RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

A. Alzati
 M. Bertolini
 Quartic threefolds containing two skew double lines

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 139-151
http://www.numdam.org/item?id=RSMUP_1990__83__139_0
© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Quartic Threefolds Containing Two Skew Double Lines.

A. Alzati - M. Bertolini (*)

1. - Introduction.

The problem of rationality for algebraic threefolds is still an open problem in Algebraic Geometry. However the conic bundle theory, developed by Beauville (see $\left[\mathrm{B}_{1}\right],\left[\mathrm{B}_{2}\right]$ and also [C-M]), gives us a very useful tool to solve this problem in many cases.

Some recent results of Sarkisov and Iskovskih (see $\left[I_{1}\right],\left[I_{2}\right]$ and [Sa]) have improved this technique by giving some answers even when the intermediate Jacobian of the threefold is the Jacobian of a curve. These facts have allowed us to solve the problem of rationality for the Fano threefold of \mathbb{P}^{5} containing n planes (see [A-B1] and $\left[\mathrm{A}-\mathrm{B}_{2}\right]$).

In this paper we study the rationality of the generic quartic threefold of \mathbb{P}^{4} containing two skew double lines and containing n planes with all possible configurations. In [C-M] Conte and Murre have proved that a generic quartic threefold of \mathbb{P}^{4} containing only one double line is not rational, while it is well known that such threefold with two incident double lines is rational. Our work is a natural prosecution of $[C-M]$ and it was suggested by remark $(6,3)$ of $\left[A-B_{2}\right]$, in which we showed that a generic quartic threefold of \mathbb{P}^{4} containing two skew double lines, and no planes, is not rational.

Our proofs are based on this idea: there exists a birational morphism (due to Fano, [F]) between \mathbb{P}^{4} and the quadric hypersurface of \mathbb{P}^{5},
(*) Indirizzo degli AA.: Dipartimento di Matematica, Università di Milano via C. Saldini 50, 20133 Milano.
identified with the Grassmannian $G(1,3)$ of lines of \mathbf{P}^{3}. By this morphism some quartic hypersurfaces with two skew double lines correspond to cubic complexes containing two planes, meeting two by two at one point only; these singular varieties have a well known conic bundle structure (see [C], $\left[\mathrm{A}-\mathrm{B}_{1}\right]$ and $\left[\mathrm{A}-\mathrm{B}_{2}\right]$) ; the existence of some plane in the quartics changes this structure; by studying these new structures we get our results; they are described in § 4.

We use these conventions: by the word «n-fold» we mean a projective algebraic variety (singular or not) defined on C; by the word "generic» we mean that what we are saying is true in a suitable open Zarisky set.

2. - Fano birational morphism.

We choose ($x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}$) as coordinates in \mathbb{P}^{5}, we fix a smooth quadric hypersurface Q and we choose three planes contained in Q, meeting two by two at one point only; we can always suppose that Q has this equation:

$$
\text { Q) } \quad x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0
$$

and that the three planes, P_{0}, P_{1}, P_{2}, have equations:

$$
\begin{aligned}
& \left.P_{0}\right) \quad x_{0}=x_{2}=x_{4}=0 \\
& \left.P_{1}\right) \quad x_{3}=x_{4}=x_{5}=0 \\
& \left.P_{2}\right) x_{1}=x_{2}=x_{5}=0 .
\end{aligned}
$$

Now in \mathbf{P}^{4} we choose ($z_{1}: z_{2}: z_{3}: z_{4}: z_{5}$) as coordinates, (this unusual choice will be very useful in the sequel), and we choose three skew lines, not two of them lying in the same hyperplane; we can always suppose that the three lines have equations:

$$
\begin{array}{ll}
\left.L_{1}\right) & z_{3}=z_{4}=z_{5}=0 \\
\left.L_{2}\right) & z_{1}-z_{3}=z_{2}=z_{5}=0 \\
\left.L_{3}\right) & z_{1}=z_{2}=z_{4}=0
\end{array}
$$

We consider the rational map $\Phi: \mathbf{P}^{\mathbf{4}} \rightarrow \mathbf{P}^{5}$ given by:

$$
\begin{array}{ll}
x_{0}=z_{4}\left(z_{3}-z_{1}\right) & x_{1}=-z_{1} z_{5} \\
x_{2}=-z_{4} z_{5} & x_{3}=z_{2} z_{3} \\
x_{4}=z_{2} z_{4} & x_{5}=z_{2} z_{5} .
\end{array}
$$

Φ is a well known birational morphism between \mathbb{P}^{4} and Q (see [F]), its inverse is:

$$
\begin{array}{ll}
z_{1}=x_{1} x_{4} & z_{2}=-x_{4} x_{5} \\
z_{3}=x_{2} x_{3} & z_{4}=x_{2} x_{4} \\
z_{5}=x_{2} x_{5} . &
\end{array}
$$

In fact Φ is a quadratic transformation; its base locus in $\mathbf{P}^{\mathbf{4}}$ is given by: L_{1}, L_{2}, L_{3} and by the only line L_{4} which is incident to them, the equations of L_{4} are: $z_{2}=z_{4}=z_{5}=0$.

The base locus of Φ^{-1} in \mathbb{P}^{5} is given by P_{0}, P_{1}, P_{2} and by the plane Π passing through the points $P_{0} \cap P_{1}, P_{0} \cap P_{2}, P_{1} \cap P_{2}$; the equations of Π are: $x_{2}=x_{4}=x_{5}=0$.

All cubic hypersurfaces X in \mathbf{P}^{5} containing P_{1} and P_{2} have this equation:
$e x_{0}^{2} x_{5}+x_{1}^{2} F+x_{2}^{2} G+x_{0} x_{1} H+x_{0} x_{2} L+x_{1} x_{2} M+x_{0} x_{5} N+$

$$
+x_{1} P+x_{2} Q+x_{5} R=0
$$

where $e \in \mathbf{C} ; \boldsymbol{F}=\boldsymbol{F}\left(x_{3}: x_{4}: x_{5}\right)=f_{1} x_{3}+f_{2} x_{4}+f_{3} x_{5}$ is a degree one homogeneous polynomial; G, H, L, M, N are analogous to F; $\boldsymbol{P}=\boldsymbol{P}\left(x_{3}: x_{4}: x_{5}\right)=p_{11} x_{3}^{2}+p_{12} x_{3} x_{4}+p_{22} x_{4}^{2}+x_{5}\left(p_{1} x_{3}+p_{2} x_{4}+p_{3} x_{5}\right) \quad$ is a degree two homogeneous polynomial; Q and R are analogous to P.
$\Phi(X)$ is the following quartic hypersurface Y of \mathbf{P}^{4} :

$$
\begin{aligned}
& e\left(z_{1}-z_{3}\right) z_{4}^{2}+z_{1}^{2} z_{5} F+z_{4}^{2} z_{5} G+z_{1}\left(z_{1}-z_{3}\right) z_{4} H+\left(z_{1}-z_{3}\right) z_{4}^{2} L+ \\
& \quad+z_{1} z_{4} z_{5} M-z_{2}\left(z_{1}-z_{3}\right) z_{4} N-z_{1} z_{2} P-z_{2} z_{4} Q+z_{2}^{2} R=0
\end{aligned}
$$

where $F=F\left(z_{3}: z_{4}: z_{5}\right)$ etc.

It is easy to see that Y contains $L_{1}, L_{2}, L_{3}, L_{4}$ and that L_{1}, L_{3} are double lines for Y, without n-ple points $(n \geqslant 3)$. We can prove:

Proposition (2.1). Y is smooth out of L_{1}, L_{3} and it is the more general quartic hypersurface of \mathbb{P}^{4} containing two skew double lines (and no other singularities) and another simple line, no two of them lying in the same hyperplane..

Proof. In \mathbb{P}^{4} we choose ($x: y: z: w: u$) as coordinates; we can always suppose that the three skew lines, no two of them lying in the same hyperplane, have equations:

$$
x=y=u=0, \quad z=w=u=0, \quad x=z=y-w=0
$$

All quartic hypersurfaces containing $x=y=u=0 \quad$ and $z=w=u=0$ as double lines have equation:

$$
\begin{equation*}
z^{2} \mathfrak{A}+z w \mathfrak{B}+w^{2} \mathcal{C}+z u \mathfrak{D}+w u \mathcal{E}+u^{2} \mathcal{F}=0 \tag{2.2}
\end{equation*}
$$

where $\mathcal{A}=a_{11} x^{2}+a_{12} x y+a_{22} y^{2}+a_{13} x u+a_{23} y u+a_{33} u^{2}$ and $\mathfrak{B}, \mathcal{C}$, $\mathfrak{D}, \mathcal{E}, \mathfrak{F}$ are analogous to \mathcal{A}.

This hypersurface contains the third line if and only if

$$
\begin{equation*}
c_{22}=f_{23}+e_{33}=c_{33}+e_{23}+f_{22}=c_{23}+e_{22}=f_{33}=0 \tag{2.3}
\end{equation*}
$$

It is easy to see that it is smooth out of the two double lines.
Now if we put: $z_{5}=x, z_{4}=u, z_{3}=y, z_{2}=z, z_{1}=w$, we see that the equation (2.2), with the conditions (2.3), becomes the equation of \boldsymbol{Y} after a suitable linear, invertible, transformation on its coefficients; so we get our thesis.

REMARK (2.4). Obviously the existence of L_{4} in Y is a direct consequence of the existence of L_{2} and the double lines L_{1}, L_{3}.

If we intersect Y with the plane containing L_{1} and L_{4} we get an other line L_{5} whose equations are: $r_{11} z_{2}-p_{11} z_{1}=z_{4}=z_{5}=0$.

If we intersect Y with the plane containing L_{3} and L_{1} we get an other line L_{6} whose equations are: $z_{2}=z_{4}=f_{1} z_{3}+f_{3} z_{5}=0$.

The following picture shows the configuration of these six lines
and their incidence points in Y :

In the sequel we will need to know the action of Φ on some plane in Y, so we prove the following:

Proposition (2.5). Let p be a plane in Y.
Suppose that p does not belong to the hyperplane $z_{4}=0$. If p outs L_{1} and L_{3} but not L_{2}, then $\Phi(p)$ is a quadric (irreducible or not), in $V=Q \cap X$; if p cuts L_{1}, L_{2} and L_{3} then $\Phi(p)$ is a plane in V meeting P_{0}, P_{1}, P_{2} at one point only.

Suppose that p belongs to the hyperplane $z_{4}=0$. If p does not contain L_{1} or L_{3} then V contains P_{0} and therefore Y splits into a cubic hypersurface and a hyperplane.

Proof. In the first case it suffices to consider the equations of a plane p with the above conditions and to write down the equations of $\Phi(p)$ in \mathbf{P}^{5} by using the previously fixed coordinate system.

In the second case a direct calculation shows that the existence of a plane p in Y, with the above conditions, implies that V contains P_{0} : in this case $\Phi^{-1}(V)$ is a cubic hypersurface, hence Y is reducible.

Now let p be a plane in Y; if p contains L_{1} and it is incident with L_{3} but it is not $z_{4}=z_{5}=0$ (i.e. the plane containing L_{1} and L_{4})
we call it a « λ-plane». If p contains L_{3} and it is incident with L_{1} but it is not $z_{2}=z_{4}=0$ (i.e. the plane containing L_{3} and L_{4}) we call it a " μ-plane». Obviously all these planes belong to the hyperplane $z_{4}=0$. We have this:

Proposition (2.6). Let (a, b) be the numbers of λ-planes and respectively μ-planes contained in Y, by keeping it irreducible. If Y does not contain $z_{4}=z_{5}=0$ or $z_{2}=z_{4}=0$ we have only these couples: $(a, b)=(0,0) ;(1,0) ;(0,1) ;(1,1)$. If Y contains $z_{4}=z_{5}=0$ we have $(a, b)=(0,0) ;(1,0) ;(0,1) ;(1,1) ;(0,2)$. If Y contains $z_{2}=z_{4}=0$ we have $(a, b)=(0,0) ;(1,0) ;(0,1) ;(2,0) ;(1,1)$. If Y contains both of them we have $(a, b)=(0,0) ;(1,0) ;(0,1) ;(1,1)$.

Proof. Obviously when V contains P_{1} and P_{3} only, among the three planes which are the base locus of Φ in \mathbb{P}^{5}, we can state that Y is irreducible if and only if V is irreducible; then our strategy is the following: to consider the generic Y containing $a \quad \lambda$-planes and b μ-planes, to consider the corresponding V and to check if it, i.e. X because Q is fixed, is irreducible.
$A \lambda$-plane has equations: $z_{4}=z_{3}-\lambda z_{5}=0 \lambda \in \mathbb{C} ; Y$ contains it if and only if: $\lambda f_{1}+f_{3}=\lambda^{2} p_{11}+\lambda p_{1}+p_{3}=\lambda^{2} r_{11}+\lambda r_{1}+r_{3}=0$; while Y contains $z_{4}=z_{5}=0$ if and only if: $p_{11}=r_{11}=0$. Φ sends the λ-plane into the line $x_{3}=\lambda x_{5}$ on the plane P_{0}, while Φ blow down the plane $z_{4}=z_{5}=0$ in the point $(0: 0: 0: 1: 0: 0)$ of \mathbb{P}^{5}.

A μ-plane has equations: $z_{4}=z_{1}-\mu z_{2}=0 \mu \in \mathbb{C} ; \boldsymbol{Y}$ contains it if and only if: $-\mu p_{11}+r_{11}=\mu^{2} f_{1}-\mu p_{1}+r_{1}=\mu^{2} f_{3}-\mu p_{3}+r_{3}=0$; while Y contains $z_{2}=z_{4}=0$ if and only if: $f_{1}=f_{3}=0$. Φ sends the μ-plane into the line $x_{1}=-\mu x_{5}$ on the plane P_{0}, while Φ blow down the plane $z_{2}=z_{4}=0$ in the point ($0: 1: 0: 0: 0: 0$) of \mathbf{P}^{5}.

As we have seen, all these planes, belonging to the hyperplane $z_{4}=0$, are sent in P_{0} by Φ. The section of X with P_{0} is the following plane cubic E :

$$
\begin{aligned}
x_{1}^{2}\left(f_{1} x_{3}+f_{3} x_{5}\right)+x_{1}\left(p_{11} x_{3}^{2}+p_{1} x_{3} x_{5}+\right. & \left.p_{3} x_{5}^{2}\right) \\
& + \\
& +x_{5}\left(r_{11} x_{3}^{2}+r_{1} x_{3} x_{5}+r_{3} x_{5}^{2}\right)=0
\end{aligned}
$$

For generic $Y E$, passing through ($0: 0: 0: 1: 0: 0)$ and ($0: 1: 0: 0: 0: 0)$, is smooth; if Y contains some λ-plane, some μ-plane or the two particular planes $z_{4}=z_{5}=0$ or $z_{2}=z_{4}=0$, then E splits in a obvious way. The values (a, b) quoted in (2.6) are the only possibilities to avoid
that X contains P_{0} entirely: it would imply Y reducible. In all these cases it is easy to see that X is in fact irreducible by looking at the possible hyperplanes contained in X which would cut one of the lines into which E splits on P_{0}.

If Y contains $z_{4}=z_{5}=0$ only or $z_{2}=z_{4}=0$ only, E does not split and hence X is irreducible.

We will give an example of this reasoning: let us suppose that Y contains a λ-plane, then E splits into the line $x_{3}=\lambda x_{5}$ and into the smooth conic $\left(x_{3}+\lambda x_{5}\right)\left(p_{11} x_{1}+r_{11} x_{5}\right)+f_{1} x_{1}^{2}+p_{1} x_{3} x_{5}+p_{3} x_{5}^{2}=0$. If X is reducible it splits into a hyperplane of \mathbb{P}^{5} and something other; this hyperplane has to cut the line $x_{3}=\lambda x_{5}$ on P_{0}, hence its equation is: $x_{3}=\lambda x_{5}+a x_{0}+b x_{2}+c x_{4}$; but there exists no choice of the three numbers a, b, c such that the generic X contains this hyperplane, in spite of conditions imposed on Y by containing the λ-plane, (i.e.: $\lambda f_{1}+f_{3}=\lambda^{2} p_{11}+\lambda p_{1}+p_{3}=\lambda^{2} r_{11}+\lambda r_{1}+r_{3}=0$), even when Y contains $z_{4}=\lambda_{5}=0$ or $z_{2}=z_{4}=0$ or both.

The other cases are solved in the same way.
Remark (2.7). By a simple check of the partial derivatives of the equations of V we see that, in spite of the existence in \boldsymbol{Y} of the planes quoted in (2.6), V has ordinary double points only, (see also [A-B ${ }_{1}$] and $\left[A-B_{2}\right]$).

3. - The conic bundle structures.

We need some definitions and basic facts about conic bundle theory.

Definition (3.1). Let W be a threefold, let S be a smooth surface. If there exists a sur ${ }^{5}$ ective morphism $\tau: W \rightarrow S$ such that for every point $t \in S$ the fibre $\tau^{-1}(t)$ is isomorphic to a conic in \mathbf{P}^{2}, possibly degenerated, then W is called a conic bundle over S; we will use the symbol: (W, τ, S).

Definition (3.2). Let (W, τ, S) and ($W^{\prime}, \tau^{\prime}, S^{\prime}$) be two conic bundles; if there exists a commutative diagram as follows:

in which the horizontal arrows are birational morphisms, then we say that (W, τ, S) and ($W^{\prime}, \tau^{\prime}, S^{\prime}$) are birationally equivalent.

Remark (3.3). Let (W, τ, S) be a singular conic bundle; suppose that W has only a finite number of ordinary double points such that none of them is the intersection point of the two lines into which a degenerate fibre splits. Then, if we solve the singularities of W by blowings up, we get a smooth conic bundle over S which is birationally equivalent to (W, τ, \mathbb{S}).

Definition (3.4). Let (W, τ, S) be a conic bundle; the set of the points $t \in S$ such that the fibre $\tau^{-1}(t)$ is a degenerate conic is called the discriminant locus of the conic bundle. It can be shown (see [Sa], p. 358) that it is always a divisor of S; from now on we will refer to it as the discriminant divisor D_{W} of (W, τ, S).

Definition (3.5). A smooth conic bundle (W, τ, S) is called standard if for every curve C of S, the surface $\tau^{-1}(C)$ is irreducible.

Proposition (3.6) (see [Sa], p. 366-367, see also [A-B ${ }_{2}$] prop. (2.6)). Let (W, τ, S) be a smooth conic bundle, such that D_{W} is the disjoint union of smooth curves $D_{i}, i=1,2 \ldots n$; if $\tau^{-1}\left(D_{1}\right)$, for instance, is reducible then necessarily $D_{1} \cap\left(D_{W}-D_{1}\right)$ is empty and we can blow down one of the two components of $\tau^{-1}\left(D_{1}\right)$ to obtain a new smooth conic bundle, birationally equivalent to (W, τ, S), whose D is $D_{2} \cup D_{3} \cup \ldots D_{n}$. We can repeat this process until to obtain a smooth standard conic bundle birationally equivalent to (W, τ, S).

Theorem (3.7) (see $\left[\mathrm{I}_{2}\right], \mathrm{p} .742$). Let (W, τ, S) be a smooth, standard, conic bundle, let S be a rational surface, let $D_{\boldsymbol{W}}$ be a curve. Then W is rational if there exists a pencil of rational curves C_{t} on S, $\left(t \in \mathbb{P}^{1}\right)$, without fixed components, such that $\boldsymbol{C}_{t} \cdot \boldsymbol{D}_{w} \leqslant 3 \forall t$.

Now we consider the conic bundle structures of X and Y.
It is well known that every quartic hypersurface in \mathbb{P}^{4} with a double line has a conic bundle structure (see [C-M]) : we fix the plane π whose equations are: $z_{1}=z_{2}=0$; it is skew with L_{1}. If we project Y from L_{1} to π we have that the fibre over a point of π is a quartic plane curve which splits into L_{1}, counted twice, and into another conic; if we blow up Y along L_{1} we get a smooth conic bundle according to definition (3.1).

Now we want to determine $\boldsymbol{D}_{\boldsymbol{r}}$. The generic point of the plane containing a point $\left(0: 0: z_{3}: z_{4}: z_{5}\right)$ of π and L_{1}, has coordinates $\left(h: k: t z_{3}: t z_{4}: t z_{5}\right)$; the intersection between Y and this plane is the following plane quartic (where $F=F\left(z_{3}: z_{4}: z_{5}\right)$ etc.):

$$
\begin{aligned}
& t^{2}\left[\left(e z_{4}^{2}+z_{5} F+z_{4} H\right) h^{2}-\left(z_{4} N+P\right) h k+R k^{2}-\right. \\
& -\left(2 e z_{3} z_{4}^{2}+z_{3} z_{4} H+z_{4}^{2} L+z_{4} z_{5} M\right) h t+\left(z_{3} z_{4} N-z_{4} Q\right) k t+ \\
& \\
& \left.\quad+\left(e z_{3}^{2} z_{4}^{2}+z_{4}^{2} z_{5} G-z_{3} z_{4}^{2} L\right)\right]=0
\end{aligned}
$$

$t^{2}=0$ gives L_{1} counted twice, the remaining curve is a conic; it is degenerated if and only if:

$$
\begin{equation*}
z_{4}^{2}\left[4 R\left(e z_{4}^{2}+z_{5} F+z_{4} H\right)\left(e z_{3}^{2}+z_{5} G-z_{3} L\right)-\right. \tag{3.8}
\end{equation*}
$$

$$
-\left(z_{4} N+P\right)\left(z_{3} N-Q\right)\left(-2 e z_{3} z_{4}-z_{3} H+z_{4} L+z_{5} M\right)-
$$

$$
-R\left(-2 e z_{3} z_{4}-z_{3} H+z_{4} L+z_{5} M\right)^{2}-\left(z_{3} N-Q\right)^{2}\left(e z_{4}^{2}+z_{5} F+z_{4} H\right)-
$$

$$
\left.-\left(z_{4} N+P\right)^{2}\left(e z_{3}^{2}+z_{5} G-z_{3} L\right)\right]=0
$$

Therefore D_{F} splits into the line $z_{1}=0$ counted twice (whose existence is an obvious consequence of the double lines L_{1} and L_{3} in Y) and into a sestic Γ; we remark that the existence of a double line in $\boldsymbol{D}_{\boldsymbol{r}}$ makes very difficult to apply all known theorems about the rationality of the conic bundles.

Now let us consider $V=X \cap Q$, as $\Phi(X)=Y$ we have that V is birational to Y. V has a conic bundle structure too; it is well known (see [C], [A-B1]) : we fix the plane π^{\prime}, whose equations are $x_{0}=x_{1}=x_{2}=0$; we project V from P_{1} to π^{\prime}; by blowing up V along P_{1} and at the ordinary double points which V has on P_{2} (see [A-B ${ }_{1}$) we get a smooth conic bundle.

Let us determine $\boldsymbol{D}_{\boldsymbol{r}}$: the generic point of the plane containing a point $\left(0: 0: 0: x_{3}: x_{4}: x_{5}\right)$ of π^{\prime} and P_{1} has coordinates: $\left(\alpha: \beta: \gamma: \delta x_{3}: \delta x_{4}: \delta x_{5}\right)$; this point belongs to V if and only if:

$$
\begin{aligned}
e \alpha^{2} \delta x_{5}+\beta^{2} \delta F+\gamma^{2} \delta G+\alpha \beta \delta H+\alpha \gamma \delta L & +\beta \gamma \delta M+\alpha \delta^{2} x_{5} N+ \\
& +\beta \delta^{2} P+\gamma \delta^{2} Q+\delta^{3} x_{5} R=0
\end{aligned}
$$

and

$$
\alpha \delta x_{5}-\beta \delta x_{4}+\gamma \delta x_{3}=0
$$

$\delta=0$ gives the plane P_{1}; if we delete δ we obtain a conic, it is easy to see ($\left[A-B_{1}\right]$) that the conic is degenerate if and only if:

$$
\begin{equation*}
x_{5}\left[4 R\left(e x_{4}^{2}+x_{5} F+x_{4} H\right)\left(e x_{3}^{2}+x_{5} G-x_{3} L\right)-\right. \tag{3.9}
\end{equation*}
$$

$$
-\left(x_{4} N+P\right)\left(x_{3} N-Q\right)\left(-2 e x_{3} x_{4}-x_{3} H+x_{4} L+x_{5} M\right)-
$$

$$
\begin{array}{r}
-R\left(-2 e x_{3} x_{4}-x_{3} H+x_{4} L+x_{5} M\right)^{2}-\left(x_{3} N-Q\right)^{2}\left(e x_{4}^{2}+x_{5} F+x_{4} H\right)- \\
\left.-\left(x_{4} N+P\right)^{2}\left(e x_{3}^{2}+x_{5} G-x_{3} L\right)\right]=0
\end{array}
$$

where $F=F\left(x_{3}: x_{4}: x_{5}\right)$ etc.
Therefore \boldsymbol{D}_{V} splits into the line $x_{5}=0$ and into a smooth plane sestic Γ (see $\left[A-B_{1}\right]$ and $\left.\left[A-B_{2}\right]\right)$; it is exactly the same curve into which D_{r} splits, in fact if we look at (3.8) and (3.9) and if we put $x_{i}=z_{i}, i=3,4,5$ we see that the two curves are the same curve.

4. - The main results.

Now we want to prove this:
Proposition (4.1). The generic quartic hypersurface of \mathbb{P}^{4} containing two skew double lines is not rational.

As the set of the generic quartic hypersurfaces of $\mathbf{P}^{\mathbf{4}}$, containing two skew double lines and a third simple skew line, (not two of them belonging to the same hyperplane), is a closed Zarisky set of the moduli space of all quartic hypersurfaces of P^{4}, to prove (4.1) it suffices to prove the following:

Proposition (4.2). The generic quartic hypersurface of \mathbf{P}^{4}, containing two skew double lines and a third simple skew line, not two of them belonging to the same hyperplane, is not rational.

Proof. By (2.1) it suffices to show that Y is not rational. By the previous section we have seen that Y is birational to V which is a cubic complex containing two planes only, meeting two by two at one point; therefore it is not rational (see $\left[A-B_{1}\right]$ and $[A-R]$).

Now we want to study the rationality of the generic quartic hypersurface of \mathbb{P}^{4} with two skew double lines when it contains some plane;
as we have seen this problem is equivalent to study the rationality of the generic Y containing some plane.

If Y contains a plane which is skew with L_{1} (or L_{3}) it is rational; in fact every line intersecting L_{1} and the plane cuts Y in one other point only, so that it is not difficult to see that in this case Y is birational to $\mathbb{P}^{2} \times \mathbb{P}^{1}$. Therefore we can suppose that every plane contained in Y is incident with both double lines, or it is a λ-plane or a μ-plane or it is $z_{4}=z_{5}=0$ or $z_{2}=z_{4}=0$.

We have this:

Proposition (4.3). If Y contains some plane incident to both double lines or containing one of them, then it is rational (or reducible) save when it contains at most one plane incident with L_{1} and L_{3} and all λ-planes and μ-planes allowed by (2.6).

Before proving (4.3) we need
Lemma (4.4). If Y contains one plane only, intersecting L_{1} and L_{3} but not intersecting L_{2}, then Y is not rational.

Proof. - Let us call p this plane. If p belongs to the hyperplane generated by L_{1} and L_{3} (i.e. $z_{4}=0$), then $\Phi(p)$ is P_{0} and V is a cubic complex containing the three planes which are the base locus of Φ^{-1}, therefore Y is reducible, (see also (2.5)).

In the other cases, by a suitable choice of coordinate system, we can always suppose that p has equations:

1) $z_{3}=z_{4}-z_{1}=0$,
2) $z_{4}-z_{1}=z_{5}-z_{3}=0$,
3) $z_{3}=z_{4}-z_{1}+z_{2}=0$,
4) $z_{5}-z_{3}=z_{4}-z_{1}+z_{2}=0$.

Then $\Phi(p)$ has equations:

1) $x_{1}=x_{3}=x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0$,
2) $x_{1}=x_{3}+x_{4}-x_{5}=x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0$,
3) $x_{1}+x_{5}=x_{3}=x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0$,
4) $x_{1}+x_{5}=x_{3}+x_{4}-x_{5}=x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0$.

In the cases 1) and 3) $\Phi(p)$ splits into a couple of planes and V
is a cubic complex containing four planes. It is easy to see that this is the case $(4,3,1)$ of table R of $\left[A-B_{2}\right]$, therefore V is not rational.

In the cases 2) and 4) $\Phi(p)$ is a smooth quadric cutting a line on P_{1} and a line on P_{2} both passing through $P_{1} \cap P_{2}$. This configuration in V is obtained as follows: by choosing two points A, B in \mathbf{P}^{3} and two skew lines $a, \&$ passing through A and B respectively; by considering the two stars of lines centered in A and in B and the lines intersecting both a and ℓ. If we move a until it cuts ℓ in a third distinct point C we get a cubic complex V containing four planes (the three stars of lines centered in A, B, C and the lines of the plane through A, B, C) with the previously considered configuration. It is easy to see that this degeneration is flat so that V is not rational as in the previous cases.

Proof of (4.3). Let us suppose that Y contains only one plane p intersecting $L_{1}, L_{2} L_{3} ;$ by $(2.5) \Phi(p)$ is a plane in V, meeting P_{1} and P_{2} at one point only, so that Y is birational to a cubic complex containing three planes two by two meeting at one point only (and no other planes), such complex is not rational (see [A-R] and [A-B ${ }_{1}$]).

Let us suppose that Y contains only one plane intersecting L_{1}, L_{3} but not intersecting $L_{2}: Y$ is not rational by lemma (4.4).

Now it is easy to see that if we suppose that Y contains two planes intersecting L_{1}, L_{2}, L_{3}, or two planes intersecting L_{1}, L_{3} but not L_{2}, or one plane of the first type and one plane of the second type, we get that V is a singular conic bundle over \mathbf{P}^{2} birationally equivalent to a smooth standard conic bundle W over a rational surface S, such that \boldsymbol{D}_{w} is the pull back of a smooth plane quartic by blowings up; (for the second type we can use a degeneration argument as in the proof of lemma (4.4)).
V is rational by theorem (3.7): it suffices to consider a pencil of lines of \mathbf{P}^{2} (through a point not belonging to the quartic) and its transformed on S by the blowings up.

Finally we have only to remark that the existence in Y of any plane p quoted in (2.6) does not change the conic bundle structure of V; in fact in all these cases V is irreducible, with ordinary double points only, $\Phi(p)$ is a line or a point (see (2.6)) and when we project V from P_{1} to π^{\prime} we see that \boldsymbol{D}_{V} is the same divisor (a smooth curve plus one or two lines) arising when Y does not contain any plane of this type; this last fact is easy checked by looking directly at (3.8) or (3.9) and by recalling the conditions imposed on \boldsymbol{Y} by the existence of a plane of this type (see (2.6)).

REFERENCES

[A-B B_{1} A. Alzati - M. Bertolini, On the rationality of a certain class of cubic, complexes, Riv. Mat. Univ. Parma (4) 15 (1989).
[A-B B_{2} A. Alzati - M. Bertolini, On the problem of rationality for some cubic complexes, Indag. Mat., 91 (1988), pp. 349-364.
[A-R] E. Ambrogio - D. Romagnoli, Sulla non razionalità della varietà di Fano di \mathbb{P}^{5} contenente 2 o 3 piani, Quaderno del Dip. di Mat. dell'Università di Torino (1987).
[$\left.\mathrm{B}_{1}\right]$ A. Beauville, Prym varieties and the Schottky problem, Inv. Math., 41 (1977), pp. 149-196.
[$\left.\mathrm{B}_{2}\right]$ A. Beauville, Varietés de Prym et Jacobienne intermediaires, Ann. Sc. E. Norm. Sup., Serie 4, t. 10 (1977), pp. 309-391.
[C] A. Conte, Introduzione alle varietà algebriche a tre dimensioni, Quaderno U.M.I. n. 22, Ed. Pitagora, Bologna (1982).
[C-M] A. Conte - J. P. Murre, On quartic threefolds with a double line - I, II, Indag. Math., 80 (1977), pp. 145-175.
[F] G. Fano, Sulle varietà algebriche a tre dimensioni aventi tutti i generi nulli, Atti del Congresso di Bologna 1928, t. IV, Ed. Zanichelli.
[$\left.\mathrm{I}_{1}\right] \quad$ V. A. Iskovskif, Algebraic threefolds with special regard to the problem of rationality, Proc. of the Int. Cong. of Mat. 1983, Warszava, pp. 733-746.
$\left[\mathrm{I}_{2}\right] \quad$ V. A. Isкovskin, On the rationality problem for conic bundles, Duke Math. J., 54 (1987), pp. 271-294.
[Sa] V. G. Sarkisov, On conic bundles structures, Math. U.S.S.R. Izvestiya, 20, 2 (1982), pp. 355-390.

Manoscritto pervenuto in redazione il 20 maggio 1989.

