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Overdetermined Hyperbolic Systems
on I.e. Convex Sets.

MAURO NACINOVICH (*)

Introduction.

In a recent paper [7] I discussed at some lenght the Cauchy pro-
blem on a half space for general systems of partial differential equa-
tions with constant coefficients. Here I turn to the same order of

questions for convex sets in having at least one extremal point.
The two situations are closely related only in the case of determined
systems. For overdetermined and underdetermined ones they are

somehow at variance, as the algebraic invariants of the first are the
associated prime ideals of a S-module M associated to the system,
while those of the second are the prime ideals associated to the derived
modules Ext" (M, ~’).

These results are the basis for the computation of local and global
cohomology groups of some tangential complexes, giving an extension
of some results obtained in [6].

1. Preliminaries.

A. Spaces of f unctions and distributions.

Let G be a locally closed set in Rn. If ,SZ is any open neighborhood
of G in Rn such that G is a closed subspace of Q, then the space of

(*) Indirizzo dell’A.: Universita di Pisa, Dipartimento di Matematica,
Via Buonarroti 2 - 56127 Pisa (Italy).
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complex valued, smooth functions on S~ with support contained in G
turns out to be independent of the choice of D. It will be denoted

by 80. In the same way we define 5), as the space of distributions in Q
with support contained in G.

Let Tg(D) denote the space of smooth functions in ,~ that vanish
on G with all derivatives. Then we define the Whitney functions on G
as the elements of the quotient space Wa described by the exact
sequence

The space WG is also independent of S2. Note that Yu(Q) equals &#x26;5,
for G denoting the closure in S~ of S~ - G, when G is the closure in S~
of its interior.

Under this last assumption, we define the space of extendible

distributions on G (more precisely: distributions in the interior of G
that extend to S~) as the quotient b§ described by the exact sequence:

Again the space Ð; turns out to be independent of the choice of S~.
We say that a space Y of functions or distributions on an open subset
of Rn is a differential module if we have

We consider then Y as a right and left module over the ring
S = Cj~~, ..., ~n] of polynomials in n indeterminates by the action

B. Boundary value problems f or overdetermined systems.

Let A(D) = be a q X p matrix of linear partial
differential operators with constant coefficients.

Let Q be an open domain in Rn and let 27 be a smooth (n - 1 )-
dimensional submanifold of R" contained in the boundary 8Q of Q.

Let F be a smooth complex-linear fiber bundle over 27. A trace
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operator on CP-valued functions on S~ with values in the space F)
of smooth sections of .F over I is a linear and continuous map

preserving the supports. In any local trivialization, it can be expres-
sed by the composition of the action of a matrix of linear partial dif-
ferential operators with smooth coefficients on CP-valued smooth func-
tions and of the restriction to 27 of a C’-valued smooth function

(d = dimc of the fibers of F).
We can consider then a very general boundary value problem for

the operator A(D) and a trace operator by giving:

and searching for a

To solve such a problem, it is necessary that f and u° satisfy
suitable compatibility conditions.

It is well known (cf. [2]) that necessary and sufficient conditions
for (1) being locally solvable in Q can be expressed in the form

B (D ) f = 0 by a new matrix of constant coefficients differential oper-
ators B(D) = that is determined in a purely
algebraic way by the requirement that

be an exact sequence of P-modules and P-homomorphisms.
It is also an experimental truth that it is advantageous to insert

the exact sequence (3) into a Hilbert resolution:

where either M = 0, or the torsion of .1~ is different from zero

(cf. [2 ]~ , in such a way that .A = A; and B = for some j with
0  ~ ~ d  n -E-1 and j is as large as possible.
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Then, if for instance B is the zero operator and = 0, the ob-
struction to solve the equation (1 ) for all f satisfying the compatibility
condition

is expressed by the group

and this isomorphism shows that all invariants of the problem should
be expressed only in terms of the module M and the space 

C. Complez characteristic variety and non-characteristic hypersurfaces.

Given a point Cn, we denote by ME0 the maximal ideal in P
of all polynomials vanishing at E0. The quotient P/ME0 is isomorphic
to C, so that by tensoring the Hilbert resolution (4) by we ob-
tain a complex of finite dimensional vector spaces and linear maps

The cohomology groups of this complex are the modules

If Tor,5’ (M, is zero for some jo , then it is also equal to zero
for all larger j . Indeed the largest integer j, for which this group is
different from zero, is the homological dimension of the localization
of if with respect to If we set

we obtain a sequence of affine algebraic varieties with

One usually defines Yo as the complex characteristic variety of M,
although sometimes it is necessary to consider instead the disjoint
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union of the affine algebraic varieties of the prime ideals associated
to M. Let us set Yo = V(M).

Notice that, as

and the dimension over C of

are the same, V, is always included in the characteristic variety of
ExtiP (M, P). 

’

To any affine algebraic variety V in Cn we associate a homogeneous
affine variety 9 in Cn, that we call the asymptotic cone of V, defined
as the set of all ~ in Cn that are limits of sequences with

($m) c V and c C, em -* 0.
Let vx denote, for all x in 27y the exterior normal to ,~ (we assume

that S~ is, for each x in 27y on one side with respect to 27y i.e. that
there is an open ball B around x such that S~ r’1 B is one of the two
connected components of B - ~).

We say that E is non-characteristic for M if v,. 0 for 

REMARK. If vx E 9(M), T7j for some j, one can « shorten ~
the Hilbert resolution (4), essentially by delating a certain numbers
of rows of tAi to obtain a matrix of maximal rank over the field of
rational functions and having maximal rank as a C-matrix at vx . We
obtain in this way a new module Mj for which E is non-character-
istic near x.

When 27 is non-characteristic for M, it was proved in [3] that we
can construct a complex of smooth linear partial differential operators
on fiber bundles over 27 (the tangential or boundary comptex) :

and trace operators

with the property that
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They induce therefore natural maps

and the canonical construction described in [3] makes fl* an iso-

morphism (formal Cauchy Kowalowska theorem).
One can also consider the tangential complex on distributions

and under the same assumptions one finds natural maps

that turn out to be isomorphisms (cf. [8]).
Tangential complexes give very interesting examples of complexes

of linear partial differential operators with smooth coefficients and are
important in some geometrical problems, as the tangential Cauchy-
Riemann complex considered in [8].

However, the isomorphisms given by (9) and (10) allow us to
disregard completely the boundary complex and to work with the
groups Ext~ (M, and Ext~ (My that are well defined even

if we drop all assumptions on Z, only requiring that it is relatively
open in 8Q.

Before ending this subsection, I want to state in the smooth non-
characteristic case the Cauchy problem for functions and distributions.

Cauchy Problem for functions: at the step j, j 2 1:

Given and uO E r(E, satisfying the compatibility
conditions:

find such that



113

Note that fl* is induced by maps with

Cauchy problem for distributions:

Given satis f ying the compatibility
condition:

find such that

Let us consider the exact sequences

and

and the corresponding long exact sequences for the Ext functor:

Then one realizes that the compatibility conditions (11)-(12) state,
due to the formal Cauchy-Kowalewska. theorem, only that f defines
a cohomology class in Ext~ (1~, that is mapped into the zero
class in Ext~ (M, 

To solve (13), it is then necessary that f defines the zero coho-
mology class also in Ext§ (~, In this case we can find
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w E W1t-b such that = f on S~ and it follows that
= 0 on ~.

A necessary and sufficient condition in order that problem (13)-(14)
could be solved is then the fact that the cohomology class of

(M, Wx) defined by u° - be the image of an element
of -W--. -Q) -

In conclusion we have, under all the assumptions made above:

PROPOSITION 1. A necessary and sufficient condition in order that
the Cauchy problem (13)-(14) be solvable for all f E and
U0 E h’ j_1) satisfying the compatibility conditions (11)-(12), is that

Analogously, arguing in the same way for the case of distributions,
we have

PROPOSITION 2. A necessary and sufficient condition in order that
the Cauchy problem (16) be solvable for all f E Ð,i’0D and UOE ~’(~’, Fi-l)
satisfying the compatibility condition (15), is that

REMARK. Under all assumptions above, if the condition

holds, then problem (1 )-(2 ) will reduce to a problem on the boundary : -.
one has to find 2v E such that:

2. A theorem of flatness.

Let H be a closed convex subset of Rn. We say that H is linearly
exhausted, or in short that is I.e. I if we can find ~ E Rri such that, fo~
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every c E R, the set

is compact.
We recall that a point xo E is said to be an extremal point of H

if it is not an interior point of a segment with end-points in H.
We have

LEMMA 1. A necessary and sufficient condition in order that a closed
convex set H be I.e. is that it contains at least an extremal point.

PROOF. - Assume that xo be an extremal point of H and let B be
the open unit ball about xo . If ..g - B is empty, then H is compact
and hence trivially l.e. Assume therefore that H - B is not empty
and let g be its convex envelope. I claim that .g is closed and does
not contain xo . Indeed, if x is in K r’1 B, then we write x as a linear
combination

We can assume that the number k is minimal. As x belongs to a
simplex with vertices in we have k  n + 1.

Let us set now

It cannot be a point in g - B, because otherwise we could express z
as a linear combination 1 vectors. Hence y is in B and there-
fore it can be written as a linear combination

of the intersections X2 of the line through Xl’ x, with the boundary
aB of B. It follows then that

is a linear combination of the form (2) but with the first two vectors
belonging to aB r1 H.
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Iterating this argument, we prove that every vector x in K n B
can be expressed as a linear combination

with £1 + ... + -"’ 1, ~1 ~ · · . ~ 88.

Being the image under a continuous map of the topological prod-
uct of the n-dimensional standard simplex

and of (n + 1) copies of H~ r1 aB, the set K r1 B is compact and hence
.g = (g - B) u (K n B) is closed. Clearly xo 0 .K because xo does not
belong to any simplex in H unless as a vertex.

By Hahn-Banach theorem, we can find then E E Rn such that

It is obvious that He is compact for ~~ s c C m, as He is contained
in B and is closed. Then it follows that He is compact for every c.

Vicoversal if E E Rn gives a linear exhaustion of H, let m be the
minimum of z - x, E&#x3E; in .H. Then .Hm is compact and by the Krein-
Milman’s theorem has an extremal point, that turns out to be also
an extremal point of H.

From the proof of the first implication in the above lemma, taking
instead of the unit ball about xo balls of arbitrarily small radii E &#x3E; 0,
we obtain also

LEMMA 2. A necessary and sufficient condition in order that a point
xo E 8H fundamental system of open neighborhoods in H (resp.
in aH) of the form

is that xo be an extremal point of H.

For ~ E Rn and R u ~-~- oo~ , we set
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Then we have, for a I.e. convex set H:

THEOREM 1. If $ E Rn gives a l.e. of H, then BHe(R) is a flat differential
module for every R with - oo  I~  -E- oo. In particular ~g is flat
i f H is l.e.

PROOF. We have to prove that, if M is a unitary 5-module of
finite type, then

Having fixed M, let (1.4) be a Hilbert resolution of Having taken
j ~ 1, we have to show that, if satisfies the integrability
condition

then we can find u E such that

For fixed r, s with

let x = xr,S(t) be a smooth function of one real variable with

The function

has support contained in HS and hence compact and

has support in Hs- H(r).
Because, by proposition 2, p. 220 in [5] we have
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we can find then

such that

The difference f - g is therefore a function in 61j satisfying

Because 6Q is flat (cf. [5]), we can such that

As a consequence, we have found that for every r, s with m  r 

 s  R there is E i such that

Let us take now an increasing sequence with

We can construct by induction a sequence c 8j~S) with the

properties:

Indeed we can take

Assuming we have found ul , ... , ’Uk’ we consider

Its support is contained in and

has support contained in
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Hence we can find

such that

We set then

Clearly

Having obtained the sequence 7 as it is locally constant we can
compute its limit

and observe that

The proof is complete.

The same proof applies with only minor changes to yield :

THEOREM 1’. l.e. o f H, then is ac flat dif-
ferential module for every .R in R.

I n particular D’H is flat when H is l.e.

From the theorem above, we have

COROLLARY 1. With the assumption of T heorem 1: for every unitary
T-module of finite type M and min x, ~~  1~  -~-- oo we have

H
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For the study of the vanishing of these groups, we can reduce to
prime ideals by means of an algebraic theorem:

PROPOSITION 3. Let M be a unitary of finite type and lot N
be a flat ~’-module. Then a necessary and suf ficient condition in order
that

is that

PROOF. - If 9 is a prime ideal in Ass then we can find a sub-
module ~1 of .M isomorphic to Tlg. From the exact sequence

we deduce, because N is flat, an exact sequence

Cleanly if the term in the middle is zero, also

Hence the condition is necessary.
Let us prove the sufficiency. First we consider the case of a

P-comprimary module M. We argue by induction on the smallest
positive integer k such that

If k = 1, then M is torsion free as a T/9-module and we can build
up an exact sequence

Tensoring by N we have the exact sequence

and then because
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Assume now that k &#x3E; 2 and that M’ Q N = 0 for all ~-coprimary
modules M’ of finite type such that 91 MI = 0 for some I with
0lk.

Then we set

We note that .Mo and are both Ø’-coprimary of finite type
and that

From the exact sequence

we have then an exact sequence

in which the first and third terms are zero, so that also the second
one is zero.

We can argue now, having dropped the assumption that ~ be
P-coprimary, by induction on the number of prime ideals in Ass (M).
Then we note that, if ø is any subset of Ass (M), we can find a sub-
module M1 of M such that

From the exact sequence

we deduce an exact sequence

in which the terms and are zero if we assume

Ass (M) and that the statement is true for modules

having a smaller number of associated prime ideals than .~1. The

proof is complete.
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3. Propagation cones and fundamental solutions for hyperbolic systems.

We need to rehearse some notations and results of [7] about

hyperbolic P-modules. We restrict here to the case of P-modules
of the form with 9 a prime ideal.

Let be the affine algebraic variety of common zeroes of

polynomials in 9. We consider the semi-algebraic cone in lltn,
defined as the set of limits of sequences Re (i~~)~ with {- ~m~ c
c 0, Em ~ 0. The direction v in {0} is said to

be hyperbolic for Tlg if v does not belong to 
When P is a principal ideal, VR(P) is the set of all imaginary parts

of elements of and is either empty or the reunion
of disjoint open convex cones. If 9 = (P), then, assuming Rn-
- VR(P)# 0, for each connected component 1’ of Rn - there

s a fundamental solution E E 3)ro for P.
No one of these statements remains true in general, as has been

shown in [7]. However, we have the following

THEOREM 2. Let 9 be a prime ideal in S, generacted by polynomials
pi 7 ...1 P,.

Let r be an open convex cone in Rn such that

Then we can f ind distributions B., ... , Es E such that

PROOF. For we set for every real .I~ &#x3E; 0,

Let be the support function of Kp,:
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By the assumption (1 ), we have

Indeed, as r = (T°)°, from 0 ~ 1~ it follows that we can find x in TO
such that ~x, 6~  0. Noting that ~x, v) &#x3E; 0, we have for x° =

= R(z, that zo c KB and (zo, 8~  0; this implies (4). By the
definition of 9~(ik), property (4) implies that hgR(Im C) is bounded
from below on V(9).

Then the function 1 on V(g) can be extended to an entire func-
tion F(C) in Cn satisfying an inequality of the form

Then F(~) is the Fourier-Laplace transform of a distribution WB in R"
having compact support in Ep and we can find distributions

... , T)r" such that

I claim that it is possible to construct a sequence ... , ~8)~ -
- ~.~k~ with the properties

We prove the existence of the sequence (l#k) by induction. We set
first

Then (6) and (8) are satisfied for k = 1, while (7) is empty for k = 0.
Assume we have found so that (6) and (8) hold for

1  k  m and (7) holds for 1  k  m - 1. Then we consider
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We have
1 
and

Then we can find such that

With this choice (6) and (8) are now satisfied for 1 ~ k  m + 1
and (7) for 1 _ k _ m, so the inductive statement is proved.

Being locally constant, the sequence converges to 
for which clearly we have

Such an E E ~ro is called a fundamental solution for 

REMARK. Let n = 3 and let the ideal P be generated + iC2
and ~2 -~- ~3 . Then is the plane so that
1’ _ {9i &#x3E; 0) is an open cone in Il~3 - but there is no funda-
mental solution for with support contained in

although there are fundamental solutions with support in any closed
convex cone with vertex at 0 containing (1, 0, 0) as an interior point.

4. Hyperbolicity with respect to a I.e. convex domain. .

Let g be a proper closed convex set in R".
To each point xo of the boundary 8H of .g in Rn we associate a

proper closed convex cone ,T’(xo , H), defined as the set of all E E Rn
such that
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In convex analysis, .~) is called the supporting cone of H at xo
and is defined as the sub-gradient of the convex function that equals 0
on H and + 00 on Rn - H. Note that we have a monotonicity
property:

if aH and ~1 E H), ~o E .r’(xo , H).
Let us also define = {$ c- Rn: inf x, E&#x3E; &#x3E; - oo}. Clearly

this is a convex set. We have: xEg

LEMMA 3. A necessary and sufficient condition in order that roo(H)
have an interior point, is that H be l.e.

PROOF. Assume that roo(H) contains an open set. Then it contains
a basis ~,, ... , ~n of Rn and $ = ... -~- ~n gives a linear exhaus-
tion of .g. Vice versa, if $ gives a I.e. of g, if xo E H is such that

E&#x3E; = m = min (z, E&#x3E;, then the polar cone of the proper closed

cone with vertex at 0 generated by the vectors x - xo with x, E&#x3E;=
- m + 1 and x E g, has a non empty interior (containing ~) and is
contained in roo(H).

Note that interior points of roo(H) belong to H) for some x
in 8H.

LEMMA 4. Assume that H is a I.e. closed convex set. Then -P(H) c
c roo(H) and these two sets are eonvex and with the same interior.

Let now M be a unitary P-module of finite type and let H be a
I.e. closed convex set in Rn.

We say that M is hyperbolic in H in dimensions j (with j &#x3E; 1 ) if
either Ext’ (M, S) = 0, or Ext’ (M, S) =1= 0 and for every 9 E Ass ·
. (Extj (M, T)) we have -P(H) r1 c ~0~ .

Then we have the following

THEOREM 3. Let M be a unitary of f inite type and
let H be a I.e. closed convex set in Rn. If M is hyperbolic in H in dimen-
sion j (j &#x3E; 1 ), then
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PROOF. If Exti (.1~, S) = 0, then the statement follows from

Theorem 1 and Theorem 1’. Therefore we assume that Ext~ (M, 3’) ~ 0.
By Corollary 1, we have Ext~ (M, BH) ~ Ext (M, P) Q 8~. · By
proposition 3, a necessary and sufficient condition for having

is then that for every T c Ass -

P)). Lot 9 be such a prime ideal and let Pi, ... , Ps be
a set of generators of 9. Then we have an isomorphism:

Therefore we have to show that, for every f E 8H, we can find
ui , ... , 9 u. E 8H such that

give a linear exhaustion of H.
For any given R with R E &#x3E; min x, E&#x3E;, let us consider the

cone T° generated by all points of the form x - x° with x E g,
zo a fixed point of aH with ~&#x3E; = min ~x, ~&#x3E;.

It is a proper convex cone and its polar cone 1~ is closed.
I claim that Indeed we have {x: ~x, ~~ &#x3E; 1~} r) H c

c T° + zo and hence x, ~~ ? ~xo , q) for 1~’. Therefore x -~ x, q)
on H has a minimum in HR = {x E H: x, E&#x3E;  .R} and n E 

Therefore we can find an open convex cone P, in Rn with

By Theorem 2 we can find then a fundamental solution

We note now that, for every x E .g(~), we have

Therefore, if we define, for x E 
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we obtain ’ViE 8H(B) and

Arguing as in the proof of Theorem 1, we can construct then

such that (5) holds.
The proof for 5)~ is analogous and therefore is omitted. We also

have the following

THEOREM 4. Let ~o e Rn give a l.e. of H and let, for a xo E H,

Let us 1~ with

Let be the polar cone of 1-’° :

If, for a unitary 5-module M of f inite type we have for ¿ 1
either Ext~ (.~C, ~ ) = 0 or r1 ~0~ for every (Xo, ~o~ 
 r  R and every 9 E Ass (M, 5)), then we have

The proof of this theorem is indeed the first part of the proof
of theorem 3.

Note now that any extremal point of .H has a fundamental system
of open neighborhoods in .bI that are of the form U = for

c F(H), .R E R suitably chosen.
We obtain therefore a local statement :

THEOREM 5. Let M be a unitary le f t 
Let H be a I.e. closed convex set in Rn and let xo be an extremal point

of H. 1 be f ixed.
If either Ext1r (M, S) = 0 or H) t1 C {0} for every

(M, T)), then Ext) (M, = Ext~ (M, = 0 for
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a fundamental sequence of convex open neighborhood8 U of [1)0 in Itn.
A slight improvement of a result of [6] tells us that the hyper-

bolicity condition introduced above is close to be also a necessary
condition. Indeed we have:

THEOREM 6. Assume that the linear functional x -+ x, E&#x3E; attains
a minimum on H on ca unique point xo in a.Br and let ~ be a prime ideal
in ~’ guch that ~ E 

Then the natural restriction map

has not zero image for ~xo , ~&#x3E;  R  + oo.

The proof of this theorem is the same as that of Proposition 19,
p. 229 in [6]. We only need to use the estimates for semi-algebraic
sets to control the growth of as, with a sequence c 

we approximate ~ by on-i Re (i~m). (Cf. [5], Appendix to vol. II.)

5. An extension theorem of Hartogs.

A classical theorem of Hartogs says that every complex valued
function of n complex variables zi, ... , zn , that is holomorphic in a
neighborhood of the disc IZII  1, z2 = ... = zn = 0 and in a neigh-
borhood of the circles = 1, IZ21~ 1, ~ 1, can be uniquely
extended to a holomorphic function in the polycilinder 1,
IZ21 ~ 1, ..., IZnt ~ 1.

The results of the previous sections allow us to explain this result
in the general framework of the theory of overdetermined systems with
constant coefficients.

give a I.e. of a closed convex set H in ~tn.
For some fixed real R, with min x, E&#x3E;  .R  + oo, let be any

open set in Rn with G r1 H = H(R) _ ((z, E&#x3E;  R, x E H}. Let F

denote the closure in G of G - H. From the exact sequences
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we deduce for every unitary P-module M of finite type long exact
sequences for the Ext functor:

We realize then that the following holds :

THEOREM 7. Assume that M satis f ies the eon,d2tions of Theorem 4.
T hen the natural maps

(5)

and

(6)

are onto.

We can read this theorem as an extension theorem for forms,
using the Hilbert resolution (1.4). Let us give the argument for func-
tions, as the same holds also for distributions.

Let f E WF satisfy the homogeneous equation .A.;(D) f = 0. Then

we can extend f to f E and clearly 8~1h and satisfies the
integrability condition == 0. By the assumption that
Ext’+’ (M, 8H(R») is zero, we deduce that we can find g c- such that

A;(D)f == Aj(D)g on G.
Hence the function f - g gives an extension of f satisfying the ho-

mogeneous equation g) = 0 on G.

EXAMPLE. If M is the unitary P-module

associated to the Dolbeault complex in Cn, we obtain Hartogs exten-
sion theorem for j  n - 1, while for j = n - 1 we realize that M is
not hyperbolic in dimension n.
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If we consider instead the De Rham complex in Rn, associated to
.M = ~C~’1, ... , ~n]/(~1~, ... , we have hyperbolicity in all dimensions j
provided that the convex set H has a I.e. $ such that x, ~~ is not

bounded from above on H.
For elliptic complexes, i.e. if we have f (9) f1 ll8n c {0} for all

9 c- Ass ( M), we can combine theorem 6 with the unique continuation
theorem to obtain:

THEOREM 8. Let M be an elliptic of f inite type
acnd let B be an open neighborhood of H(R) in G such that one of the fol-
Zozving two conditions holds :

(7) G - B has no connected compoiwnt relatively compact in

Then, if M satis f ies the hypothesis of theorem 4, every solution u E 
of the homogeneous equation = 0 in G - B, extends uniquely to
a solution u E EpoG of = 0 on G.

REMARK. In the case of a compact convex set H, we recover in
theorems 7 and 8 some results obtained by other authors (cf. [4], [10]).

6. Applications to the tangential complex.

Let be a unitary 5-module of finite type.
We fix a I.e. convex set H in Rn and we assume that, for some

~ E Rn giving a I.e. of H and some with min x, ~&#x3E;  .R  + oo,
the set be a smooth hypersurface, non-
characteristic for M.

Then, as we noted in § 1, C, we can define the tangential complex
(1.8) on = aH r1 (z E x, ~~  1~~ .

Using the exact sequences (1.19) and (1.20) we can deduce then
some results related to the complex (1.8).

Indeed we have:

THEOREM 9. Under the assumptions o f theorem 4 :
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then every element

is the trace of a solution , &#x3E;

of the equations

Under the assumptions of theorem 5 :

then the point xo has a fundamental system of open neigh-
bourhoods I

then the point xo has a fundamental system of open neigh-
borhoods U with the property that the trace map

Under the assumption of theorem 6 for some
with j &#x3E; 1 ~

is in f inite dimensional.
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