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Fully Rigid Systems of Modules.

A. L. S. CORNER (*)

Let R be a commutative ring, A an R-algebra (both with 1 ).

DEFINITION. A fully rigid system for A on a set I is a family
Gx(X C I) of faithful right A-modules indexed by the subsets X of I
such that, for X, Y C I,

where of course A acts on GX by scalar multiplication: in particular
we have A I ).

Clearly, if I is infinite then a fully rigid system GX(X c I ) will

contain a rigid system of size 211/: choose 2/1/ pairwise incomparable
subsets of I.

REMARK 1. If 99: GX - GY is a nonzero homomorphism between
members of a fully rigid system for A, then X ~ Y and there exists
an element a E A such that 99: g F-+ ga Since GX is a sub-A-
module of GY it is immediate that w maps GX into itself, and by faith-
fulness a is completely determined by the restriction 99 fG0.

THEOREM. Suppose that A admits a fully rigid system Hx (X C I)
set I with T hen, for every infinite cardinal A

admits a fully rigid system GX Â) on A with IGxl I - A (X C ~,).

(*) Indirizzo dell’A.: Worcester College, Oxford 0X1 2HB, Inghilterra.
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We start by reducing the theorem to the follovPing proposition,
which is based on a construction to be found in the second section
of Shelah’s remarkable paper [7].

(Note that all our tensor products are over Z).

PROPOSITION. Let F be a free abelian group of arbitrary infinite
rank 2. Then there exist direct summands Ug (i = 0, 1, 2, 3, 4 ; xc Â)
of F such that Ug  UY whenever Xc Y, and with the property that for
any commutative ring R and any R-module H

PROP =&#x3E; THM. We may assume without loss that I = {0, ... , 4}.
Choose F free abelian of rank h &#x3E; construct the A-module I’ ~ HI,
and for each take the sub-A-module

This contains a direct sum of A copies of the faithful HO.
Therefore GX is a faithful A-module with lgxl _ ,1, and certainly

=&#x3E; 

Now suppose that 0 ~ 6 E HomR(Gg, GY). Since F(x) HI is a direct
sum of copies of HI, the image of any R-homomorphism
must lie in and it follows that the composite 
~ Gg ~ must map into itself. In other words,

Again, if we choose a direct complement I’i for Uy in I’, then for
i 0 i in I we have U~ (DH{j} } c I’ ~ and Up @  Up @ HI,
whence GYc gI)O (FYO .HI~{i~). Since the com-

posite

must vanish. Therefore 0 maps into and neces-

sarily into But then maps into 

(ic-1), whence for 
This means that 0 agrees on with scalar multiplication by
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some a E A, where a = 0 unless X c y. Remark 1 now implies that,
regarded as a homomorphism 6 agrees with scalar mul-

tiplication by a. Since 6 ~ 0, we 0; therefore X C Y. j

REMARK 2. If gI E C, where C is a class of modules closed under

arbitrary direct sums and submodules, then also each GX e C (X c A).
In particular, if .R = Z (or any PID) and HI is then all the

GX are N,-free. Similarly for slenderness, cotorsion-freeness, and

so on.

REMARK 3. For a topological R-algebra (with R discrete) call an
,A-module H topologically faithful if the mapping a H scalar multipli-
cation by a is a topological embedding A --&#x3E;-EndR(H), where the en-
domorphism algebra is taken in its finite topology. If H is topolog-
ically faithful, so is any direct sum of copies of H, in particular
F @ H. And since

it f ollows that if H0 and HI are topologically faithful, then so are all
the G- (X ~ ~,). In this case the algebra identifications EndR(GX) = A
are topological.

The following technical lemma simplifies the proof of the propo-
sition.

LEMMA a. Let F be a free abelian group with direct summands

U* c .F’’ (i E I ) such that for any commutative ring R with 1

=&#x3E; 0 is scalar multiplication by some a E R .

Then for any ring R and any R-modules N, M,

PROOF. An .R-homomorphism is no more than a Z-homomorphism
which commutes with scalar multiplications from R. Therefore it is

enough to establish (Con) with _ Z. And we need only prove
(Con) with N = Zz. For if (Con) holds in this special case, consider any
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Z-homomorphism mapping Us Q N into !7*@ M
for all i. Then for each n E N, the map f Q 1--~ ( f Q n)6 is a homo-

morphism mapping into for all i,
so must be of the form f @ 1 ~ f @ (ncp) for some ncp Here ng~ is

clearly unique, and it follows M is a homomorphism such
that 0 = idp Qx 99.

Given a Z-module M, take I~ to be what Nagata [6] felicitously
calls the idealisation of M, viz. R is the additive group Z 0 M with
the multiplication (r, x)(s, y) = (rs, ry --f- sx). Then 1~ is a commuta-

tive ring with ((one)&#x3E; (1,0), and with the usual identifications M is
an ideal of R whose square vanishes. Any Z-homomorphism 8 : I’ Q Z -
- F @ M mapping into extends to a Z-en-

domorphism 9 of vanishing on 
This 6 is obviously an R-endomorphism of mapping 
into U* 0 R (i E 1), so by (Hyp) it is scalar multiplication by some
element (r, m) E R, in other words

This implies that (r = 0 and) 9 = where 99: is the ho-

momorphism mapping 1 H m. j

DEFINITION. Let I’ be a free Z-module of infinite rank. A starch (1)
for F shall be a system of direct summands of F,

satisfying the condition (Hyp) of Lemma a and such that

The last of these conditions requires that Uo n U = 0 and that Uo @ U
be a direct summand of F.

We now reduce the proposition to

(1) I am indebted to Claudia Metelli for proposing this crisply apt solu-
tion to a problem of nomenclature.
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PROPOSITION fl. Every free Z-module o f in f inite rank admits a

starch.

PR,oP. Let U; Ui, U* = ?7 (i = 0, ..., 4) be a
starch on a free Z-module F of infinite rank A. Choose a free basis

va (a E Â) of U, and for each subset A take

Certainly these are direct summands of F, and 
(i=0,...,4).

Given a commutative ring .R, consider any R-homomorphism 6 of
mapping into for each I. Then 6 maps 

into for each i, and the definition of a starch implies that 0
is scalar multiplication by some a e R. Therefore 6 leaves the sub-
.R-module invariant, and it follows that it carries (UxR)n
n = into ( U ~ 1~) r1 ( U§ @ R) = In partic-
ular for each DC E X we have

Since va @ 1 (a E h) is a free basis of the free R-module 1I@ R this
gives the conclusion that either X C Y or a = 0; and if a = 0, then
of course 0 = 0. By a trivial extension of Lemma a we obtain the
proposition. /

The proof of Proposition makes heavy use of the following lem-
ma, the essential content of which was first brought to my atten-
tion over twenty years ago by Sheila Brenner.

LEMMA y. In a free F let V be a direct summand of rank
2 with a given ordered basis vo , vl . Let M’ be a direct summand o f an
R-module M, and z : M’ ---~ M an .R-homomorphism. Write

Then

(a) Y[i] is a direct summand of .F Q M contained in Y 0 ~;
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(b) i f q E EndR(M) is such that g~ leaves invariant V[-r],
then 99 leaves invariant M’ and commutes with í on M’.

PROOF. (a) If is a direct complement of M’ in M, then
is a direct complement of Y[z] in 

which is itself a direct summand of F 0 M.

(b) If idF (8) q leaves invariant Y[z], then for every x E M’ there
exists x’ E M’ such that vo (2) xgg + v, @ = vo @ x’+ vi O whence,
equating coefhcients, xgg = z’ e M’ and xzcp = x-r = /

Note that in the situation of (b) above, if w is known to leave a
certain submodule N of M’ invariant, then it must also leave Nz
invariant: for then = 

NOTATION. Given a set I we write FI for a free Z-module with a
free basis f a indexed by I ; if J is a subset of I, then F, will
denote the obvious direct summand of Fi. For a commutative ring
R, F:: is the free R-module with basis 1 (a E I ),
but we shall consistently abuse notation and identify f a = f a Q 1 so
that f a (a E I ) is also a basis of F:. If we are given a partial function
on I, i.e. a function p : D -~ I where D is a subset of I, we write

and for the homomorphisms given on the
« common basis &#x3E;&#x3E; by A H (a E D) ; clearly then

is a homomorphism of the direct summand FD of
FI into FI, so with .F’, V as in Lemma y, the ((graph)&#x3E; V[pz] is a di-
rect summand of contained in An obvious check
shows that if we tensor with a commutative ring .R, then

LEMMA admits a starch .

PROOF. In fact we prove the equivalent assertion that Fro
admits a starch. Let s : m - co be the successor function k H k -f- 1,
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and in take the direct summands

Clearly and is a direct summand of
Write Vi = Vi EÐ 

Consider any commutative ring .R with 1, and any R-endomor-
phism 6 of which maps into 
for all i. Then 6 leaves invariant

and a trivial calculation shows that 0 idps 99 for some 99 E EndR(FR).
But Yo c Y2, so 0 maps .R = ( f I OO fo)-R into R) n
n (Fs0JR) = = (fl O fo)R, i.e. 10 99 = fo a for some a E R. Fi-

nally, since idF2 @ 9’ leaves invariant V, @ R = .F’2 CsRJ, Lemma 03B3 im-
plies that commutes with sR : thus, if for some 7~  c~,
then also = = = = = Hence

by induction 99 is scalar multiplication by a. Therefore so is
0 = idp2 @ 4p. /

We come now to the proof of Proposition 03B2 - which is where Shelah’s
ideas come into play. We have just handled the countable case in
Lemma 6, so let A be an uncountable cardinal. Write

We shall prove that if F, admits a starch, then so does Now
in either case so it will follow from Lemma d that Fi
admits a starch whenever A is regular, and then, as the cofinality of
a singular cardinal is regular, that admits a starch whenever A
is singular; and Proposition fl will be proved.
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Assume then that Fe admits a starch V; 
(i = 0, ..., 4). We shall choose a set H of ~O partial functions

p : D( p) --~ ~,, where each domain Correspondingly we take
a direct decomposition of V,

where vo Z is of rank 1 and each Vp is of rank 2 with a fixed ordered
basis vl’. In .I’e take the direct summands

Obviously ~7~~. And sinoe is a direct
pEII

summand of it is clear from Lemma y that the direct sum defin-
ing Uo makes sense; and is a direct summand of 
Moreover writing as usual ui @ ~oi U, we have

For the rest of the proof 9 is an arbitrary R-endomorphism of
mapping into (i = 0, ... , 4).

The last display shows that 0 maps Vi 0 Ff into V/* @ Ff (i = 0, ... , 4).
Therefore by Lemma a

Since idp certainly leaves each invariant, it must map
the submodule

into itself. By Lemma y this means that, for each p e II, cp leaves
invariant and commutes thereon with pR. The proof now reduces

to showing that it is possible to choose a set 77 of p partial functions
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p:D(p) -+ X, on A in such a way that the corresponding invariance-
cum-commutation conditions force 99 to be a scalar multiplication: and
it is essentially this that Shelah has shown us how to do.

Let A be the set of all finite subsets of A. Then IAI _ ~, &#x3E; No =
- Iwl = ~ so we may relabel the f a (0153 E r1 A)) as f a

A)) to obtain a relabelling fa (0’ E A) of the original basis
f, of Fa, whence an identification FA = FA. For any non-

empty 0’ E A write O’min for the least element of 0’, and ch = ·

Then, writing

so that in particular A(0) is the set of all nonempty finite subsets
of A, we note that the images of under the partial maps

- A, 7 - h are

Hence

and certainly

Assume then that II contains the partial functions h and min.
Then, reverting to the considerations of the paragraph before last, we
find that w leaves invariant and commutes thereon with hR
and minR. Thus if, for some ce  A, 99 leaves invariant, then il
leaves invariant also n = = Taking
intersections at limit ordinals we deduce by induction that leaves
invariant each (a  A). Hence w leaves invariant also the images

= FfB(X(eX  2). This means that for each a  A there is

an expression of the form
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where the ai i E .R, and

(and where everything in sight of course depends on oc).
To exploit this, let

and for each d E A choose a strictly increasing sequence of ordinals

3sn (n  ro) such that

We now distinguish the two cases.

(a) Assume first that Z is regular, so that e = w. It is well
known that L1 is stationary in A, and by a theorem of Solovay
(quoted as Theorem 85 on p. 433 of Jech [~]) , any stationary subset
of an uncountable regular cardinal A may be partitioned into A sta-
tionary subsets. Therefore there exists a function z: L1-+ Â such that

Take rI to consist of

With the notation introduced at the top of the page, for each fl  A
write

Since A is regular, we and the mapping ~8 H fl* is

obviously continuous. So is closed unbounded in 2,
therefore for each y  ~, this « club » meets the stationary set yz-1
). In other words, for each there is an ordinal d E A such
that
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The first equation here means that a d=&#x3E; 03B1w  6 or, equivalently,
that F§/ is invariant under 99.

Write

where the and 6 - 30  61  ...  #m (C ~) are in 4 (because
F£ is invariant under 99). Since 99 commutes with each 8: on we

have = in other words

But lim = ~, ~&#x3E; (i = 1, ... , m). Therefore for any large n we
nw

have ðo = 6  ðl  ...  ~m sn  3*~ : so (i = 1~ ... , m)
are distinct ordinals&#x3E; ð while so that This forces

al = ... am = 0, giving

Since 3so = 0, for n = 0 the penultimate display reduces to fo q = fo ao;
which means that ao is independent of 3. Finally, w commutes with
zR, and since 3z = y the equation = asserts that

Thugs 99 is scalar multiplication by ao ; and Proposition is proved
for every regular cardinal Â.

(b) Assume now that A is singular, so that p = cf(h) is regular
(possibly equal to (0). Choose infinite cardinals ~,a C ~ (a  O) such
that sup X03B1 = A. Replacing each by its cardinal successor, we may

a~O

assume that each A,, is regular and &#x3E; w. Then, for each a  ~o, L1 n ~,a
is stationary in Aa and by Solovay’s theorem there exists a function
za : L1 - Àa such that the inverse image of each ordinal in h« is

stationary in Àa. Take II to consist of the partial functions
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Note that, for each ex  e, 99 leaves invariant both and its

image under zR, namely Pi; therefore in ~ ~ # C ~,a and
=&#x3E; ~* C ~a . The argument of case (a) now goes through with

minimal changes.

Post scriptum. This Note was written in response to a query by
Laszlo Fuchs at the 1985 Oberwolfach Conference on Abelian Groups,
asking whether there were circumstances under which the existence
of « small » indecomposables might entail that of « large » indecompos-
ables. Happily, before the advent of Shelah’s « Black Box » (see [2]
for an exposition), which at the time appeared to render his earlier
idea obsolete, I had amused myself by disentangling the various set
theoretic, linear algebraic, and group theoretic strands in Shelah’s
1974 construction, and by grafting the result on to the ideas of my
paper [1], in a rather absurd setting of additive categories. So I was
well placed to answer Fuchs’s query: see [4] for his application of
the present theorem. The comparable Note [3] by Franzen and G6bel
stays much closer to its original in Shelah [7].
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