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On a Hamilton-Jacobi Equation.

GIOVANNI BASSANELLI (*)

SUMMARY - We prove a theorem of existence and uniqueness for the problem:

with data: v, z, ~) = z - n for uv = 0, on a strip [0, 
where A = (ajk) is a C°°, n X n, negative definite real matrix.

1. Introduction.

Let A = z E Rn, be an n X n matrix. In

this note we shall study the following problem:

with q First we want to show, briefly, the reason for our in-
terest in (1.1).

(*) Indirizzo dell’A.: Dipartimento di Matematica e Fisica, Universita di
Camerino, 62032 Camerino.

Work partially supported by M.P.I. 40%. The Author thanks the Dept.
of Mathematics of University of Trento for its kind hospitality during the
preparation of this paper.
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The formulation of quantum field theories in light-cone coordina-
tes is useful in some subjects of physics (see [4], [6], [9]) and such
a reformulation involves a study of the most important equations
(Klein-Gordon, Dirac, etc.) in this frame. For example, let us con-
sider the following Cauchy problem:

(see [5]), this is a natural problem for the wave equation in light-
cone coordinates. For a more general operator

with smooth coefficients, which are constant outside a compact subset
of and A = (ajk) negative definite (there is no restric-
tion assuming that A is real and symmetric), the corresponding Cauchy
problem is

This is a characteristic Cauchy problem and if, as v ~ - 00, g satisfies
some growth conditions, then it is «well-posed » (see [1 ]) . A formal
computation performed on (1.2) suggests that, in order to construct
a parametrix for (1.3), we must look for an operator of the form

By a well known argument (see e.g. [2], [7]) ~+ and rp- have to be
real and homogeneous functions of degree 1 in q, and they must sa-
tisfy equation (1.1) with the boundary condition

But actually v’ is only a parameter, which, at present, we can over-
look ; thus we have exactly problem (1.1).
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Our main result is the following Theorem (see Theorem 6.1): there
exists U &#x3E; 0 such that (1.1) has two solutions real and

homogeneous of degree 1 in 27, defined on the strip [0, U] X R+ X Rn X
X which are smooth for uv &#x3E; 0, and with a suitable regularity
at the boundary; every solution (p, satisfing the above conditions,
coincides with op+ or cp- on each connected component of [0, U] X R+ X
x Rn X .Rn.

In order to prove this theorem we shall study the Hamilton-
Jacobi problem (2.1) which, as we point out in § 3, is very different

from the classical case, and it seems us to be of some interest.

2. Firstly we show that problem (1.1) can be reduced to a Ha-
milton-Jacobi equation, then we shall study the associated bicharac-
teristic curves. 

_ _

Let be a real symmetric
matrix, negative definite and constant outside a compact subset of
R+ X R+ X Rn. By means of

and writing x’- (~3,... ~ x2+n ), x = (x1, x2 , x’ ), = 99(Ul V7 -’1 77)1
B(x) = z), problem (1.1) becomes

This suggests that we fix q E Rn, from now on, and consider the fol-
lowing equations

whit data at the boundary:

(For simplicity we shall study only the case with sign  - » and, in
the last paragraph, we shall look at the dependence on 27). Let us
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remark that B(x) is defined in Q where

and the hypotheses on A give: there exist positive constants Mj
( j = 0, 1, 2) and a matrix Bo such that

and, for every (x, q) x Rn,

The symbol p : T*(fl) = - R of equation (2.1) is

Since = 1, we can choose Xl as parameter of the null bichar-
acteristic curves, which are all the curves in T*(Q) of the form

such that

2.1. PROPOSITION. Let (XO, Then there exists ,t&#x3E;O
such that the bicharacteristic curve, of the form (2.5), passing through
(x°, ~0) is defined on [t, + and x(l) E Moreover there are two
cases :

(ii) If ~°’ ~ 0, then, for every t &#x3E; 1, x(t) E Q and ~’ (t ) never

vanishes.
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In both the cases

and, for a suitable constant .K &#x3E; 0 (independent from (XO, ~o)),

PROOF. First we verify (i). From (2.4) and (2.6) we get

from which (2.8) follows. Thanks to (2.6) and ~(t)) - 0, it is

straightforward to prove (2.7) and that (x(t), ~(t)) is bounded on every
bounded interval. So we can extend the curve to an interval of the

form [t, + oo), with E aS2. Q.E.D.

3. In this section we state all the machinary which we need in
order to prove our main theorem. Write

where

Consider the (n + I )-dimensional submanifold ~(xo, ~o) 
and E0’= 1)} and the union L(n) of the all null-bicharacter-

istic curves issued from Lo(1)); we point out that n(L(q)) (here n is
the natural projection of onto S2) is a family of curves issued
from the wedge a° S~, such that there are continuously many curves
starting from each point of 80Q and as we shall see, on each of
these curves the solution 1p(x) must be constant. (So problem (2.1-2)
is very different from the classical one for a Hamilton-Jacobi equa-
tion : in fact, in the latter, you usually give the solution on a hy-
persurface Lo and, for every P E .L°, y(P) propagates constant along
a unique curve issued from P (see e.g. [8]). Unfortunately, by Pro-
position 2.1, r1 = 0, so in order to study r1 L(q),
for x near it is necessary to introduce the following machinary :
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3.1 DEFINITION.

where h(y) = (- 
Remark that

We shall denote by (x(t, 0, y), ~(t, 0, y)) and (x(t, 0, y), ~(t, 0, y))
respectively the coordinates of the bicharacteristic of the form (2.5)
issued from (x°, ~°) E Lo(q) and (x°, 1°) E From (2.6), by a homo-

geneity argument it follows

Now we choose positive constants s, m in a suitable way, as specified
in Theorem 3.2 below, and let 2Y be the union of the following sub-
sets of 

and

(here ifo is given from (2.3)); moreover let us define the following
functions : for every (t, 0, y) E R+ X [0, ~] X Rn,

So we can state a technical theorem which would be proved in next
section:

3.2. THEOREM. There exist positive constants C, ~, ~, co such

that E C Mo + 1 and

(i) is non-singular on the closure of 2Y in R+ X (0, n) X Rn;
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(ii) for every (t, 0, y) such that

4. In order to prove Theorem 3.2 we need some preliminary re-
sults.

If 11 y then we can explicity compute pet, 0, y ) :

4.1. PROPOSITION. There exists a positive constant C such that

for every &#x3E;0y 0 E [0, ~], 11 y BI &#x3E; C.

PROOF. It is easy to see from (2.3), (2.4) and (2.6) that there
exists a suitable positive constant C such that 0, y) II &#x3E; Mo, for

therefore (2.6) can be directly integra-
ted. Q.E.D.

Since Xl(t, 0, y ) = t, we get

4.2. COROLLARY. dF(t, 0, y) is non-singular for t &#x3E; 0, 0 E (0, n),
||y||&#x3E;C.

By definition

(j = 1, ... , 2 + n) ; a straightforward computation gives the following.

4.3. LEMMA. There exist smooth f unctions r, R, such that
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and

Moreover ~’ (t, 6, y) can be smoothly extended to be

means of ~’(t, 0, y) _ ~’(t, J1, y) == r.

4.4. PROPOSITION. Let to &#x3E; 0. Then there exists a positive con-
stant ccy such that dF(t, 0, y) is non singular on (0, to] x [0, ccy] X Rn.

PROOF. Let

From Lemma 4.3 and (2.4) it follows that 0, y»MljM2;
therefore, for (t, 0, y) E [0, to] X [0, n] X Rn, B(t, 0, y) is in a compact set
of non singular matrices. Note that det aY)) = Ot det A.
Now it is enough to show that for a suitable M &#x3E; 0, 
on [0, to] X [0, n] X Rn.

Since x2 = 0 for t = 0, from Lemma 4.3 we get

But r does not depend on y for lIyll» , so
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In a similar way one can show

4.5. REMARK. Since an analogous of Lemma 4.3 holds for 0
near ~, we get: for every to &#x3E; 0 there exists 0152l such that: 0  0152l  n

and dF(t, 0, y) is non-singular on

4.6 PROPOSITION. There exists a positive constant W2 such that
dF(t, 0, y) is not singular for t ~ Mo + 1, 0  0  W2(t - Mo)-t, y E Rn.

In order to prove this Proposition we need some preparation.
For all bicharacteristics are straight-line, so

and an analogous formula holds for (alay) x. More precisely, thank
to Lemma 4.3:

here eik and are 000 functions of 6 E [0, n], y E Rn, (j, k = 1, ... , n).
Denote by Jk , C~, Dk respectively the k-th column of matrices
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let

Finally let

and

PROOF OF PROPOSITION 4.6. Since log h(y)] 00(0, y) = y),
k = 17 ... , n and the same formula holds for Do , Dk , it follows that

and

are C°° functions. Therefore
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Now it is enough to make the following remarks:

and y) are bounded on [0, ~c] X Rn. Q.E.D.

4.7. PROPOSITION. Let m be such that 0  co  nf2. Then there

egists e&#x3E; 0 such that dF(t, 0, y) is nonsingular on (0, s] X [w,n - 00] X Rn.

PROOF. Initial data (3.1) give

then from (2.6) and (3.1) it follows that

The above results prove Theorem 3.2 (i) and (ii). For the last sta-
tement we show the following

4.8. PROPOSITION. There exist positive constants ay, ~ such that
u(t, 0, y) &#x3E; 6t02 on R+ x [0, X Rn.

PROOF. Since
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we get

It is enough to remark that, for (and so it too) not depend
on t, therefore it is bounded on Q.E.D.

5. In this section we shall show that, for all fixed q E fin, there
exists a (unique) solution 1p(x) of (2.1-2), which is definite in a sui-
table domain.

5.1. LEMMA:

(i) is locally invertible and is an open
subset of Q;

(ii) is a closed map;

(iii) For every .F’-1 (x) r1 E is finite.

PROOF. (i) follows from Theorem 3.2 (i) and Proposition 2.1.

(ii) Let Pv = (tv, 0,, Yv), v E N, be a sequence in E with
li m I’(Pv ) = x ; then therefore, if (Pr) is not

v-~ + o0

bounded, is not bounded too and one can apply Theorem 3.2 (ii)
in order to see that (Pr) has a limit point; hence, in every way, {P,}
has a limit point.

(iii) Since F is injective for 07 it follows that r1 2Y
is bounded. Theorem 3.2 (i) says that .F’-1 (x) n E has no accumula-
tion points thanks to Proposition 2.1 it
does not have any in 2Y either. Q.E.D.

5.2. THEOREM. The map Fix: F(lh) is a diffeomorphism.

PROOF. By lemma 5.1, Fix is a covering map between arcwise
connected spaces, so the cardinality of the fiber does not depend on
the base-point.

Let 27e _ ( o, ~ ) X (0, n) X _ ~x E Sz ; x,  c}. From lem-
ma 5.1 (ii) it follows that F(2Ys) _ and from Proposition 2.1.
F(82Ys) m Q6 _ ~; therefore n Q6 = .F’(~~) n Q6 ; hence is
an open and closed subset of i.e. F(E,.) = Q8.
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This proves that Q6 is a covering map between simply
connected spaces, i.e. it is a homeomorphism. Q.E.D.

5.3. PROPOSITION. There exists U &#x3E; 0 such that Qu C F(2Y).

PROOF. Choose ðro2}. Arguing as above it is

enough to show
From Theorem 3.2 (iii) it follows immediately that

We shall see

for 8 ~ c.~, y E Rn. Both the hypersurface 0 = wand u(s, 0, y) = sbm2
disconnect the strip (0, ~c) then from u(8, 0, y) --- 0 and u(s, m, y) ~
~ E~a~2 it follows (5.1). Q.E.D.

Let row t = t(x), 0 = O(x), y = y(x) be the components of the

inverse map Qu - they are smooth, moreover

5.4. LEMMA, (i) t(x) = x;

(ii) 8(x) can be continuously extended to Qu - ao Q by means
of n == arcos ( ~ 1);

(iii) y(x) can be continuously extended to S~~ by means of

y(lx21, x2, x’) - x’.

PROOF. Check the continuity of extensions (ii) and (iii) on a se-
quence in Qu converging to the boundary. Use Theorem 5.1 (ii)
and Proposition 2.1.

Finally we can establish that

5.5. THEOREM. For every e fin there exists a unique real solu-
tion E of (2.1-2) such that
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PROOF. Existence. Since the symplectic form vanishes

identically on we can apply Theorem 6.4.3 in [3] in order to
see that the 1-f orm

is closed. Thus there is a function E 0’(Qu), unique up to a con-
stant, such that

then 1p satisfies (2.1 ). Check that therefore

and, in the same way,

Hence, up to a constant, 0, y)) == y.q. Next, for a suitable
choice of the constant,

From Lemma 4.3.

If apply Lemma 5.4 to see
that
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Let y satisfy all the hypotheses. Certainly there

exists with d1p(xO) =F 0. Let (x(t), ~(t)), with t c t  and

be the null bicharacteristic passing through 
As is well known, ~(t) = 

Suppose for a moment that x(t) E 8+ Q. Now x(t) _ (t, =Í:: t, x’(t))
with t &#x3E; 0, therefore, from (2.2)

and

but this is in contraddiction with ~(t)) - 0.
We conclude that 1 = 0, then (r(0), $(0)) c- L.(n). This proves

(X0, d1p(xO)) E L(r¡). From (2.8) it follows that

so dy never vanishes and the above argument can be repeated for
every point of Hence we obtain (5.2) for every but, as
already recalled, this determines up to a constant. The thesis fol-
lows since 1p == r.q on aS2. Q.E.D.

6. Finally we have to consider the dependence on q C Itn’ then
we write y~~~~ instead of ~, which is defined on 

It is easy to see, from (2.6), that F(t, 0, y ) and y(t, 0, y ) are homo-
geneous of degree 0 in 77, therefore, by (5.3), y~~~~ is of degree 1. Thus,
since (q 11 n ~~ = I) is compact, there exists U &#x3E; 0 which works
for every r¡ =1= 0. So we have proved the following:

6.1. THEOREM. (i) There exists Z7 &#x3E; 0 such that (1.1) has two
solutions
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real and homogeneous of degree 1 in 21. Moreover

(ii) If 99 satisfies the above conditions, then w coincides with
~+ or 99- in each connected component of [0, U] X R+ X Rn X R".
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