RENDICONTI del Seminario Matematico della Università di Padova

A. ALZATI M. Bertolini

Quartic threefolds containing two skew double lines

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 139-151

http://www.numdam.org/item?id=RSMUP_1990_83_139_0

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 83 (1990)

Quartic Threefolds Containing Two Skew Double Lines.

A. Alzati - M. Bertolini (*)

1. - Introduction.

The problem of rationality for algebraic threefolds is still an open problem in Algebraic Geometry. However the conic bundle theory, developed by Beauville (see $[B_1]$, $[B_2]$ and also [C-M]), gives us a very useful tool to solve this problem in many cases.

Some recent results of Sarkisov and Iskovskih (see $[I_1], [I_2]$ and [Sa]) have improved this technique by giving some answers even when the intermediate Jacobian of the threefold is the Jacobian of a curve. These facts have allowed us to solve the problem of rationality for the Fano threefold of \mathbb{P}^5 containing *n* planes (see [A-B₁] and [A-B₂]).

In this paper we study the rationality of the generic quartic threefold of \mathbf{P}^4 containing two skew double lines and containing *n* planes with all possible configurations. In [C-M] Conte and Murre have proved that a generic quartic threefold of \mathbf{P}^4 containing only one double line is not rational, while it is well known that such threefold with two incident double lines is rational. Our work is a natural prosecution of [C-M] and it was suggested by remark (6, 3) of [A-B₂], in which we showed that a generic quartic threefold of \mathbf{P}^4 containing two skew double lines, and no planes, is not rational.

Our proofs are based on this idea: there exists a birational morphism (due to Fano, [F]) between \mathbb{P}^4 and the quadric hypersurface of \mathbb{P}^5 ,

(*) Indirizzo degli AA.: Dipartimento di Matematica, Università di Milano via C. Saldini 50, 20133 Milano. identified with the Grassmannian G(1, 3) of lines of \mathbf{P}^3 . By this morphism some quartic hypersurfaces with two skew double lines correspond to cubic complexes containing two planes, meeting two by two at one point only; these singular varieties have a well known conic bundle structure (see [C], [A-B₁] and [A-B₂]); the existence of some plane in the quartics changes this structure; by studying these new structures we get our results; they are described in § 4.

We use these conventions: by the word $\ll n$ -fold \gg we mean a projective algebraic variety (singular or not) defined on C; by the word \ll generic \gg we mean that what we are saying is true in a suitable open Zarisky set.

2. - Fano birational morphism.

We choose $(x_0:x_1:x_2:x_3:x_4:x_5)$ as coordinates in \mathbf{P}^5 , we fix a smooth quadric hypersurface Q and we choose three planes contained in Q, meeting two by two at one point only; we can always suppose that Q has this equation:

$$Q) \quad x_0 x_5 - x_1 x_4 + x_2 x_3 = 0$$

and that the three planes, P_0, P_1, P_2 , have equations:

 $\begin{array}{ll} P_0) & x_0 = x_2 = x_4 = 0 \\ P_1) & x_3 = x_4 = x_5 = 0 \\ P_2) & x_1 = x_2 = x_5 = 0 \ . \end{array}$

Now in \mathbf{P}^4 we choose $(z_1:z_2:z_3:z_4:z_5)$ as coordinates, (this unusual choice will be very useful in the sequel), and we choose three skew lines, not two of them lying in the same hyperplane; we can always suppose that the three lines have equations:

 $\begin{array}{ll} L_1) & z_3 = z_4 = z_5 = 0 \\ \\ L_2) & z_1 - z_3 = z_2 = z_5 = 0 \\ \\ L_3) & z_1 = z_2 = z_4 = 0 \end{array}$

140

We consider the rational map $\Phi: \mathbf{P}^4 \to \mathbf{P}^5$ given by:

 Φ is a well known birational morphism between \mathbb{P}^4 and Q (see [F]), its inverse is:

In fact Φ is a quadratic transformation; its base locus in \mathbb{P}^4 is given by: L_1, L_2, L_3 and by the only line L_4 which is incident to them, the equations of L_4 are: $z_2 = z_4 = z_5 = 0$.

The base locus of Φ^{-1} in \mathbb{P}^5 is given by P_0, P_1, P_2 and by the plane Π passing through the points $P_0 \cap P_1$, $P_0 \cap P_2$, $P_1 \cap P_2$; the equations of Π are: $x_2 = x_4 = x_5 = 0$.

All cubic hypersurfaces X in \mathbb{P}^5 containing P_1 and P_2 have this equation:

$$ex_0^2x_5 + x_1^2F + x_2^2G + x_0x_1H + x_0x_2L + x_1x_2M + x_0x_5N +$$

+ $x_1P + x_2Q + x_5R = 0$

where $e \in \mathbb{C}$; $F = F(x_3:x_4:x_5) = f_1x_3 + f_2x_4 + f_3x_5$ is a degree one homogeneous polynomial; G, H, L, M, N are analogous to F; $P = P(x_3:x_4:x_5) = p_{11}x_3^2 + p_{12}x_3x_4 + p_{22}x_4^2 + x_5(p_1x_3 + p_2x_4 + p_3x_5)$ is a degree two homogeneous polynomial; Q and R are analogous to P.

 $\Phi(X)$ is the following quartic hypersurface Y of \mathbf{P}^4 :

$$\begin{split} e(z_1-z_3)z_4^2 + z_1^2z_5F + z_4^2z_5G + z_1(z_1-z_3)z_4H + (z_1-z_3)z_4^2L + \\ &+ z_1z_4z_5M - z_2(z_1-z_3)z_4N - z_1z_2P - z_2z_4Q + z_2^2R = 0 \end{split}$$

where $F = F(z_3; z_4; z_5)$ etc.

It is easy to see that Y contains L_1, L_2, L_3, L_4 and that L_1, L_3 are double lines for Y, without n-ple points $(n \ge 3)$. We can prove:

PROPOSITION (2.1). Y is smooth out of L_1 , L_3 and it is the more general quartic hypersurface of \mathbb{P}^4 containing two skew double lines (and no other singularities) and another simple line, no two of them lying in the same hyperplane..

PROOF. In \mathbb{P}^4 we choose (x:y:z:w:u) as coordinates; we can always suppose that the three skew lines, no two of them lying in the same hyperplane, have equations:

x = y = u = 0, z = w = u = 0, x = z = y - w = 0.

All quartic hypersurfaces containing x = y = u = 0 and z = w = u = 0 as double lines have equation:

(2.2)
$$z^{2}\mathcal{A} + zw\mathfrak{B} + w^{2}\mathfrak{C} + zu\mathfrak{D} + wu\mathfrak{E} + u^{2}\mathfrak{F} = 0$$

where $A = a_{11}x^2 + a_{12}xy + a_{22}y^2 + a_{13}xu + a_{23}yu + a_{33}u^2$ and B, C, D, δ, F are analogous to A.

This hypersurface contains the third line if and only if

$$(2.3) c_{22} = f_{23} + e_{33} = c_{33} + e_{23} + f_{22} = c_{23} + e_{22} = f_{33} = 0.$$

It is easy to see that it is smooth out of the two double lines.

Now if we put: $z_5 = x$, $z_4 = u$, $z_3 = y$, $z_2 = z$, $z_1 = w$, we see that the equation (2.2), with the conditions (2.3), becomes the equation of Y after a suitable linear, invertible, transformation on its coefficients; so we get our thesis. \Box

REMARK (2.4). Obviously the existence of L_4 in Y is a direct consequence of the existence of L_2 and the double lines L_1, L_3 .

If we intersect Y with the plane containing L_1 and L_4 we get an other line L_5 whose equations are: $r_{11}z_2 - p_{11}z_1 = z_4 = z_5 = 0$.

If we intersect Y with the plane containing L_3 and L_4 we get an other line L_6 whose equations are: $z_2 = z_4 = f_1 z_3 + f_3 z_5 = 0$.

The following picture shows the configuration of these six lines

and their incidence points in Y:

In the sequel we will need to know the action of Φ on some plane in Y, so we prove the following:

PROPOSITION (2.5). Let p be a plane in Y.

Suppose that p does not belong to the hyperplane $z_4 = 0$. If p cuts L_1 and L_3 but not L_2 , then $\Phi(p)$ is a quadric (irreducible or not), in $V = Q \cap X$; if p cuts L_1, L_2 and L_3 then $\Phi(p)$ is a plane in V meeting P_0, P_1, P_2 at one point only.

Suppose that p belongs to the hyperplane $z_4 = 0$. If p does not contain L_1 or L_3 then V contains P_0 and therefore Y splits into a cubic hypersurface and a hyperplane.

PROOF. In the first case it suffices to consider the equations of a plane p with the above conditions and to write down the equations of $\Phi(p)$ in \mathbf{P}^5 by using the previously fixed coordinate system.

In the second case a direct calculation shows that the existence of a plane p in Y, with the above conditions, implies that V contains P_0 : in this case $\Phi^{-1}(V)$ is a cubic hypersurface, hence Y is reducible. \Box

Now let p be a plane in Y; if p contains L_1 and it is incident with L_3 but it is not $z_4 = z_5 = 0$ (i.e. the plane containing L_1 and L_4)

we call it a « λ -plane». If p contains L_3 and it is incident with L_1 but it is not $z_2 = z_4 = 0$ (i.e. the plane containing L_3 and L_4) we call it a « μ -plane». Obviously all these planes belong to the hyperplane $z_4 = 0$. We have this:

PROPOSITION (2.6). Let (a, b) be the numbers of λ -planes and respectively μ -planes contained in Y, by keeping it irreducible. If Y does not contain $z_4 = z_5 = 0$ or $z_2 = z_4 = 0$ we have only these couples: (a, b) = (0, 0); (1, 0); (0, 1); (1, 1). If Y contains $z_4 = z_5 = 0$ we have (a, b) = (0, 0); (1, 0); (0, 1); (1, 1); (0, 2). If Y contains $z_2 = z_4 = 0$ we have (a, b) = (0, 0); (1, 0); (0, 1); (2, 0); (1, 1). If Y contains both of them we have (a, b) = (0, 0); (1, 0); (0, 1); (1, 0); (0, 1); (1, 0); (0, 1); (1, 0).

PROOF. Obviously when V contains P_1 and P_3 only, among the three planes which are the base locus of Φ in \mathbb{P}^5 , we can state that Y is irreducible if and only if V is irreducible; then our strategy is the following: to consider the generic Y containing a λ -planes and b μ -planes, to consider the corresponding V and to check if it, i.e. X because Q is fixed, is irreducible.

A λ -plane has equations: $z_4 = z_3 - \lambda z_5 = 0$ $\lambda \in \mathbb{C}$; Y contains it if and only if: $\lambda f_1 + f_3 = \lambda^2 p_{11} + \lambda p_1 + p_3 = \lambda^2 r_{11} + \lambda r_1 + r_3 = 0$; while Y contains $z_4 = z_5 = 0$ if and only if: $p_{11} = r_{11} = 0$. Φ sends the λ -plane into the line $x_3 = \lambda x_5$ on the plane P_0 , while Φ blow down the plane $z_4 = z_5 = 0$ in the point (0:0:0:1:0:0) of \mathbb{P}^5 .

A μ -plane has equations: $z_4 = z_1 - \mu z_2 = 0$ $\mu \in \mathbb{C}$; Y contains it if and only if: $-\mu p_{11} + r_{11} = \mu^2 f_1 - \mu p_1 + r_1 = \mu^2 f_3 - \mu p_3 + r_3 = 0$; while Y contains $z_2 = z_4 = 0$ if and only if: $f_1 = f_3 = 0$. Φ sends the μ -plane into the line $x_1 = -\mu x_5$ on the plane P_0 , while Φ blow down the plane $z_2 = z_4 = 0$ in the point (0:1:0:0:0:0) of \mathbb{P}^5 .

As we have seen, all these planes, belonging to the hyperplane $z_4 = 0$, are sent in P_0 by Φ . The section of X with P_0 is the following plane cubic E:

$$egin{aligned} &x_1^2(f_1x_3+f_3x_5)+x_1(p_{11}x_3^2+p_1x_3x_5+p_3x_5^2)+\ &+x_5(r_{11}x_3^2+r_1x_3x_5+r_3x_5^2)=0 \ . \end{aligned}$$

For generic Y E, passing through (0:0:0:1:0:0) and (0:1:0:0:0:0), is smooth; if Y contains some λ -plane, some μ -plane or the two particular planes $z_4 = z_5 = 0$ or $z_2 = z_4 = 0$, then E splits in a obvious way. The values (a, b) quoted in (2.6) are the only possibilities to avoid that X contains P_0 entirely: it would imply Y reducible. In all these cases it is easy to see that X is in fact irreducible by looking at the possible hyperplanes contained in X which would cut one of the lines into which E splits on P_0 .

If Y contains $z_4 = z_5 = 0$ only or $z_2 = z_4 = 0$ only, E does not split and hence X is irreducible.

We will give an example of this reasoning: let us suppose that Y contains a λ -plane, then E splits into the line $x_3 = \lambda x_5$ and into the smooth conic $(x_3 + \lambda x_5)(p_{11}x_1 + r_{11}x_5) + f_1x_1^2 + p_1x_3x_5 + p_3x_5^2 = 0$. If X is reducible it splits into a hyperplane of \mathbb{P}^5 and something other; this hyperplane has to cut the line $x_3 = \lambda x_5$ on P_0 , hence its equation is: $x_3 = \lambda x_5 + ax_0 + bx_2 + cx_4$; but there exists no choice of the three numbers a, b, c such that the generic X contains this hyperplane, in spite of conditions imposed on Y by containing the λ -plane, (i.e.: $\lambda f_1 + f_3 = \lambda^2 p_{11} + \lambda p_1 + p_3 = \lambda^2 r_{11} + \lambda r_1 + r_3 = 0$), even when Y contains $z_4 = z_5 = 0$ or $z_2 = z_4 = 0$ or both.

The other cases are solved in the same way. \Box

REMARK (2.7). By a simple check of the partial derivatives of the equations of V we see that, in spite of the existence in Y of the planes quoted in (2.6), V has ordinary double points only, (see also [A-B₁] and [A-B₂]).

3. - The conic bundle structures.

We need some definitions and basic facts about conic bundle theory.

DEFINITION (3.1). Let W be a threefold, let S be a smooth surface. If there exists a sur⁵ective morphism $\tau: W \to S$ such that for every point $t \in S$ the fibre $\tau^{-1}(t)$ is isomorphic to a conic in \mathbb{P}^2 , possibly degenerated, then W is called a conic bundle over S; we will use the symbol: (W, τ, S) .

DEFINITION (3.2). Let (W, τ, S) and (W', τ', S') be two conic bundles; if there exists a commutative diagram as follows:

$$\begin{array}{c} W \longleftrightarrow W' \\ \downarrow \\ S \longleftrightarrow S' \end{array}$$

in which the horizontal arrows are birational morphisms, then we say that (W, τ, S) and (W', τ', S') are birationally equivalent.

REMARK (3.3). Let (W, τ, S) be a singular conic bundle; suppose that W has only a finite number of ordinary double points such that none of them is the intersection point of the two lines into which a degenerate fibre splits. Then, if we solve the singularities of W by blowings up, we get a smooth conic bundle over S which is birationally equivalent to (W, τ, S) .

DEFINITION (3.4). Let (W, τ, S) be a conic bundle; the set of the points $t \in S$ such that the fibre $\tau^{-1}(t)$ is a degenerate conic is called the *discriminant locus* of the conic bundle. It can be shown (see [Sa], p. 358) that it is always a divisor of S; from now on we will refer to it as the discriminant divisor D_W of (W, τ, S) .

DEFINITION (3.5). A smooth conic bundle (W, τ, S) is called standard if for every curve C of S, the surface $\tau^{-1}(C)$ is irreducible.

PROPOSITION (3.6) (see [Sa], p. 366-367, see also $[A-B_2]$ prop. (2.6)). Let (W, τ, S) be a smooth conic bundle, such that D_W is the disjoint union of smooth curves D_i , i = 1, 2 ... n; if $\tau^{-1}(D_1)$, for instance, is reducible then necessarily $D_1 \cap (D_W - D_1)$ is empty and we can blow down one of the two components of $\tau^{-1}(D_1)$ to obtain a new smooth conic bundle, birationally equivalent to (W, τ, S) , whose **D** is $D_2 \cup D_3 \cup ... D_n$. We can repeat this process until to obtain a smooth standard conic bundle birationally equivalent to (W, τ, S) .

THEOREM (3.7) (see $[I_2]$, p. 742). Let (W, τ, S) be a smooth, standard, conic bundle, let S be a rational surface, let D_W be a curve. Then W is rational if there exists a pencil of rational curves C_t on S, $(t \in \mathbf{P}^1)$, without fixed components, such that $C_t \cdot D_W \leq 3 \quad \forall t$.

Now we consider the conic bundle structures of X and Y.

It is well known that every quartic hypersurface in \mathbf{P}^4 with a double line has a conic bundle structure (see [C-M]): we fix the plane π whose equations are: $z_1 = z_2 = 0$; it is skew with L_1 . If we project Y from L_1 to π we have that the fibre over a point of π is a quartic plane curve which splits into L_1 , counted twice, and into another conic; if we blow up Y along L_1 we get a smooth conic bundle according to definition (3.1).

Now we want to determine D_r . The generic point of the plane containing a point $(0:0:z_3:z_4:z_5)$ of π and L_1 , has coordinates $(h:k:tz_3:tz_4:tz_5)$; the intersection between Y and this plane is the following plane quartic (where $F = F(z_3:z_4:z_5)$ etc.):

$$egin{aligned} t^2[(ez_4^2+z_5F+z_4H)h^2-(z_4N+P)hk+Rk^2-\ &-(2ez_3z_4^2+z_3z_4H+z_4^2L+z_4z_5M)ht+(z_3z_4N-z_4Q)kt+\ &+(ez_3^2z_4^2+z_4^2z_5G-z_3z_4^2L)]=0; \end{aligned}$$

 $t^2 = 0$ gives L_1 counted twice, the remaining curve is a conic; it is degenerated if and only if:

$$\begin{aligned} (3.8) \quad & z_4^2[4R(ez_4^2+z_5F+z_4H)(ez_3^2+z_5G-z_3L)-\\ & -(z_4N+P)(z_3N-Q)(-2ez_3z_4-z_3H+z_4L+z_5M)-\\ & -R(-2ez_3z_4-z_3H+z_4L+z_5M)^2-(z_3N-Q)^2(ez_4^2+z_5F+z_4H)-\\ & -(z_4N+P)^2(ez_3^2+z_5G-z_3L)]=0 \;. \end{aligned}$$

Therefore D_r splits into the line $z_i = 0$ counted twice (whose existence is an obvious consequence of the double lines L_1 and L_3 in Y) and into a sestic Γ ; we remark that the existence of a double line in D_r makes very difficult to apply all known theorems about the rationality of the conic bundles.

Now let us consider $V = X \cap Q$, as $\Phi(X) = Y$ we have that V is birational to Y. V has a conic bundle structure too; it is well known (see [C], [A-B₁]): we fix the plane π' , whose equations are $x_0 = x_1 = x_2 = 0$; we project V from P_1 to π' ; by blowing up V along P_1 and at the ordinary double points which V has on P_2 (see [A-B₁]) we get a smooth conic bundle.

Let us determine D_{γ} : the generic point of the plane containing a point $(0:0:0:x_3:x_4:x_5)$ of π' and P_1 has coordinates: $(\alpha:\beta:\gamma:\delta x_3:\delta x_4:\delta x_5)$; this point belongs to V if and only if:

$$elpha^2\delta x_5+eta^2\delta F+\gamma^2\delta G+lphaeta\delta H+lpha\gamma\delta L+eta\gamma\delta M+lpha\delta^2 x_5N+
onumber\ +eta\delta^2 P+\gamma\delta^2 Q+\delta^3 x_5R=0$$

and

$$\alpha \delta x_5 - \beta \delta x_4 + \gamma \delta x_3 = 0 .$$

 $\delta = 0$ gives the plane P_1 ; if we delete δ we obtain a conic, it is easy to see ([A-B₁]) that the conic is degenerate if and only if:

$$(3.9) \quad x_5[4R(ex_4^2 + x_5F + x_4H)(ex_3^2 + x_5G - x_3L) - (x_4N + P)(x_3N - Q)(-2ex_3x_4 - x_3H + x_4L + x_5M) - (x_4N + P)^2(ex_4^2 + x_5F + x_4H) - (x_4N + P)^2(ex_3^2 + x_5G - x_3L)] = 0$$

where $F = F(x_3 : x_4 : x_5)$ etc.

Therefore D_r splits into the line $x_5 = 0$ and into a smooth plane sestic Γ (see [A-B₁] and [A-B₂]); it is exactly the same curve into which D_r splits, in fact if we look at (3.8) and (3.9) and if we put $x_i = z_i$, i = 3, 4, 5 we see that the two curves are the same curve.

4. – The main results.

Now we want to prove this:

PROPOSITION (4.1). The generic quartic hypersurface of \mathbf{P}^4 containing two skew double lines is not rational.

As the set of the generic quartic hypersurfaces of \mathbf{P}^4 , containing two skew double lines and a third simple skew line, (not two of them belonging to the same hyperplane), is a closed Zarisky set of the moduli space of all quartic hypersurfaces of \mathbf{P}^4 , to prove (4.1) it suffices to prove the following:

PROPOSITION (4.2). The generic quartic hypersurface of \mathbf{P}^4 , containing two skew double lines and a third simple skew line, not two of them belonging to the same hyperplane, is not rational.

PROOF. By (2.1) it suffices to show that Y is not rational. By the previous section we have seen that Y is birational to V which is a cubic complex containing two planes only, meeting two by two at one point; therefore it is not rational (see $[A-B_1]$ and [A-R]). \Box

Now we want to study the rationality of the generic quartic hypersurface of P^4 with two skew double lines when it contains some plane; as we have seen this problem is equivalent to study the rationality of the generic Y containing some plane.

If Y contains a plane which is skew with L_1 (or L_3) it is rational; in fact every line intersecting L_1 and the plane cuts Y in one other point only, so that it is not difficult to see that in this case Y is birational to $\mathbb{P}^2 \times \mathbb{P}^1$. Therefore we can suppose that every plane contained in Y is incident with both double lines, or it is a λ -plane or a μ -plane or it is $z_4 = z_5 = 0$ or $z_2 = z_4 = 0$.

We have this:

PROPOSITION (4.3). If Y contains some plane incident to both double lines or containing one of them, then it is rational (or reducible) save when it contains at most one plane incident with L_1 and L_3 and all λ -planes and μ -planes allowed by (2.6).

Before proving (4.3) we need

LEMMA (4.4). If Y contains one plane only, intersecting L_1 and L_3 but not intersecting L_2 , then Y is not rational.

PROOF. – Let us call p this plane. If p belongs to the hyperplane generated by L_1 and L_3 (i.e. $z_4 = 0$), then $\Phi(p)$ is P_0 and V is a cubic complex containing the three planes which are the base locus of Φ^{-1} , therefore Y is reducible, (see also (2.5)).

In the other cases, by a suitable choice of coordinate system, we can always suppose that p has equations:

- 1) $z_3 = z_4 z_1 = 0$,
- 2) $z_4 z_1 = z_5 z_3 = 0$,
- 3) $z_3 = z_4 z_1 + z_2 = 0$,
- 4) $z_5 z_3 = z_4 z_1 + z_2 = 0.$

Then $\Phi(p)$ has equations:

1) $x_1 = x_3 = x_0 x_5 - x_1 x_4 + x_2 x_3 = 0$,

- 2) $x_1 = x_3 + x_4 x_5 = x_0 x_5 x_1 x_4 + x_2 x_3 = 0$,
- 3) $x_1 + x_5 = x_3 = x_0 x_5 x_1 x_4 + x_2 x_3 = 0$,

4)
$$x_1 + x_5 = x_3 + x_4 - x_5 = x_0 x_5 - x_1 x_4 + x_2 x_3 = 0$$
.

In the cases 1) and 3) $\Phi(p)$ splits into a couple of planes and V

is a cubic complex containing four planes. It is easy to see that this is the case (4, 3, 1) of table R of $[A-B_2]$, therefore V is not rational.

In the cases 2) and 4) $\Phi(p)$ is a smooth quadric cutting a line on P_1 and a line on P_2 both passing through $P_1 \cap P_2$. This configuration in V is obtained as follows: by choosing two points A, B in \mathbb{P}^3 and two skew lines α, ℓ passing through A and B respectively; by considering the two stars of lines centered in A and in B and the lines intersecting both α and ℓ . If we move α until it cuts ℓ in a third distinct point C we get a cubic complex V containing four planes (the three stars of lines centered in A, B, C and the lines of the plane through A, B, C) with the previously considered configuration. It is easy to see that this degeneration is flat so that V is not rational as in the previous cases. \Box

PROOF OF (4.3). Let us suppose that Y contains only one plane p intersecting L_1 , L_2 L_3 ; by (2.5) $\Phi(p)$ is a plane in V, meeting P_1 and P_2 at one point only, so that Y is birational to a cubic complex containing three planes two by two meeting at one point only (and no other planes), such complex is not rational (see [A-R] and [A-B₁]).

Let us suppose that Y contains only one plane intersecting L_1 , L_3 but not intersecting L_2 : Y is not rational by lemma (4.4).

Now it is easy to see that if we suppose that Y contains two planes intersecting L_1, L_2, L_3 , or two planes intersecting L_1, L_3 but not L_2 , or one plane of the first type and one plane of the second type, we get that V is a singular conic bundle over \mathbf{P}^2 birationally equivalent to a smooth standard conic bundle W over a rational surface S, such that D_W is the pull back of a smooth plane quartic by blowings up; (for the second type we can use a degeneration argument as in the proof of lemma (4.4)).

V is rational by theorem (3.7): it suffices to consider a pencil of lines of \mathbf{P}^2 (through a point not belonging to the quartic) and its transformed on S by the blowings up.

Finally we have only to remark that the existence in Y of any plane p quoted in (2.6) does not change the conic bundle structure of V; in fact in all these cases V is irreducible, with ordinary double points only, $\Phi(p)$ is a line or a point (see (2.6)) and when we project Vfrom P_1 to π' we see that D_r is the same divisor (a *smooth* curve plus one or two lines) arising when Y does not contain any plane of this type; this last fact is easy checked by looking directly at (3.8) or (3.9) and by recalling the conditions imposed on Y by the existence of a plane of this type (see (2.6)). \Box

REFERENCES

- [A-B₁] A. ALZATI M. BERTOLINI, On the rationality of a certain class of cubic, complexes, Riv. Mat. Univ. Parma (4) 15 (1989).
- [A-B₂] A. ALZATI M. BERTOLINI, On the problem of rationality for some cubic complexes, Indag. Mat., **91** (1988), pp. 349-364.
- [A-R] E. AMBROGIO D. ROMAGNOLI, Sulla non razionalità della varietà di Fano di P⁵ contenente 2 o 3 piani, Quaderno del Dip. di Mat. dell'Università di Torino (1987).
- [B₁] A. BEAUVILLE, Prym varieties and the Schottky problem, Inv. Math.,
 41 (1977), pp. 149-196.
- [B₂] A. BEAUVILLE, Varietés de Prym et Jacobienne intermediaires, Ann. Sc. E. Norm. Sup., Serie 4, t. 10 (1977), pp. 309-391.
- [C] A. CONTE, Introduzione alle varietà algebriche a tre dimensioni, Quaderno U.M.I. n. 22, Ed. Pitagora, Bologna (1982).
- [C-M] A. CONTE J. P. MURRE, On quartic threefolds with a double line I, II, Indag. Math., 80 (1977), pp. 145-175.
- [F] G. FANO, Sulle varietà algebriche a tre dimensioni aventi tutti i generi nulli, Atti del Congresso di Bologna 1928, t. IV, Ed. Zanichelli.
- [I₁] V. A. ISKOVSKIH, Algebraic threefolds with special regard to the problem of rationality, Proc. of the Int. Cong. of Mat. 1983, Warszava, pp. 733-746.
- [I₂] V. A. ISKOVSKIH, On the rationality problem for conic bundles, Duke Math. J., 54 (1987), pp. 271-294.
- [Sa] V. G. SARKISOV, On conic bundles structures, Math. U.S.S.R. Izvestiya, 20, 2 (1982), pp. 355-390.

Manoscritto pervenuto in redazione il 20 maggio 1989.