich Mathematik, Universitat Kaiserslautern,
Kaiserslautern, Rep. Fed. Tedesca.
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for any (monotone) transformation p of the time scale. Also, any
periodic input u(t) yields a periodic output w(t) with the same period.
Thus, the map t - (u(t), w(t)) generates a hysteresis loop in the (u, w)-
plane. Consider a periodic input (e.g. a sine function) oscillating be-
tween the values r, and r2. The height of the corresponding hysteresis
loop (assuming , nonnegative) is given by

d being the triangle the Preisach plane.
Using this equality, one may determine the measure u from experi-
ment ; on the other hand it shows that the height of the loop does not
depend upon the past history. Moreover, the entire shape of the

hysteresis loop is fixed by the measure p independent from past
history, and any change of input from rl to r2 and back to rl erases
any memory due the previous input variation in the interval [rl, r~].

Again, from the behaviour of individual switches it is obvious
that the Preisach model has the properties stated above. It was

Mayergoyz who pointed out in [4] that the latter two properties,
which he calls congruency and wiping out property respectively, are
also sufficient for a (nonanticipative and rate independent) operator
to be a Preisach operator.

The aim of the present paper is to provide a formal statement
and proof of this result. We try to clarify the role of the various as-
sumptions ; also, we admit general Borel measures p. For more ma-

terial on the Preisach operator, we refer to [1, 2, 3, 7].

2. - The characterization of the Preisach operator.

Throughout this paper, we set T = [0, 1] and denote by M(T )
the set of all real valued functions on T.

DEFINITION 1. Let An operator ~: U --~ M(T) is

called a hysteresis operator if it is rate independent and nonantici-
pative, i.e. if

for any continuous nondecreasing ~: T ~ T with q(0) = 0, = 1
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and uop c U;

for any ’UI, E U and any t E T . 0

Let resp. denote the set of all piecewise monotone
continuous functions:

is monotone for all 1 c i  n~ , 9

The action of a rate independent operator W on u E 0,.(T) is essen-
tially specified by the values xz = on a monotonicity partition
~t~~ of ~c. If W is nonanticipative, the knowledge of the final value

for all u is sufficient. Note also that definition 1 implies that
E U = is constant on some closed interval I c T, then

so is W u, since we may contract I to a single point.
We formalize these considerations.

DEFINITION 2. Let

be the set of all strings of real numbers including the empty
string 0, set

Define a concatenation x u y for x, y E Xo by

and generate an equivalence relation ~ on X from

forming the reflexive, symmetric and transitive hull. 13
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DEFiNITION 3. We define ~p : ~ ..

where and 0 = tl  ...  tn = 1 is a monotonicity partition
for u such that (U(ti+l) - u(ti)) (u(ti) - u(ti-1))  0 for 1  i  n.

is called rich, if p) U is surjective. [3

For example, the set of all piecewise linear functions on T is rich.

PROPOSITION 1. Let U c 01)m(T) be rich. Then for any hysteresis
operator W : U --~ M(T),

defines a mapping

Conversely, any mapping -+ R defines a hysteresis operator
T~: Mpm(T) -&#x3E; M(T) by-

where we set ut = u in [0, t] and u(t) on [t,1]. Moreover, these
correspondence establish a bijection between the set of all hysteresis
operators W : U -* M( T) and the set of all real valued mappings on Xl-.

PROOF. Using the identities

for 99 as in definition 1, one easily checks that the correspondences
yP --~ W f and W are well defined and inverse to each other. Q

In this manner, we obtain a canonical prolongation for a hysteresis
operator defined on to M1Jm(T). However, we remark
that a general rate independent and nonanticipative operator on M1Jm(T)
cannot be reduced to an operator on X resp. Xl-, since the discon-
tinuity structure of the inputs yields additional degrees of freedom.
We will exclude this from our discussion from now on.
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DEFINITION 4. A hysteresis operator W : M(T) is cal-
led regular if it coincides with its canonical prolongation from 
via proposition 1. 13

The first distinguishing feature of the Preisach model is its memory
erasure mechanism. Again, we describe this by an equivalence
relation.

DEFINITION 5. We generate an equivalence relation -- on X by
the monotone reducing rule from definition 2

the memory erasure rule

together with

again forming the reflexive, symmetric and transitive hull. We say
that a regular hysteresis operator yY has property (.E), if W, factorizes
through ~, i.e. implies = W,(y). CJ

For a hysteresis operator with property (E) it therefore suffices

to consider its action on We now give the normal form of an
element of 

PROPOSITION 2. For any y c X there exists an x E X and an m E R

y, having the form

or the one with inequalities reversed.

PROOF. Apply monotone reducing and memory erasure to y from
right to left. C1
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We now turn to the second characteristic property of the Preisach
model, which states that the height of any hysteresis loop correspond-
ing to inputs of the form

only depends on rl and 1"2 but not on x. Due to memory erasure, only
the first period (r1, r2, r1) has to be considered. Its first half can be
influenced by the past, its second half cannot.

DEFINITION 6. We say that a regular hysteresis operator W has
property (H) if there exists a function h : R2 ~ R with

for any and any D

Since for any x E X in the normal form of we may view any

part Xi+l) of x as second half of the first period of a periodic input,
with property (H) we can reduce general inputs to monotone inputs.

PROPOSITION 3. Any regular hysteresis operator W having prop-
erties (E) and (H) is uniquely determined by the function h and its
values W/(~)y ~ = (xi, R2.

PROOF. For any in the normal form of with
x = (xl , ... , xn ), ~~3, we have

and therefore (H) implies

The values x E R2, are, in general, unequal to since they
also include information from the initial condition, i.e. the initial



159

configuration of the individual switches. Since it is not easy to trans-
late general configurations of switches into properties of x2),
and since it would not really contribute to the characterization of the
Preisach model, we do not attempt to do this, but restrict ourselves
to the following remarks. If we assume that the initial configuration
is the result of a previous input, we have the compatibility condition

zo being the final value of the previous input. If we moreover consider
the special situation where xo is a lower bound for all threshold values ri
of existing individual switches, then all switches are on - 1 initially
and we must have

Together with proposition 2, this yields the following.

COROLLARY 1. Any regular hysteresis operator yY having proper-
ties (E), (H), ( C) and (I) is uniquely determined by the function h. C1

Now we discuss the function h describing the height of the

hysteresis loops, also called demagnetization function in [3]. Since
for r1  r2 we should have

(*)

with

in the case of a nonnegative measure It the function h has to satisfy
the inequalities [3]

for any and any 0 c ~ ~ r2 - ri, as can be seen if one draws
the corresponding triangles. It was remarked in [3] that (N) plus
one sided partial continuity of h is also sufficient for (*) to hold for
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some measure ~u. We present a more detailed formulation. Let us
denote by ÔI Ôs k the mixed second partial derivative of h in the
sense of distributions. If h is smooth, then one easily sees that (*)
holds with 2p having density - Ôt a, h. In general, one has the fol-
lowing result.

LEMMA 1. Assume that 11,: R2 ~ R satisfies (N). Let

Then the following is true:

(i) - al 0, 9

(ii) no is nonincreasing w.r.t, rl and nondecreasing 

where

PROOF. For test functions V, we have

Apply (N) to difference quotients of y and pass to the limit to ob-
tain (i). Assertion (ii) is a consequence of

From (i) we know that - a, a, ho is a regular nonnegative Borel

measure. Assertion (iii) is obtained through approximation of the

characteristic function of from above and below by suitable
test functions. CJ

If we do not require the measure p to be nonnegative, then h
must be a difference h1- h2 where hi and h2 satisfy (N). This is equi-
valent to an older notion of a BV function h: R2 -+ R, elaborated
in detail in section 46 of McShane’s book [5], not to be confused with
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the at present more standard notion that a function h is B Y if

grad (h) is a measure-recall that we want 0102h to be a measure.
We now obtain the main theorem.

THEOREM 1. For an operator W : with U = 

(or U a rich subset of the following assertions are equivalent:

(i) T~Y is a Preisach operator with (signed) finite Borel meas-
ure It with compact support in the Preisach plane P without atoms
on the main diagonal, and initial configuration - - 1.

(ii) W is a regular hysteresis operator satisfying (E), (.H), (C)
and (1), where the function h in (H), set to zero in ~rl ~ r2~, has
bounded variation [5, section 46] and satisfies

PROOF. The implication (i) ~ (ii) is discussed in the introduction
and easily formalized using well known results [1, 2, 3, 7]. For the

converse, consider the Preisach operator 1~ defined by the measure
2p = - 3i a2 h and initial configuration - 1. 97 also has the prop-
erties stated in (ii), and because of uniqueness obtained in corollary 1,
W has to be equal to W. CJ

In theorem 1, essentially only measures of form ¡.t = are

excluded. Such a measure corresponds to a simple switch at u = r
without hysteresis. However, individual switches with hysteresis as
well as a continuous distribution of switches without hysteresis are
included.

We finally pose the question: When is a given hysteresis operator
W : C( ~’) --~ .lVl (T ) a Preisach operator?

If W : C(T) - C(T) is continuous, then W is a Preisach if and

only if is, since if W maps into C(T), the measure
must be zero along horizontal and vertical lines in P, which is suf-
ficient for a Preisach operator to be continuous on C(T). If ~ is not

continuous on C(T), this argument does not work. In this case, con-
sider at first inputs defined as linear interpolate for = x2, ~c(t,~) =
- = x,~ , where ti fi t,~  1. Letting be the space of conver-

gent sequences (xn), for a given hysteresis operator W we may define
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The uniqueness result of corollary 1 still holds for W’ since it holds
for all Therefore, one only has to formulate a version of the
memory erasure property which reduces C(T) to To this end,
describe the memory by a family ~ of equivalence relations on C(T)
as follows:

This is just the general notion of Nerode equivalence. The memory
erasure property (E’ ) consists of two parts. Let 0 c s C t c 1. We
demand that

where we obtain v from u replacing by a straight line interpolat-
ing u(s) and u(t); moreover we demand that

with v = u(s) on [0, s] and v = u on [s, 1]. It is then not difficult
to show that for any v e C(T) and any t E T there exists a u E C(T)
which can be represented by an x E as above, with v -, u and

(One constructs v resp. x in the same way as if one wants to define
(Wv)(t) for an arbitrary and a given Preisach oper-
ator W, see e.g. [3].)

With this modification (E’) of (E), theorem 1 also holds for

U = C(T).
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