RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

CARLO CASOLO

Finite groups in which subnormalizers are subgroups

Rendiconti del Seminario Matematico della Università di Padova, tome 82 (1989), p. 25-53

http://www.numdam.org/item?id=RSMUP 1989 82 25 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Finite Groups in which Subnormalizers are Subgroups.

CARLO CASOLO (*)

Let H be a subgroup of a group G. We put

$$S_g(H) = \{g \in G; H \text{ sn } \langle H, g \rangle \}$$

and call it the «subnormalizer» of H in G (see [7; p. 238]). In general, $S_G(H)$ is not a subgroup (see [7]). The aim of this paper is to study the class of groups (which we call sn-groups) in which the subnormalizer of every subgroup is a subgroup. As observed in [7; p. 238], $S_G(H)$ is a subgroup of G if and only if H is subnormal in $\langle U, V \rangle$, whenever H sn $U \leqslant G$ and H sn $V \leqslant G$. Furthermore, if G is finite and $S_G(H) \leqslant G$ then, by a subnormality criterion of G. Wielandt [10], G is subnormal in G0, thus G0, is the maximal subgroup of G1 in which G1 is embedded as a subnormal subgroup.

From now on, «group» will mean «finite group».

In the first section of this paper we show that the property of being an sn-group has a local character. Namely, we define for every prime p, the class of $\operatorname{sn}(p)$ -groups of those groups in which the subnormalizer of every p-subgroup is a subgroup, and prove that G is an sn-group if and only if G is an $\operatorname{sn}(p)$ -group for every prime p dividing G. This in turn leads to the following characterization of sn-groups:

a group G is an sn-group if and only if the intersection of any two Sylow subgroups of G is pronormal in G.

(*) Indirizzo dell'A.: Dipartimento di Matematica e Informatica, Università di Udine, Via Zanon 6, I-33100 Udine, Italy.

(We recall that a subgroup H of G is said to be pronormal if, for every $g \in G$, H is conjugate to H^g in $\langle H, H^g \rangle$.)

At this stage we observe that the class of sn-groups has already been studied. In fact, in [8], T. Peng defined the class of E-groups as the class of those groups G in which $E_G(x) := \{g \in G; [g, {}_nx] = 1 \text{ for some } n \in \mathbb{N}\}$ is a subgroup for every $x \in G$; and, for any prime p, the class E_p of those groups in which $E_G(x)$ is a subgroup for every p-element x of G. It turns out that the class of E-groups is the same as the class of sn-groups, and that E_p -groups are just the $\operatorname{sn}(p)$ -groups, for every prime p. As a consequence, we have that G is an E-group if and only if it is an E_p -group for every prime p, giving a positive answer to a question raised by Peng.

On the basis of these characterizations, we then give a more detailed description of sn-groups, both in the soluble and in the general case, extending some of the results obtained by Peng. In particular, we have that the only non abelian simple sn-groups are those of type $PSL(2, 2^n)$ and $Sz(2^{2m+1})$; also an sn-group has generalized Fitting length at most four, and all chief factors abelian or simple. Finally, we give necessary and sufficient conditions for a group G to be an sn-group in terms of the automorphisms groups induced by G on its chief factors; as a sample we quote the following: a group G of odd order is an sn-group if and only if the group of automorphisms induced by G on each chief factor is a T-group.

After this paper was written, I was informed that H. Heineken, in his study on *E*-groups, had obtained indipendently part of the results which appear in sections 2 and 3 of this paper. In his forthcoming paper [1], other informations on (not necessarily finite) *E*-groups are to to be found.

Notation is mostly standard. We shall make use of P. Hall's closure operations. A T-group is a group in which every sunbormal subgroup is normal. For any group G, F(G) denotes the Fitting subgroup of G, and, if U/V is a chief factor of G, $A_G(U/V)$ denotes the group of automorphisms of U/V induced by conjugation by G (thus $A_G(U/V) \cong G/C_G(U/V)$).

1. A characterization of sn-groups.

Our first Lemma gives some elementary properties of the set $S_{\sigma}(H)$. The proof, which is straightforward, is omitted.

- 1.1 LEMMA. Let H be a subgroup of the group G:
 - (i) If $T ext{ sn } H$, then $S_G(T) \supseteq S_G(H)$.
- (ii) If $N \subseteq G$, then $S_{G/N}(HN/N) \supseteq S_G(H)N/N$; if further $N \leqslant H$, then $S_G(H)/N = S_{G/N}(H/N)$

(obviously here $S_{G}(H)/N := \{gN \in G/N; g \in S_{G}(H)\}$).

The next result, although very elementary, is fundamental.

1.2 LEMMA. Let H be a subnormal subgroup of G, and P a Sylow p-subgroup of H, for some prime p; then $\in S_G(H)$.

$$G = H\langle S_G(P) \rangle$$
.

PROOF. By induction on the defect n of H in G. If H is normal in G apply the usual Frattini argument. Let n > 1; then H has defect n-1 in its normal closure H^G . By inductive hypothesis:

$$(+) \hspace{1cm} H^g = H\langle S_{\!\scriptscriptstyle H}{}^{_{\!\scriptscriptstyle G}}\!(P)
angle \; .$$

Take now $P_0 \in \operatorname{Syl}_p(H^g)$ such that $P \leqslant P_0$; then $P \operatorname{sn} N_g(P_0)$ and so $N_g(P_0) \subseteq S_g(P)$. By the Frattini argument we have also

$$G=H^{g}N_{g}(P_{0})=H^{g}\langle S_{g}(P)
angle$$

which, together with (+), gives:

$$G = H\langle S_{H^G}(P)
angle \langle S_G(P)
angle = H\langle S_G(P)
angle$$
 .

We recall, from the introduction, that a group G is an sn-group if $S_G(H)$ is a subgroup of G for every $H \leqslant G$, and G is an $\operatorname{sn}(p)$ -group, p a prime, if $S_G(H) \leqslant G$ for every p-subgroup H of G.

It then follows from 1.1 (ii) that the class of sn-groups is Q-closed (that is every homomorphic image of an sn-group is an sn-group). The class of sn-groups is also S-closed (that is every subgroup of an sn-group is an sn-group), in fact, in any group G, if $H \leq K \leq G$, then $S_K(H) = S_G(H) \cap K$. Thus, for every prime p, the class of $\operatorname{sn}(p)$ -groups is S-closed.

1.3 LEMMA. For every prime p, the class of sn(p)-groups is Q-closed.

PROOF. Let G be an $\operatorname{sn}(p)$ -group, and $N \leq G$. Let H/N be a p-subgroup of G/N. Since the class of $\operatorname{sn}(p)$ -groups is s-closed, we may assume $G = \langle S_o(H) \rangle$, that is $G/N = \langle S_{G/N}(H/N) \rangle$. Let P be a Sylow p-subgroup of H, then NP = H. If $H \operatorname{sn} V \leq G$, by 1.2 we have $V = H \langle S_v(P) \rangle$ and so, since G is an $\operatorname{sn}(p)$ -group,

$$V = HS_{\nu}(P) = NS_{\nu}(P)$$
.

Thus:

$$NS_G(P) \geqslant \langle NS_V(P); H \text{ sn } V \leqslant G \rangle = \langle V; H \text{ sn } V \leqslant G \rangle = \langle S_G(H) \rangle = G$$
.

Hence $G/N = NS_G(P)/N \cong S_G(P)/(S_G(P) \cap N)$. Since $P(S_G(P) \cap N)$ is subnormal in $S_G(P)$, we conclude that H/N is subnormal in G/N, and so $S_{G/N}(H/N) = \langle S_{G/N}(H/N) \rangle$, which means that G/N is an $S_G(P)$ -group.

- 1.4 Proposition. Let G be a group, p a prime number. The following are equivalent.
 - (i) G is an $\operatorname{sn}(p)$ -group;
- (ii) for any intersection R of Sylow p-subgroups of G, $S_o(R) = N_o(R)$;
 - (iii) for every $P \in \operatorname{Syl}_p(G)$ and $g \in G$, $P \cap P^g \subseteq N_g(P)$;
- (iv) for every $P \in \operatorname{Syl}_p(G)$, $g_1, \ldots, g_n \in G$, $\langle P, g_1, \ldots, g_n \rangle$ normalizes $P \cap P^{g_1} \cap \ldots \cap P^{g_n}$.

PROOF. (i) \Rightarrow (ii). Let G be an $\operatorname{sn}(p)$ -group and $R = P_1 \cap ... \cap P_r$ with $P_i \in \operatorname{Syl}_p(G)$, i = 1, ..., r. Clearly $N_G(R) \subseteq S_G(R)$. Set $S_G(R) = S$; since R is a p-subgroup of G, $S \leqslant G$ and R sn S. Thus R^S is a normal p-subgroup of S and it is contained in every Sylow p-subgroup of S. Now, for every i = 1, ..., r, R is subnormal in P_i and so $P_i \subseteq S$. Hence $P_i \in \operatorname{Syl}_p(S)$, yielding

$$R^s \leqslant P_1 \cap ... \cap P_r = R$$
.

Thus $R^s = R$, that is $S \subseteq N_g(R)$ and, consequently, $S = N_g(R)$.

(ii) \Rightarrow (iii). Let $P \in \operatorname{Syl}_p(G)$ and $g \in G$; where G satisfies condition (ii). Then $N_G(P) \subseteq S_G(P \cap P^g) = N_G(P \cap P^g)$ and so $P \cap P^g$ is normal in $N_G(P)$.

(iii) \Rightarrow (iv). Let G satisfy condition (iii) and let P be a Sylow p-subgroup of G; $g_1, ..., g_n \in G$. Set $R = P^{g_0} \cap P^{g_1} \cap ... \cap P^{g_n}$, where $g_0 = 1$. Then for every i = 0, 1, ..., n, we may write

$$R = igcap_{j=0}^n (P^{g_i} \cap P^{g_j})$$
 .

Thus, by (iii), $R \leq N_G(P^{g_i})$ for every i = 0, 1, ..., n and so

Now, since for every $g \in G$, $g \in \langle N_G(P), N_G(P)^g \rangle$, we have

$$T = \langle N_{\mathcal{G}}(P), g_1, ..., g_n \rangle$$
,

whence, in particular, $\langle P, g_1, ..., g_n \rangle$ normalizes R.

(iv) \Rightarrow (i). Let G satisfy condition (iv) and let H be a p-subgroup of G. Denote by \mathcal{F} the set of those Sylow p-subgroups of G, which contain H, and put $R = \bigcap_{P \in \mathcal{F}} P$. We show that $S_G(H) = N_G(R)$ and so that $S_G(H)$ is a subgroup of G.

Since R is a p-subgroup of G, containing H, we have at once H sn $R \triangleleft N_G(R)$, whence $N_G(R) \subseteq S_G(H)$.

Conversely, let $V \leqslant G$ such that H sn V. Then H is contained in every Sylow p-subgroup of V. If $P \in \mathcal{F}$ and $v \in V$, we have: $H \leqslant P \cap V \leqslant P^g \cap V$, where $g \in G$ is such that $P^g \cap V$ is a Sylow p-subgroup of V. Thus:

$$H \leqslant (P^g \cap V)^v = P^{gv} \cap V$$
.

In particular

$$H \leqslant P \cap P^g \cap P^{gv}$$
.

But, since G satisfies (iv), $P \cap P^{g} \cap P^{gv}$ is normalized by $\langle g, gv \rangle = \langle g, v \rangle$. In particular, it is normalized by v and so $H \leqslant P^{v}$, whence $P^{v} \in \mathcal{I}$. This shows that V permutes by conjugation the elements

of \mathcal{T} and so $V \leq N_{\mathcal{G}}(R)$. We have therefore:

$$S_G(H) = \bigcup \{V \leqslant G; H \operatorname{sn} V\} \subseteq N_G(R)$$
.

Thus $S_{\sigma}(H) = N_{\sigma}(R)$, as we wanted.

Now we can state our main characterization of $\operatorname{sn}(p)$ -groups.

1.5 THEOREM. Let G be a group. Then G is an $\operatorname{sn}(p)$ -group if and only if for every $P, Q \in \operatorname{Syl}_p(G), P \cap Q$ is pronormal in G.

PROOF. Let G be an $\operatorname{sn}(p)$ -group. Let P,Q be Sylow p-subgroups of G and put $R=P\cap Q$. Let also $h\in G$ and write $L=\langle R,R^h\rangle$. Choose $T\in\operatorname{Syl}_p(G)$ such that $R\leqslant T\cap L\in\operatorname{Syl}_p(L)$. Since R^h is a p-subgroup of L, there exists $x\in L$ such that $R^h\leqslant (T\cap L)^x$. In particular $R^h\leqslant T^x$ and so $R\leqslant T^{xh^{-1}}$. Thus

$$R = T \cap T^{xh^{-1}} \cap P \cap Q$$
.

By 1.4 (i) \Rightarrow (iv), xh^{-1} normalizes R; then $R^x = R^h$, proving that R is pronormal in G.

Conversely, assume that $P \cap Q$ is pronormal in G, for every $P, Q \in \operatorname{Syl}_p(G)$. Then $P \cap Q$ is both pronormal and subnormal in $N_G(P)$. This forces $P \cap Q$ to be normal in $N_G(P)$. By 1.4 (iii) \Rightarrow (i), we have that G is an $\operatorname{sn}(p)$ -group.

1.6 LEMMA. Assume that G is an $\operatorname{sn}(p)$ -group for every prime p dividing |G|, and let H be a perfect subnormal subgroup of G. Then $H \triangleleft G$.

PROOF. Assume, firstly, that H is simple and non abelian. Then, by a well known result of H. Wielandt (see [7, p. 54]), $H^{g} = H \times K$, where K is the direct product of the conjugates of H, distinct from H. Let p be a prime divisor of |H| and $P \in \operatorname{Syl}_{p}(H)$. Since G is an $\operatorname{sn}(p)$ -group, Lemma 1.2 yields

$$G = HS_G(P)$$
.

Set $S = S_G(P)$ and $Q = P^s$. Since P is subnormal in S, Q is a p-group and it is contained in every Sylow p-subgroup of S. Let $T = Q \cap H^G$; then T is a p-group and $T \geqslant P$. Since P is a maximal p-subgroup

of H, we have:

$$T = P \times (T \cap K) = P \times (Q \cap K)$$
.

On the other hand, K centralizes P and so $K \leqslant S$, whence $Q \cap K \preceq K$. But $O_p(K) = 1$, because K is either trivial or the direct product of non abelian simple groups. Thus $Q \cap K = 1$ and so $Q \cap H^g = P$, yielding $P \preceq S$. This gives $S = N_g(P)$ and, consequently, $G = HN_g(P)$. Now, if $g \in N_g(P)$, $1 \neq P \leqslant H \cap H^g$. Simplicity of H now forces $H = H^g$ Hence $N_g(P) \leqslant N_g(H)$ and thus $H \lhd G$.

We now turn to the case in which H is just a perfect subnormal subgroup of G, and proceed by induction on |G|. By 1.3 we may therefore assume $H_G = 1$. Let R be the soluble radical of H^G . Assume $R \neq 1$; then, as R is normal in G, HR/R is subnormal in G/R and $HR/R \cong H/H \cap R$ is perfect. By inductive hypothesis, $HR \subseteq G$ and so $HR = H^G$. Let $g \in G$ such that $H \subseteq \langle H, H^g \rangle$. Then $HH^g/H \cong H^g/H \cap H^g/$

It remains the case in which R=1. Then, if A is a minimal subnormal subgroup of G contained in H, A is simple non abelian and so, by the case discussed above, A is normal in G. Now, by inductive hypothesis: $H/A \leq G/A$, yielding $H \leq G$.

1.7 LEMMA. Let G be a group, G = TS with $S \leqslant G$, $T \operatorname{sn} G$. If $P \operatorname{sn} S$ then $\langle T, P \rangle$ is subnormal in G.

PROOF. By induction on the defect n of T in G. If n=1, T is normal and $G/T = TS/T \cong S/T \cap S$; in this isomorphism, $\langle T, P \rangle/T = TP/T$ corresponds to $P(S \cap T)/S \cap T$ which is subnormal in $S/S \cap T$; thus $\langle T, P \rangle$ is subnormal in G.

Let now n>1. Assume firstly that P normalizes T. Let $K=T[G,_{n-1}T]$, then $T \subseteq K$, K has defect n-1 in G and G=KS. Hence, by inductive hypothesis $A=\langle K,P\rangle=KP$ is subnormal in G. Now $A\cap S=KP\cap S=(K\cap S)P$ and $P\operatorname{sn}(K\cap S)P$. Further:

$$(K \cap S)PT = (KP \cap S)T = KP \cap ST = KP = A$$
.

Since $T \subseteq A$ we have, by the case n = 1, $\langle T, P \rangle = TP$ sn A and so TP sn G.

In the general case, set $\overline{T}=T^P=\langle T^h;h\in P\rangle$. Then \overline{T} , being generated by subnormal subgroups, is subnormal in $G,\ G=\overline{T}S$ and \overline{T} is normalized by P. By the case discussed above $\langle T,P\rangle=\overline{T}P$ is subnormal in G.

1.8 Proposition. Suppose that G is not an sn-group. If $H \leq G$ is minimal such that $S_G(H) \leq G$, then either H is perfect or it is cyclic of order a power of a prime.

PROOF. Let G, H be as in our hypothesis, and suppose that H is not a perfect group. Then there exists a maximal normal subgroup T of H, such that |H:T|=p for some prime p. Now $S_G(T)\supseteq S_G(H)$ and so, by our choice of H:

$$\langle S_G(H) \rangle \leqslant S_G(T) \leqslant G$$
.

Set $L = \langle S_{G}(H) \rangle$; then T sn L. Let $P \in \mathrm{Syl}_{p}(H)$, thus TP = H.

Suppose that $P \neq H$; then $S_{\sigma}(P) \leqslant G$. Let $V \leqslant G$ such that H sn V; then $S_{\nu}(P) = S_{\sigma}(P) \cap V \leqslant V$ and, by Lemma 1.2, $V = HS_{\nu}(P)$. Thus H permutes with $K = \langle S_{\nu}(P); H \text{ sn } V \leqslant G \rangle$. Now:

$$HK \geqslant \langle HS_{\mathbf{v}}(P); H \operatorname{sn} V \rangle = \langle V; H \operatorname{sn} V \rangle = L \geqslant HK$$

whence HK = L and so L = TK. Moreover, $K \leqslant S_G(P)$ and so P sn K. Since also T is subnormal in L, Lemma 1.7 yields $H = \langle T, P \rangle$ sn L; thus $S_G(H) = \langle S_G(H) \rangle \leqslant G$, contradicting our choice of H.

Therefore, we must have H=P. If H admits two distinct maximal subgroups R and Q, then both are subnormal in H and so $L=\langle S_{\sigma}(H)\rangle \leqslant S_{\sigma}(R) \cap S_{\sigma}(Q)$. In particular R,Q are subnormal in L and thus $H=\langle R,Q\rangle$ is subnormal in L, again contradicting the choice of H. Hence H has a unique maximal subgroup and it is therefore cyclic.

We now recall the definitions given by Peng in [8]. Let G be a group, $x \in G$; put $E_G(x) = \{g \in G; [g, {}_n x] = 1, n \in \mathbb{N}\}$. Then E is the class of groups G in which $E_G(x)$ is a subgroup, for every $x \in G$. For any prime p, E_p is the class of groups in which $E_G(x) \leqslant G$ for every p-element x of G.

Peng raises the question as to whether $G \in E$ if (and only if) $G \in E_p$ for every prime p; he gives a positive answer for soluble groups of 2-length at most 1 [8, Corollary 3, p. 328].

1.9 LEMMA. Let G be a group, $x \in G$. If G is an $\operatorname{sn}(p)$ -group for every prime p dividing |x|, then:

$$E_{G}(x) = S_{G}(x) \leqslant G$$
.

PROOF. Let $S = S_G(\langle x \rangle)$. If $g \in S$ then $\langle x \rangle$ sn $\langle x, g \rangle$ and so $[g, {}_nx] = 1$ for some $n \in \mathbb{N}$; thus $g \in E_G(x)$ and $S \subseteq E_G(x)$. Write $x = x_1 \dots x_r$, where $\langle x_i \rangle$ $(i = 1, \dots, r)$ are the primary components of $\langle x \rangle$, and set $S_i = S_G(\langle x_i \rangle)$. Then, for any i, S_i is a subgroup of G, by our hypothesis. Let $T = \bigcap_{i=1}^r S_i$. Now, for any $i = 1, \dots, r$, $\langle x_i \rangle$ is subnormal in T; thus $\langle x \rangle = \langle x_1, \dots, x_r \rangle$ sn T, whence $T \subseteq S$. Conversely, if $g \in S$, $\langle x_i \rangle \preceq \langle x \rangle$ sn $\langle x, g \rangle$ and so $g \in S_i$ for every $i = 1, \dots, r$; thus $g \in T$, yielding $S \subseteq T$ and, consequently, $S = T \leqslant G$.

Let now $y \in G$ such that $x^g \in S$; we show that $g \in S$. In fact $x^g = x_1^g \dots x_r^g \in S$ and, the x_i 's being suitable powers of x, $x_i^g \in S$ for every i; in particular $x_i^g \in S_i$ for every i. Let p_1, \dots, p_r be primes such that, for any $i = 1, \dots, r$, x_i is a p_i -element. Further, for any i, choose a Sylow p_i -subgroup P_i of S_i such that $x_i^g \in P_i$. Then, since $\langle x_i \rangle \operatorname{sn} S_i$, $x_i \in P_i$ and so $\langle x_i \rangle \operatorname{sn} P_i^{g^{-1}}$. By 1.4, $P_i \cap P_i^{g^{-1}} \leq I$ and so $g \in S_i$. This is true for every $i = 1, \dots, r$ whence $g \in S$.

Let now $y \in E_0(x)$; then, for some $n \in \mathbb{N}$, $[y, {}_nx] = 1$. Let m be the minimal natural number such that $[y, {}_mx] \in S$ (we put $[y, {}_0x] = y$). Suppose m > 0, then:

 $S \ni [y, {}_m x] = [y, {}_{m-1} x, x] = (x^{-1})^{[y, {}_{m-1} x]} x$, and this implies $x^{[y, {}_{m-1} x]} \in S$. Thus $[y, {}_{m-1} x] \in S$, contradicting the choice of m. Hence m = 0 and, therefore, $y \in S$. This yields $E_g(x) \subseteq S$ completing the proof that $E_g(x) = S$.

An immediate consequence is the following.

1.10 COROLLARY. A group G is an $\operatorname{sn}(p)$ -group for some prime p if and only if $G \in E_p$.

PROOF. If G is an $\operatorname{sn}(p)$ -group, then Lemma 1.9 implies at once that $E_G(x)$ is a subgroup for every p-element x of G, and so $G \in E_p$.

Conversely, let $G \in \mathbf{E}_p$ and suppose that G is not an $\operatorname{sn}(p)$ -group. Thus, let H be a minimal p-subgroup of G such that $S_o(H)$ is not a subgroup. Then, as in the proof of 1.8, H has a unique maximal

subgroup, so $H = \langle x \rangle$ for some p-element x of G. Now $E_G(x) \leqslant G$ and x is a left Engel element in $E_G(x)$; thus $\langle x \rangle$ sn $E_G(x)$ and $E_G(x) \subseteq G_G(\langle x \rangle)$. Since, clearly, $S_G(\langle x \rangle) \subseteq E_G(x)$, we get $S_G(H) = E_G(x) \leqslant G$, a contradiction. Hence G is an sn (p)-group.

- 1.11 THEOREM. Let G be a group. The following are equivalent.
 - (i) G is an $\operatorname{sn}(p)$ -group for every p dividing |G|;
 - (ii) G is an sn-group;
 - (iii) G is an E-group;
 - (iv) G is an E_{p} -group for every p dividing |G|.

PROOF. (i) \Rightarrow (ii). Let G be an $\operatorname{sn}(p)$ -group for every p dividing |G| and suppose, by contradiction, that G is not an sn-group. Let $H \leqslant G$ be minimal such that $S_G(H)$ is not a subgroup. Then, Proposition 1.8 implies that H is perfect. Let $H \operatorname{sn} V \leqslant G$. Since the class of $\operatorname{sn}(p)$ -groups is S-closed, V is an $\operatorname{sn}(p)$ -group for every prime dividing its order, hence, by Lemma 1.6, H is normal in V. Thus:

$$\langle S_G(H) \rangle = \langle V \leqslant G; H \text{ sn } V \rangle = N_G(H) \subseteq S_G(H)$$
,

and so $S_c(H) = N_c(H)$ is a subgroup, a contradiction. Thus G is an sn-group.

- (ii) \Rightarrow (iii). This follows from Lemma 1.9.
- (iii) \Rightarrow (iv). This is obvious.
- (iv) \Rightarrow (i). This follows from Corollary 1.10.
- 1.12 COROLLARY. A group G is an sn-group if and only if every intersection of two Sylow subgroups of G is pronormal in G.

PROOF. Immediate from 1.5 and 1.11.

1.13 COROLLARY. Every chief factor of an sn-group is simple or abelian.

Proof. Follows from 1.11 and Lemma 1.6.

- 1.14 COROLLARY. (a) For any prime p, the class of $\operatorname{sn}(p)$ -groups is a formation.
 - (b) The class of sn-groups is a formation.

- Proof. (a) Since the class of $\operatorname{sn}(p)$ -groups is both S and Q-closed, it is sufficient to show that the direct product of two $\operatorname{sn}(p)$ -groups is again an $\operatorname{sn}(p)$ -group, and this is clearly true in view of the identification of $\operatorname{sn}(p)$ -groups with E_r -groups stated in 1.10.
- (b) Follows in the same manner from 1.11 and the fact that the class of sn-groups is both S and Q-closed.

For further reference we state here some elementary consequences of the results obtained in this section.

- 1.15 LEMMA. Let p be a prime: each of the following conditions imply that the group G is an $\operatorname{sn}(p)$ -group.
 - (a) The Sylow p-subgroups of G are disjoint from their conjugates.
 - (b) The Sylow p-subgroups of G are cyclic.
 - (c) $G/O_p(G)$ is an $\operatorname{sn}(p)$ -group.
- (d) G/Z(G) is an $\operatorname{sn}(p)$ -group. (observe that the last two conditions are also necessary for G to be an $\operatorname{sn}(p)$ -group).

PROOF. (a) and (b) follow immediately from Theorem 1.5.

- (c) This also follows from 1.5; in fact if R is an intersection of Sylow p-subgroups of G, then $R \geqslant O_p(G)$.
- (d) Let Z=Z(G), H a p-subgroup of G and $U, V\leqslant G$ such that H sn U and H sn V. Then ZH sn $\langle U,V\rangle Z$, because G/Z is an sn (p)-group; thus there exists $n\in \mathbb{N}$ such that $[\langle U,V\rangle, {}_nH]\leqslant ZH$. Then $[\langle U,V\rangle, {}_{n+1}H]\leqslant H$, whence H sn $\langle U,V\rangle$. This implies that $S_G(H)$ is a subgroup of G.

2. Simple sn-groups.

The main result to be proved in this section is the following.

2.1 THEOREM. A nonabelian simple group is an sn-group if and only if it is one of the following groups:

$$PSL(2,2^n), n \geqslant 2;$$
 $Sz(2^{2m+1}), m \geqslant 1.$

One way of proving this Theorem is to check the list of all simple groups. Instead, we have chosen to use a Theorem of Goldschmidt on strongly closed subgroups, which we will quote in due course. Before, we proceed to eliminate some groups.

2.2 Lemma. Let G be a group with no subgroups of index two and dihedral Sylow 2-subgroups of order at least 8. Then G is not an $\operatorname{sn}(2)$ -group.

PROOF. Let Q be a Sylow 2-subgroup of G; x, y two involutions such that $Q = \langle x, y \rangle$. Then (see [5; 7.7.3]) there exists $g \in G$ such that $x^g = y$ and so $y \in Q \cap Q^g = R$. If G were an $\operatorname{sn}(2)$ -group, then, by 1.4: $R \preceq \langle Q, g \rangle$. In particular, $x = y^{g^{-1}} \in R^{g^{-1}} = R$. Thus $R = \langle x, y \rangle = Q$ and $g \in N_G(Q)$. This implies that x and y are conjugate in Q, which is not the case. Hence G is not an $\operatorname{sn}(2)$ -group.

2.3 LEMMA. PSL(2,q) is an sn(2)-group if and only if $q=3,5,2^n$.

PROOF. $PSL(2,3) \cong A_4$ is an sn-group.

If $q=2^n$ then the Sylow 2-subgroups of PSL(2,q) are disjoint from their conjugates; thus, by 1.15, PSL(2,q) is an $\operatorname{sn}(2)$ -group. Also, $PSL(2,5)\cong PSL(2,4)$ is an $\operatorname{sn}(2)$ -group.

Conversely, let G = PSL(2, q), with $q = p^n > 3$, $p \neq 2$. We distinguish two cases.

- (a) Let $q \neq 3.5 \pmod{8}$. Then (see [5; 15.1.1]), the Sylow 2-subgroups of G are dihedral of order at least 8. Since G is simple, Lemma 2.2 implies that G is not an $\operatorname{sn}(2)$ -group.
- (b) Let $q \equiv 3, 5 \pmod 8$. In this case, the Sylow 2-subgroups of G are elementary abelian of order 4 and they coincide with their centralizer in G (see [5;15.1.1]). Let $Q \in \operatorname{Syl}_2(G)$ and suppose that G is an $\operatorname{sn}((2)$ -group. Assume that there exists $1 \neq x \in Q$ such that $C_G(x) > Q$ and let $g \in C_G(x) \setminus Q$. Then $x \in Q \cap Q^g = R$. If R = Q, then $g \in N_G(Q)$. But $N_G(Q) \cong A_4$ and so $g \in Q$, a contradiction. Hence $R = \langle x \rangle$; by 1.4 this implies $\langle x \rangle \preceq N_G(Q)$, which is not possible. Thus, for avery $1 \neq x \in Q$, $C_G(x) = Q$. By a Theorem of Suzuki (see [5; 9.3.2]), G is a Zassenhaus group of degree |Q| + 1 = 5 and so $G \simeq PSL(2, 5)$. This completes the proof.

DEFINITION. Let Q be a subgroup of $P \in \operatorname{Syl}_p(G)$, G a group. Then Q is said to be *strongly closed* in P (with respect to G) if, for every $x \in Q$ and $g \in G$, $x^g \in P$ implies $x^g \in Q$.

The Theorem of Goldschmidt that we are going to use is the following (see [6; Theorem 4. 128]).

THEOREM (Goldschmidt). Let G be a simple group; if a Sylow 2-subgroup S of G contains a non trivial elementary abelian subgroup which is strongly closed in S with respect to G, then G is one of the following groups.

- (a) $PSL(2, 2^n)$, $PSU(3, 2^{2n})$, n > 1; $Sz(2^{2m+1})$, $m \ge 1$.
- (b) $PSL(2, q), q \equiv 3, 5 \pmod{8}$.
- (c) The first Janko group J_1 or a Ree group ${}^2G_2(3^n)$, n odd, n > 1.
- 2.4 Proposition. Let G be a simple non abelian group; then G is an $\operatorname{sn}(2)$ -group if and only if G is one of the following groups.

$$PSL(2, 2^n)$$
, $PSU(3, 2^{2n})$, $Sz(2^{2m+1})$; $n > 1$, $m \ge 1$.

PROOF. Let G be a simple non abelian $\operatorname{sn}(2)$ -group, and let S be a Sylow 2-subgroup of G. Take $R\leqslant S$ to be a non trivial intersection of Sylow 2-subgroups of G of minimal possible order (thus R=S if the Sylow 2-subgroups of G are pairwise disjoint). Let $A=\Omega_1(Z(R))$; then G is a nontrivial elementary abelian characteristic subgroup of G. We show that G is strongly closed in G. Let G is G and suppose G is G. Then G is strongly closed in G. Now, by our choice of G, we get G is G in G is proposition 1.4, G normalizes G is strongly closed in G is strongly closed in G with respect to G.

Therefore, G is one of the groups listed in Goldschmidt's Theorem. Now, groups in (a) are indeed $\operatorname{sn}(2)$ -groups, because in each of them the Sylow 2-subgroups are disjoint from their conjugates. Groups in (b) are not $\operatorname{sn}(2)$ -groups by Lemma 2.2, except when q=5, but then $G \cong PSL(2,4)$.

The Janko group J_1 is not an $\operatorname{sn}(2)$ -group because, for instance, it has a subgroup isomorphic to PSL(2,11). Finally, groups of Ree type ${}^2G_2(3^n)$ are not $\operatorname{sn}(2)$ -groups: in fact ${}^2G_2(3^n)$ contains a subgroup isomorphic to $PSL(2,3^n)$, n>1.

PROOF OF THEOREM 2.1. First, groups of type $PSL(2, 2^n)$ and $Sz(2^{2m+1})$ are sn-groups. In fact, in both cases, the Sylow 2-subgroups are disjoint from conjugates and the Sylow p-subgroups, p odd, are cyclic. By 1.15 these groups are sn-groups.

Conversely, if G is a nonabelian simple sn-group, it is, in particular, an sn(2)-group, hence one of those listed in Proposition 2.4. Thus, to complete the proof of the Theorem, we have to show that groups of type $PSU(3, q^2)$, $q = 2^n$, n > 1, are not sn-groups.

Now, by 1.15 (d) and 1.11, $PSU(3, q^2)$ is an sn-group if and only if $SU(3, q^2)$ is an sn-group; we deal with this latter group, and thus put $G = SU(3, q^2)$ ($q = 2^n$, n > 1). Let also $K = GF(q^2)$ be the field with q^2 elements.

We have $|G|=q^3(q^3+1)(q^2-1)$. Let p be an (odd) prime dividing q+1 and let p^r be the highest power of p which divides q+1. We observe that, as n>1, we may always choose p in such a way that $p^r>3$. The order of a Sylow p-subgroup of G is now p^{2r} if $p\neq 3$, and p^{2r+1} if p=3. Since p^r divides q^2-1 , the field K contains a primitive p^r -th root of unity, which we denote by u. Let also $v=u^{(p^r-1)/2}$ and observe that, since $p^r>3$, $u\neq v$. In $SL(3,q^2)$ we take the matrices:

$$a = \begin{pmatrix} u & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & v \end{pmatrix}, \qquad b = \begin{pmatrix} v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & u \end{pmatrix}, \qquad \pi = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Then $|a| = |b| = p^r$, $|\pi| = 3$, [a, b] = 1 and $P = \langle a, b \rangle$ is an abelian group of order p^{2r} which is normalized by π . Moreover $a, b, \pi \in SU(3, q^2)$ (obviously, we are assuming that a base of the vector space over K has been chosen in such a way the matrix of the Hermitian product is the identity).

Thus, if $p \neq 3$, P is a Sylow p-subgroup of G; if p = 3, $Q = \langle P, \pi \rangle$ is a Sylow p-subgroup of G. Now take $z \in K$ a root of the polynomial $x^2 + x + 1$ over GF(2); then $z \neq 0, 1$ and, since $q \geqslant 4$, $z^q = z$. Thus the matrix

$$h = egin{pmatrix} 1 & 0 & 0 \ 0 & z & z+1 \ 0 & z+1 & z \end{pmatrix}$$

is a unitary matrix, so $h \in G$. Moreover, |h| = 2 and $a^h = a$. Let $p \neq 3$, then one easily checks that

$$P^h \cap P = \langle a \rangle$$
.

If G were an sn-group, $\langle a \rangle$ should be normalized by $N_G(P)$; in particular, π should normalize $\langle a \rangle$, which is not the case. Hence G is not an sn-group.

If p=3, then $Q^h\cap Q=Z\langle a\rangle$, where Z is the centre of G, which in this case has order 3. Again $Z\langle a\rangle$ is not normalized by $\pi\in N_G(Q)$, and so G is not an sn-group.

The proof is now complete.

We observed in Corollary 1.13 that a nonabelian chief factor of an sn-group is simple. We end this section by describing the automorphisms group induced by an sn-group on its nonabelian (simple) chief factors. By Theorem 2.1 such factors are isomorphic to groups of type $PSL(2, 2^n)$ or $Sz(2^{2m+1})$. It is well known that the group of automorphisms of any of these groups is the semidirect product of the group of inner automorphisms by a cyclic group of those automorphisms induced by the automorphisms of the underlying field.

- 2.5 Proposition. Let U/V be a nonabelian (simple) chief factor of an sn-group G. Then the group of outer automorphisms induced by G on U/V is cyclic of order coprime to the order of U/V, or one of the following two exceptions occurs:
- (a) $U/V \cong PSL(2, 2^3)$ and $A_G(U/V)$ is isomorphic to the semi-direct product of U/V by a (field) automorphism of order 3.
- (b) $U/V \cong Sz(2^5)$ and $A_G(U/V)$ is isomorphic to the semidirect product of U/V by a (field) automorphism of order 5.

For the proof we need the following simple observation.

- 2.6 LEMMA. Let p be an odd prime;
 - (a) if p divides $|PSL(2, 2^p)|$, then p = 3;
 - (b) if p divides $|Sz(2^p)|$, then p=5.

PROOF. (a) If p is an odd prime dividing $|PSL(2, 2^p)| = 2^p(2^{2p} - 1)$, then p divides $2^{2p} - 1$. Now: $3^p = (2^2 - 1)^p \equiv 2^{2p} - 1 \pmod{p}$. Thus $p|3^p$ and so p = 3.

(b) If p is an odd prime dividing $|Sz(2^p)| = 2^{2p}(2^{2p} + 1)(2^p - 1)$, then $p|(2^{2p} + 1)(2^p - 1)$ and so, a fortior, $p|2^{4p} - 1$. Now: $15^p = (2^4 - 1)^p \equiv 2^{4p} - 1 \pmod{p}$. Thus p|15. Since 3 does not divide the order of $Sz(2^p)$, we have p = 5.

PROOF OF PROPOSITION 2.5. By the Q-closure of the class of sn-groups, we may assume V=1; also, since $C_G(U)\cap U=1$, we may assume $C_G(U)=1$ and so view G as a subgroup of $\operatorname{Aut}(U)$. Thus U is identified with $\operatorname{Inn}(U)$, and $U\cong PSL(2,2^n)$ or $U\cong Sz(2^{2m+1})$. Then G is a semidirect product $U\times |\langle x\rangle$, where x is an automorphism of U induced by an automorphism of the underlying field K (thus $K=GF(2^n)$ or $K=GF(2^{2m+1})$). Without loss of generality, we may also assume that |x|=p, p a prime number. Now, if $U\cong PSL(2,2^n)$, p|n (and, if $U\cong Sz(2^{2m+1})$, p|2m+1). We write n=ap (respectively, 2m+1=ap). Then we may take x as the automorphism induced on U by the field automorphism mapping every $u\in K$ to u^{2^n} . Let $C=C_U(x)$; then $C\cong PSL(2,2^n)$ or, respectively, $C\cong Sz(2^n)$ (here we consider also Sz(2), which is soluble of order 20). Suppose that p divides the order of U.

Let $P \in \operatorname{Syl}_p(G)$ such that $x \in P$, and $D = U \cap P$; then $D \subseteq P$ and P = DT where $T = \langle x \rangle$. Let $h \in C$ and suppose that $D^h \neq D$; thus, since in U the Sylow p-subgroups are disjoint from their conjugates (this is indeed true for every prime dividing |U|), $D^h \cap D = 1$. Hence

$$P \cap P^h \cap U = (P \cap U)^h \cap P \cap U = D^h \cap D = 1$$
.

Now, $T \leqslant P \cap P^h$, because $x^h = x$, so $T = P \cap P^h$.

If G is an sn-group, then $T \subseteq N_o(P)$. In particular, $[D, T] \leqslant \langle D \cap T = 1$ and thus $D \leqslant C$, which is not the case, because $D \in \operatorname{Syl}_p(U)$ while p divides |U:C|. Thus, in order to have an sn-group, C must normalize D. But in U the normalizers of Sylow subgroups are soluble, so this forces $C \cong PSL(2,2)$ or, respectively, $C \cong Sz(2)$. Hence a = 1 and n = p (or 2m + 1 = p).

If p is odd, by Lemma 2.6, we have therefore $U \cong PSL(2, 2^s)$ and p = 3, or $U \cong Sz(2^s)$ and p = 5.

If p=2, then $U \cong PSL(2,4) \cong A_5$, and $G \cong S_5$ is not an sn-group (in this case, in the notation used above, $C \cong S_3$ does not normalize any subgroup of U).

Conversely, let G be a split extension of a group U of type $PSL(2, 2^n)$ or $Sz(2^{2m+1})$ by a group of automorphisms induced by field automorphisms, such that (|U|, |G:U|) = 1. Then G is an sn-group because its Sylow p-subgroups are disjoint from conjugates if p||U|, and cyclic if p||G:U|.

Finally, let G be one of the groups in (a) or (b) of our statement;

then one checks that the Sylow 3-subgroups of the group in (a) and the Sylow 5-subgroups of the group in (b) are, in fact, disjoint from their conjugates, and so the two groups are sn-groups.

3. Automorphism groups induced on chief factors.

In this section we study the structure of sn-groups by looking at the automorphism groups induced by conjugation on each chief factor. By 1.13, the chief factors of an sn-group are simple or abelian. The case of a simple nonabelian chief factor has already been treated in Proposition 2.5; thus, from now on, we deal with abelian chief factors. We remid that, if U/V is a chief factor of a group G, we put $A_G(U/V) = G/C_G(U/V)$.

3.1 LEMMA. Let U/V be an abelian chief factor of an $\operatorname{sn}(p)$ -group G, and let $A = A_G(U/V)$. Then $O_p(A)$ acts as a group of fixed point free (f, p, f_*) automorphisms on U/V.

PROOF. In view of the Q-closure of the class of $\operatorname{sn}(p)$ -groups, we may assume V=1. Hence U is a minimal normal subgroup of G and it is an elementary abelian q-group, for some prime q. If q=p, it is well known that $O_p(A)=1$. Let $p\neq q$ and assume, by contradiction, that there exists $1\neq \overline{x}\in O_p(A)$ such that $K=C_v(\overline{x})\neq 1$. If $C=C_G(U)$, let $\overline{x}=Cx$ with $x\in G\setminus C$; write $L=\langle C,x\rangle$ and take a Sylow p-subgroup p of L. Then [K,P]=1. But $S_G(P)$ is a subgroup of G and G are G and G are G and G and G are G and G and G and G are G and G are G and G are G and G and G are G and G are G and G are G and G and G are G are G and G are G are G and G are G and G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G and G are G are G are G and G are G are G and G are G and G are G are G are G and G are G are G are G and G are G are G are G are G are G are G and G are G and G are G are G are G are G and G are G are G a

We denote by l(G) the Fitting length of the group G.

- 3.2 COROLLARY. Let G be an sn-group. Then:
- (a) for every abelian chief factor U/V of G, $F(A_G(U/V))$ acts as a group of f.p.f. automorphisms on U/V;
- (b) if G is soluble, then $l(G) \leq 4$ and if, further, S_4 is not involved in G, $l(G) \leq 3$.

PROOF. (a) This follows at once from Lemma 3.1.

(b) It is a consequence of (a) that, for every chief factor U/V of a soluble sn-group G, $F(A_G(U/V))$ is either cyclic or the direct product of a cyclic group of odd order and a generalized quaternion group. In particular, the chief factors of $A_G(U/V)$ are cyclic or of order 4, and so the automorphism group induced by $A_G(U/V)$ on each of its chief factors is abelian or it is isomorphic to S_3 (and it is always abelian if S_4 is not involved in G, see [4; Lemma 6]). Thus $A_G(U/V)'' \leqslant F(A_G(U/V))$ and $A_G(U/V)' \leqslant F(A_G(U/V))$ if S_4 is not involved in $A_G(U/V)$. Hence $l(A_G(U/V)) \leqslant 3$ and $l(A_G(U/V)) \leqslant 2$ if S_4 is not involved in $A_G(U/V)$.

Since $F(G) = \bigcap C_0(U/V)$, U/V the chief factors of G, we get $l(G) \leq 4$ and $l(G) \leq 3$ if S_4 is not involved in G.

REMARK. 4 is the best possible bound for the Fitting length of a soluble sn-group. Indeed, we shall see that every soluble Frobenius group is an sn-group; and there exist soluble Frobenius groups of Fitting length 4.

DEFINITION. (a) Let G be a group. Following Robinson [9], we say that G satisfies condition C_p , p a prime, if every subgroup of a Sylow p-subgroup P of G is normal in $N_G(P)$. We quote from [9] the following results.

- 1) (J. Rose). A group G satisfies C_p if and only if every p-subgroup of G is pronormal in G.
- 2) (D. Robinson). A group G is a soluble **T**-group if and only if it satisfies C_p for every prime (dividing |G|).
 - (b) We say that the group G satisfies condition C_2^* if
- (i) every Sylow 2-subgroup P of G is either abelian or $P=Q\times A$, where Q is a generalized quaternion group and A is elementary abelian; and
- (ii) $\Omega_1(P) \leqslant Z(N_G(P))$ (we observe that, if P is abelian, then (ii) implies $P \leqslant Z(N_G(P))$).

It follows from Proposition 1.4 that a group satisfying C_p , for a prime p, is an $\operatorname{sn}(p)$ -group. Indeed we can say a little more.

3.3 LEMMA. Let p, q be prime numbers and let M be a normal q-subgroup of the group G; $C = C_G(M)$. If G/M is an $\operatorname{sn}(p)$ -group and G/C satisfies condition C_p , then G is an $\operatorname{sn}(p)$ -group.

PROOF. If p = q, then $M \leq O_p(G)$ and so, by the Q-closure of the class of $\operatorname{sn}(p)$ -groups, $G/O_p(G)$ is an $\operatorname{sn}(p)$ -group. By 1.15, G is an $\operatorname{sn}(p)$ -group.

Let $p \neq q$; we prove that $P \cap P^g \leq N_g(P)$ for every $P \in \operatorname{Syl}_p(G)$ and $g \in G$; by Proposition 1.4, this implies that G is an $\operatorname{sn}(p)$ -group.

Put $N = N_c(P)$ and $R = P \cap P^g$; we have that PM/M and P^gM/M are Sylow p-subgroups of G/M and $NM/M = N_{c/M}(PM/M)$. Thus, since G/M is an sn(p)-group:

(1)
$$L = PM \cap P^gM \quad \text{is normalized by } N.$$

Now, $(L \cap P)M = L \cap PM = L$ and so $L \cap P$ and, analogously, $L \cap P^g$ is a Sylow *p*-subgroup of L; whence there exists $u \in M$ such that $L \cap P^g = (L \cap P)^u = L \cap P^u$. Thus:

$$(2) R = P \cap P^{g} = L \cap P \cap P^{g} = L \cap P \cap P^{u}.$$

Set $R_0 = P \cap P^u$. Now, G/C satisfies condition C_p ; thus, since $PC/C \in \operatorname{Syl}_p(G/C)$ and

$$R_0\,C/C\!\leqslant\!PC/C\!\leqslant\!NC/C\!\leqslant\!N_{G/C}(PC/C)$$
 ,

we have: $R_0 C/C \leq NC/C$. Hence $R_0 C$ is normalized by N, and, consequently, $P \cap R_0 C = R_0 (P \cap C) \leq N$. But, since [C, u] = 1, $P^u \cap C = (P \cap C)^u = P \cap C$. Thus $P \cap C \leq P \cap P^u = R_0$, yielding:

$$R_0 = R_0(P \cap C) \leq N$$
.

This, together with (1) and (2), shows that N normalizes $R = P \cap P^g$, concluding the proof.

We observe that condition C_2^* alone is not enough to ensure that a group satisfying it is an $\operatorname{sn}(2)$ -group. Let H = SL(2,3) and M be an odd order elementary abelian group on which H acts irreducibly and in such a way $C_H(M) = Z(H)$. Take G = MH the semidirect product; then G satisfies C_2^* but G is not an $\operatorname{sn}(2)$ -group (the reason for that will be clear soon).

In the next Lemma we isolate an argument which will be frequently used in the sequel.

- 3.4 LEMMA Let M be an abelian normal subgroup of the sn-group G, and write $\overline{G} = G/C_G(M)$. Then the following condition (*) is satisfied:
- (*) For every prime p, with (p, |M|) = 1, and every $\overline{H} \leqslant \overline{P} \in \operatorname{Syl}_p(\overline{G})$, $C_M(\overline{H})$ is invariant for $N_{\overline{G}}(\overline{P})$ (see Peng [8; Lemma 4]).

PROOF. Let $\overline{N}=N_{\overline{o}}(\overline{P})$ and let H,N be the inverse images of $\overline{H},\overline{N}$ respectively, in the canonical homomorphism $G\to \overline{G}$. Then H is subnormal in N. Since N is an sn-group, by Lemma 1.2 we have: $N=HS_N(Q)$, where $Q\in \mathrm{Syl}_p(H)$. Now, since (p,|M|)=1: $S_N(Q)\cap M=C_M(Q)=C_M(H)$, whence $C_M(H)$ is normal in $S_N(Q)$, yielding: $C_M(Q) \preceq HS_N(Q)=N$, as we wanted.

Let G be a group; we denote by $F^*(G)$ the generalized Fitting subgroup of G (see [3; §13]). Then [3; 13.14]: $F^*(G) = E(G)F(G)$, where F(G) is the Fitting subgroup of G, and E(G) is a perfect characteristic subgroup of G such that E(G)/Z(E(G)) is the direct product of simple non abelian groups. Further, [E(G), F(G)] = 1 and $E(G) \cap F(G) = Z(E(G))$.

We now consider the groups $A_{\sigma}(U/V)$, where U/V is an abelian chief factor of an *sn*-group G. In view of Lemma 3.4, and in order to simplify notations, we state here the following common hypothesis for the next results:

(I) A is an sn-group acting faithfully and irreducibly on a \mathbb{F}_qA module M (q a prime), in such a way condition (*) is satisfied, for
every subgroup K of A acting on M viewed as a \mathbb{F}_qK -module.

Now, Lemma 3.4 ensures that hypothesis (I) is satisfied when M = U/V is an abelian chief factor of an sn-group G, and $A = A_G(U/V)$. Also Lemma 3.1 follows from hypothesis (I); in fact if $H \leq O_p(A)$, then H is contained in every Sylow p-subgroup of A and so hypothesis (I) yields $C_M(H)$ invariant by $(N_A(P))^A = A$ (where $P \in \operatorname{Syl}_p(A)$); thus $C_M(H) = 1$. We shall refer to this fact as to Lemma 3.1.

The next Lemma may be compared to Corollary 3.2.

- 3.5 LEMMA. Assume hypothesis (I). Then:
- (a) For every prime $p, p \neq q$, the Sylow p-subgroups of $F^*(A)$ are cyclic or generalized quaternion.
- (b) Let $\overline{A}=A/F^*(A);$ then $|\overline{A}'| \leqslant 3$ and, if A is not soluble, $\overline{A}'=1.$

PROOF. (a) If E(A) = 1, then $F^*(A) = F(A)$ acts, by Lemma 3.1, as a group of f.p.f. automorphisms on M; thus the result follows.

Hence assume $E(A) \neq 1$ and let Z = Z(E(A)). Since A is an sngroup, E(A)/Z is the direct product of groups of type PSL(2,r) or Sz(r), where r is a power of 2. Since the Schur multiplicator of such groups is elementary abelian of order 1, 2 or 4 (this last case occurring only for Sz(8)), we have that Z is an elementary abelian 2-group; as $Z \leq F(A)$, this yields $|Z| \leq 2$.

Let p be odd, and assume, by contradiction, that the Sylow p-subgroups of $F^*(A)$ are not cyclic; let $P \in \text{Syl}_n(F^*(A))$. Then there exists a non trivial component S of E(A) (see [3; X.13.17]) such that $D = P \cap S \neq 1$. D is cyclic, because such are the Sylow p-subgroups (p odd) of the groups of type $PSL(2, 2^n)$ and $Sz(2^{m+1})$. Further, since P is not cyclic, there exists an element x of order p in P, such that $S \cap \langle x \rangle = [S, x] = 1$ (here we use the fact that Z is a 2-group and, in particular, $D \cap F(G) = 1$). Let y be an element of order p in D and put $B = \langle x, y \rangle$. Then B is an elementary abelian p-group acting faithfully on M. Let $M_0 = C_M(B)$ and $\overline{M} = M/M_0$; thus \overline{M} is non trivial and, since $p \neq q$: $\overline{M} = \langle C_{\overline{M}}(a); 1 \neq a \in B \rangle$ (see [3; X.1.9]). Let $N = N_s(D)$; now, N normalizes B (since it fixes $\langle y \rangle$ and centralizes $\langle x \rangle$) and so it acts on \overline{M} . Hypothesis (I) implies that, for every $1 \neq a \in B$, $C_{\overline{M}}(a)$ is N-invariant and thus $\langle a \rangle^N$ acts trivially on $C_{\overline{M}}(a)$. Now, $\langle a \rangle^{N} = \langle a \rangle$ or $\langle a \rangle^{N} = B$; if the second case occurs, $C_{\overline{u}}^{a}(a)=1$. Hence, if $1 \neq a \in B$ and $C_{\overline{u}}(a) \neq 1$, then $\langle a \rangle \leq N$. In this case, suppose $\langle a \rangle \neq \langle x \rangle$ and $\langle a \rangle \neq \langle y \rangle$; since N centralizes $B/\langle y \rangle$, we have that N centralizes $\langle a \rangle$ and so N centralizes $\langle a, x \rangle = B$, which is not possible because N does not centralize the cyclic group D. Thus, if $1 \neq a \in B$ and $C_{\overline{u}}(a) \neq 1$, then $a \in \langle u \rangle \cup \langle y \rangle$; hence:

$$\overline{M} = \langle C_{\overline{M}}(x), C_{\overline{M}}(y) \rangle$$
.

Therefore, if $M_1 = C_M(x)$, M_1 is N-invariant and y centralizes M/M_1 . Since [S, x] = 1, we may apply the same argument for every conjugate of D in S. M_1 is S-invariant and $\langle y \rangle^s$ centralizes M/M_1 . This implies $[M, \langle y \rangle^s] \neq M$. But $\langle y \rangle^s = S$ is normal in A, being a perfect subnormal subgroup. This contradicts the fact that M is a faithful irreducible module for A. Thus, if p is odd, the Sylow p-subgroups of $F^*(A)$ are cyclic.

Let now p=2, then $q\neq 2$. Let $P\in \mathrm{Syl}_2\left(F^*(A)\right)$; we show that P acts as a group of f.p.f. automorphisms on M. Let $Q\in \mathrm{Syl}_2\left(A\right)$ such

that $P \leqslant Q$ and let $L = N_A(Q)$. Take $x \in P$ of order 2 such that $|C_M(x)|$ is maximal. Write $M_0 = C_M(x)$ and $K = \langle x \rangle^L$; then $K \leqslant P = Q \cap F^*(A)$ and, since M_0 is L-invariant, $K \leqslant C_L(M_0)$. If $\langle x \rangle^L \neq \langle x \rangle$, then $\langle x \rangle^L$ is not cyclic and there exists $1 \neq y \in \langle x \rangle^L$ such that $M_1/M_0 = C_{M/M_0}(y) \neq 1$. Now, $[M_1, y, y] \leqslant [M_0, K] = 1$ and, since $q \neq 2$, $[M_1, y] = 1$. Our choice of x gives $M_1 = M_0$, a contradiction. Hence K is cyclic, that is $\langle x \rangle$ is normal in L.

Let now $g \in A$ such that $x^g \in Q$; then $x^g \in P = Q \cap F^*(A)$ and $|C_M(x^g)| = |C_M(x)|$. Thus, again, $\langle x^g \rangle \preceq L$. By a classical Theorem of Burnside, this implies $\langle x \rangle = \langle x^g \rangle$ and, since |x| = 2, $x = x^g$. Therefore, x is an isolated involution of Q. By Glauberman Z^* -Theorem (see [6; Th. 4.95]):

$$x \in Z^*(A)$$
, where $Z^*(A)/O_{2'}(A) = Z(A/O_{2'}(A))$.

Hence, for every $h \in A$:

$$[h, x] \in O_{2'}(A) \cap F^*(A) = O_{2'}(F(A));$$

since F(A) is the hypercentre of $F^*(A)$, we conclude that x belongs to F(A) and so, by Lemma 3.1, $C_M(x) = 1$. This shows that the Sylow 2-subgroups of $F^*(A)$ are cyclic or generalized quaternion, concluding the proof of point (a).

(b) Since A is an sn-group, by Proposition 2.5, we have that A' induces a group of inner automorphisms on every non abelian chief factor of A. Now, if A is not soluble, $E(A) \neq 1$, and so, by point (a), F(A) is cyclic (in fact, this follows from 3.1 if q=2, and the fact that (a) implies that any Sylow 2-subgroup of $F^*(A)$ is a Sylow 2-subgroup of E(A) if $E(A) \neq 1$ and $q \neq 2$; we recall that $E(A) \cap F(A) = Z(E(A))$. Thus A' induces a group of inner automorphisms on every chief factor of A, and so $A' \leq F^*(A)$.

If A is soluble, then $F^*(A) = F(A)$ and there is at most one non cyclic composition factor U/V of A, between 1 and F(A) in every chief series of A through F(A) (this follows from Lemma 3.1). In this case |U/V| = 4 and, if $C = C_A(U/V)$, A/C is isomorphic to a subgroup of $\operatorname{Aut}(U/V) \cong S_3$. Now, $A' \cap C$ centralizes every chief factors of A and so $A' \cap C \leqslant F(A)$, proving our assertion: $|\overline{A}'| \leqslant 3$.

We denote by $l^*(G)$ the generalized Fitting length of the group G.

3.6 COROLLARY. Let G be an sn-group. Then $l^*(G) \leq 4$. More precisely, if F = F(G) and $H/F = F^*(G/F)$, then G/H is metabelian.

PROOF. Let $F^* = F^*(G)$. By definition, F^* is the set of those elements of G which act, by conjugation, as an inner automorphism on every chief factor of G. By 2.5 and 3.5 (together with Lemma 3.4), the chief factors of G/F^* are simple or of order 4. Hence, the same is true for G/F, because all chief factors of G lying between F and F^* are non abelian and thus simple. So, if $H/F = F^*(G/F)$, G/H is metabelian.

3.7 Lemma. Assume hypothesis (I) and let p be a prime $p \neq q$. If p is odd, then A satisfies C_p ; if p = 2, then A satisfies C_2^* .

PROOF. (A) p odd. Let $P \in \operatorname{Syl}_p(A)$ and $N = N_A(P)$. Firstly, we observe that P is abelian. In fact, as $p \neq q$, M is completely reducible as a $\mathbb{F}_q P$ -module. Now, hypothesis (I) implies, via Lemma 3.1, that $P/C_P(U)$ is cyclic, for every P-component U of M. Since P is faithful on M, it follows that P is abelian.

Now, in order to prove that A satisfies C_p , it is enough to show that N fixes by conjugation every cyclic subgroup of $B = \Omega_1(P)$.

Let $D = P \cap F^*(A)$; then, by 3.5, D is cyclic.

Let $1 \neq x \in B$; thus |x| = p. If $x \in D$ then $\langle x \rangle$ car $D \subseteq N$, and so $\langle x \rangle \triangleleft N$. Hence assume $x \notin D$, so $\langle x \rangle \cap D = 1$. Let $D \neq 1$.

If $D \leqslant S$ for some component S of E(A), then, since P is abelian, x centralizes D and it follows from 2.5 that x induces on S an inner automorphism. Without loss of generality, we may assume that x centralizes S; now, the argument used in the proof of 3.5(a) leads to a contradiction.

Thus $D \cap E(A) = 1$ and so $D \leqslant F(A)$. Suppose that $p \neq 3$ or A is non soluble. By Lemma 3.5(b), we have in this case $[P, N] \leqslant P \cap F^*(A) = D$ and so $P/D \leqslant Z(N/D)$. In particular, $\langle D, x \rangle \preceq N$. Take $z \in D$ of order p, and set $L = \langle x, z \rangle$. Then L is elementary abelian of order p^2 , whence

$$M = \langle C_M(a); 1 \neq a \in L \rangle$$
.

Since z acts f.p.f. on M, there exist $u, v \in L \setminus \langle z \rangle$ such that $\langle u \rangle \neq \langle v \rangle$ and $C_M(u) \neq 1 \neq C_M(v)$. Now, hypothesis (I) implies $C_M(u) = C_M(\langle u \rangle^N)$, and the same for v. But $L \subseteq N$, because $L = \Omega_1(\langle x, D \rangle) \subseteq N$. Hence $\langle u \rangle^N \leqslant L$ and $\langle v \rangle^N \leqslant L$. Since $z \in L$ acts f.p.f. on M this yields $\langle u \rangle \subseteq N$ and $\langle v \rangle \subseteq N$. Thus, N normalizes the non trivial pairwise disjoint subgroups $\langle z \rangle$, $\langle u \rangle$, $\langle v \rangle$ of L. Since $|L| = p^2$, it follows that N acts as a group of powers on L; in particular $\langle x \rangle$ is normalized by N, as

we wanted. Observe that if D=1, then, as in this case $P \leq Z(N)$, condition C_n follows trivially.

Now assume that A is soluble and p=3. Then, since $x \notin F(A)==F^*(A)$, x does not centralize some $O_r(A)$, $r\neq p$. Suppose that x does not centralize $K=O_r(A)$ for some $r\neq 2$, and let $Q=\Omega_1(K)$; since Q is cyclic, $\langle Q,x\rangle$ is a Frobenius group acting faithfully on M (observe that we certainly have $r\neq q$), and so $C_M(x)\neq 1$ (see [4; 3.4.4]). Now, $C_M(x)=C_M(T)$, where $T=\langle x\rangle^N\leqslant B$. If $T\neq\langle x\rangle$, then $C_r(Q)\neq 1$, because $T/C_r(Q)$ is cyclic. If $M_0=C_M(C_r(Q))$, $M/M_0\neq 1$ and, by the same argument used before $C_{M/M_0}(x)\neq 1$. But $C_{M/M_0}(x)=C_M(x)M_0/M_0$, contradicting the fact that $C_M(x)=C_M(T)\leqslant C_M(C_r(Q))=M_0$. Thus $T=\langle x\rangle$ and so $\langle x\rangle$ is normalized by N.

Finally, suppose that the only r-component, $r \neq 3$, of F(A) not centralized by x is $R = O_2(A)$. This implies that R is a quaternion group of order 8. Also, we have that $\langle F(A), x \rangle$ is normal in A (this is because x centralizes $O_{2'}(F(A))$, so $\langle F(A), x \rangle / F(A) = (A/F(A))'$, by 3.5). Now, arguing as in the case $p \neq 3$, we conclude that $\langle x \rangle$ is also normalised by N. This completes the proof for p odd.

(B) p=2. Again, let $P \in \operatorname{Syl}_2(A)$ and set $N=N_A^{\mathfrak{p}}(P)$, $D=P \cap F^*(A)$.

(1)
$$\Omega_1(P) \leqslant Z(N)$$
. Write $B = \Omega_1(P)$.

Let U be an $\mathbb{F}_q N$ -chief factor of M. Then hypothesis (I) and lemma 3.1 imply that $B/C_B(U)$ is cyclic or generalized quaternion. Since B is generated by elements of order 2, we get $|B/C_B(U)| \leq 2$ and so $[B, N] \leq C_B(U)$. This holds for every N-chief factor of M. Since $q \neq 2$ and B acts faithfully on M, we have [B, N] = 1.

If P is abelian (1) implies that condition C_2 is satisfied. Hence assume, for the fest of the proof, that P is not abelian.

(2) $P/D \leqslant Z(N/D)$. In fact, Lemma 3.5(b) implies, in particular, that the derived subgroup of $NF^*(A)/F^*(A)$ has order 1 or 3. This entails: $[P, N] \leqslant P \cap F^*(A) = D$, thus giving (2).

If D=1, we are done. Thus assume, from now on, $D\neq 1$.

(3) Let $g \in P$, |g| = 4; then $g^2 \in D$.

Suppose, by contradiction $g^2 \notin D$. Then $\langle g \rangle \cap D = 1$ and, if $\langle z \rangle = \Omega_1(D)$, $\langle g \rangle \cap \langle z \rangle = 1$. Let $a = g^2$; $\langle z, a \rangle$ is an elementary abelian group of order 4, and so $M = \langle C_M(x); 1 \neq x \in \langle z, a \rangle \rangle$. Because z

does not fix any element of M, it follows that $C_M(a) \neq 1$. Since $a \in Z(P)$, there exists a non trivial irreducible $\mathbb{F}_a P$ -submodule V of M, such that a acts trivially on V. Let $C^* = C_P(V)$ and $R = C^* \cap \langle z, g \rangle$. Then $R = \langle g \rangle$ or $R = \langle zg \rangle$, because $a \in R$, $\langle z, g \rangle / R$ is cyclic by Lemma 3.1, and $z \notin R$. Further, $C^* \preceq P$, $C^* \cap D = 1$ and so, by (2): $[C^*, P] \leqslant P' \cap C^* \leqslant D \cap C^* = 1$, whence $C^* \leqslant Z(P)$. Thus, $g \in Z(P)$ or $zg \in Z(P)$; since $z \in Z(P)$, we get $g \in Z(P)$.

Let now U be an irreducible \mathbb{F}_qP -submodule of M such that $a \notin C_p(U)$ (this certainly exists, because M is faithful and completely reducible as an \mathbb{F}_qP -module). Then also we have $C_P(U) \cap D = 1$ and, by 3.1, $P/C_P(U)$ is cyclic or generalized quaternion. Now, $gC_P(U)$ is a central element of order 4 in $P/C_P(U)$ and so $P/C_P(U)$ is cyclic. But then, $P' \leqslant D \cap C_P(U) = 1$, which is not the case. This contradiction shows that $a = q^2 \in D$.

(4) Conclusion. Let K be a subgroup of P maximal in order to contain D and such that $\Omega_1(K) = \Omega_1(D) = \langle z \rangle$. Then, by (2), $K \leq N$. Let W be a non trivial irreducible $\mathbb{F}_q P$ -submodule of M and let $C = C_P(W)$. Then $C \cap D = 1$ and so $C \cap K = 1$; by (3), C is elementary abelian. Moreover, since P is not abelian and $P' \leq D$, P/C is generalized quaternion. The proof is completed by showing that P = KC. Suppose, by contradiction, that $KC \neq P$. Since P/C is generated by elements of order 4, there exists $y \in P$ such that |yC| = 4 and $y \notin KC$. Now, $y^4 \in C$ and, since $\langle z, C \rangle / C = \Omega_1(P/C)$, $y^2 \in KC$. Hence $y^4 \in K \cap C = 1$ and so, by (3), $y^2 = z \in D$. Consider now $L = \langle K, y \rangle$. Since $K \leq P$ and $y \notin K$, |L:K| = 2 and, by our choice of K, $\Omega_1(L) > \Omega_1(K) = \langle z \rangle$. Thus $L = K\Omega_1(L) \leq K\Omega_1(P)$ and, consequently, $y \in K\Omega_1(P) = K\langle z, C \rangle = KC$, contradicting the choice of y. Thus P = KC and the Lemma is proved.

Before stating the next Theorem, we observe the following trivial property of groups satisfying C_2^* .

3.8 LEMMA. Let G be a group satisfying condition C_2^* . Let $P \in \operatorname{Syl}_2(G)$ and $N = N_G(P)$. If $H \leqslant P$, then $H \preceq N$, or $P = Q \times A$, where Q is generalized quaternion, and $H \geqslant Z(Q)$.

PROOF. If P is abelian, then $P\leqslant Z(N)$ and the result is trivial. Hence assume $P=Q\times A$, with Q generalized quaternion and A elementary abelian; also suppose $Z(Q)\leqslant H\leqslant P$. Then $H\cap Q=1$ and so $H=H/(H\cap Q)\cong HQ/Q$ is elementary abelian. Thus $H\leqslant \leqslant Q_1(P)\leqslant Z(N)$; in particular $H\vartriangleleft N$.

- 3.9 THEOREM. Let G be a group. Then G is an sn-group if and only if for every chief factor U/V of G the following conditions hold:
- (a) if U/V is non abelian, then it is simple and $A_{G}(U/V)$ is as described in Proposition 2.5;
- (b) if U/V is an elementary abelian q-group, then $A_{G}(U/V)$ satisfies C_{p} for every odd prime $p, p \neq q$, and it satisfies C_{2}^{*} if $q \neq 2$.
- PROOF. (\Rightarrow) This follows at once from Proposition 2.5 and Lemma 3.5 (via Lemma 3.4).
- (\Leftarrow) Suppose that for every chief factor of the group G conditions (a) and (b) are satisfied. We proceed by induction on G. Let M be a minimal normal subgroup of G. Then, by inductive hypothesis, G/M is an sn-group. Let $C = C_G(M)$. If M is simple non abelian, then $C \cap M = 1$. By 2.5 and condition (a), we have that G/C is an sn-group. Since the class of sn-groups is a formation, we conclude that G is an sn-group.

Otherwise M is an elementary abelian q-group, for some prime q. Now, by Lemma 3.3 and condition (b), G is an sn(p)-group for every odd prime $p, p \neq q$. Also, by 1.15, since $M \leqslant O_q(G)$, G is an $\operatorname{sn}(q)$ group. In order to apply Theorem 1.11 and conclude that G is an sn-group, we have to show that, if $q \neq 2$, G is an sn(2)-group. Let P be a Sylow 2-subgroup of G, and $\overline{P} = PC/C$. If \overline{P} is abelian, then G/C actually satisfies condition C_2 and we may apply Lemma 3.3. Thus, assume $\overline{P} = \overline{P} = \overline{Q} \times \overline{A}$, with \overline{Q} generalized quaternion and \overline{A} elementary abelian. Let $z \in P$, such that, if $\bar{z} = Cz$, $\langle \bar{z} \rangle = Z(\bar{Q})$. We show that z acts as the inversion on M. Let $\overline{G} = G/C$, $\overline{F} = F(G)$. Since \overline{G} satisfies C_p for every odd prime $p, p \neq q$, it follows that every subgroup of $O_{2'}(\overline{F})$ is normal in \overline{G} ; in fact any such subgroup is both subnormal (being contained in \overline{F}) and pronormal (by Rose's characterization of groups satisfying C_n , see [8; p. 936]). Thus \bar{G} centralizes $O_{2'}(\overline{F})$; in particular $\overline{z} \in \overline{P}'$ centralizes $O_{2'}(\overline{F})$. Moreover, it is easy to check that \bar{z} is an isolated involution of \bar{P} . By Glauberman's Z^* -Theorem, $\bar{z} \in Z^*(\bar{G}) = \bar{K}$. Now, \bar{K} is 2-nilpotent and \bar{z} centralizes $O_{z'}(F(\overline{K}))$. It follows that $\overline{z} \in F(\overline{K}) \leqslant \overline{F}$; this in turn implies $\overline{z} \in Z(\overline{G})$. Thus, since M is a minimal normal subgroup of G, z acts as the inversion on M.

Now, we have to show that, for every $g \in G$, $P \cap P^g \leq N$, where $N = N_g(P)$. Arguing as in the proof of Lemma 3.3, it is enough to show that this is true when $g \in M$. Let $R = P \cap P^g$. Suppose that

RC/C is not normalized by $NC/C \leqslant N_{\overline{G}}(\overline{P})$. Then, by Lemma 3.8, $RC/C \ni \overline{z}$; hence there exists $y \in R$ acting as the inversion on M. In particular, $g^y = g^{-1}$. Since $R = P \cap P^g$, this implies g = 1, and so $R = P \subseteq N$. Otherwise RC is normalized by N. Then, arguing as in the proof of Lemma 3.3, N normalizes $RC \cap P = R(C \cap P) = R$. This completes the proof of the Theorem.

We now exploit Theorem 3.9 (and the preceding lemmas) to give some more explicit descriptions of the groups $A_G(U/V)$, for an sn-group G.

3.10 THEOREM. Let G be a group of odd order. Then G is an sn-group if and only if $A_g(U/V)$ is a T-group for every chief factor U/V of G.

PROOF. Let G be an odd order sn-group, U/V a chief factor of G and set $\overline{G} = A_G(U/V)$. Let U/V be a q-group, q a prime. Then, by Theorem 3.9, and the fact that $2 \not \vdash |G|$, \overline{G} satisfies condition C_p for every $p \neq q$. Moreover, by Corollary 3.2, $\overline{F} = F(\overline{G})$ is cyclic. Thus $\overline{G}' \leqslant \overline{F}$; hence, if \overline{Q} is a Sylow q-subgroup of \overline{G} , $[\overline{Q}, N_{\overline{g}}(\overline{Q})] \leqslant \overline{Q} \cap \overline{F} = 1$. Then \overline{G} satisfies also condition C_q . If now follows from Robinson [9; Theorem 1] that \overline{G} is a (soluble) T-group.

Conversely, a soluble T-group satisfies condition C_p for every prime p ([9; Theorem 1*]). Thus, by Theorem 3.9, a soluble group in which $A_G(U/V)$ is a T-group, for every chief factor U/V, is an sn-group; in particular this is true for groups of odd order.

REMARKS (a) Arguing as in the first part of the proof of 3.10, it is easy to show that, in a soluble sn-group G, $A_G(U/V)$ satisfies condition C_2^* also when U/V is a 2-group (in this case it indeed satisfies C_2).

(b) Every soluble Frobenius group is an sn-group. This is not true for Frobenius groups in general. In fact the non split extension of SL(2,5) by a group of order 2 is a Frobenius complement, but it is not an sn-group. Accordingly to Zassenhaus's results on Frobenius groups, every such group has a subgroup of index 2 which is an sn-group.

Finally, we describe $A_G(U/V)$ in (non soluble) sn-groups. To avoid heavy notations we come back to hypothesis (I).

3.11 THEOREM. Assume that hypothesis (I) holds for the group A and the \mathbb{F}_qA -module M. Then:

- (a) If $q \neq 2$, then A is soluble or $F^*(A) \cong SL(2,5) \times K$, where K is cyclic and (|K|, |SL(2,5)|) = 1. Also $A \cong SL(2,5) \times H$, where H is a T-group, K = F(H), the Sylow 2-subgroups of H are elementary abelian and the only possible prime common divisors of (|H|, |SL(2,5)|) are q and q.
- (b) If q=2, then A is soluble or $F^*(A)=R\times K$ where K is cyclic of odd order and R is either simple or $R=S\times T$ with $S\cong PSL(2,2^n)$, $T\cong Sz(2^m)$ and n, m are odd and coprime (this ensures $(|S|,|T|)=2^i)$. Moreover A is a semidirect product $R\times H$, where H is a **T**-group, acting on R in the way described in 2.5, K=F(H) and $(|R|,|H|)=2^j$.
- PROOF. (a) $q \neq 2$. If A is not soluble, then, by 3.5 (b), $E(A) \neq 1$, and, as we observed in the first part of the proof of 3.5, Z = Z(E(A)) has order at most 2. Furthermore, by 3.5(a), the Sylow 2-subgroups of $F^*(A)$ are generalized quaternion (if they were cyclic, $F^*(A)$, and so A, would be soluble). It follows that the Sylow 2-subgroups of E(A) are generalized quaternion. Now, E(A)/Z is the direct product of groups of type $PSL(2, 2^n)$ and $Sz(2^{2m+1})$. Thus, the only possibility is $E(A)/Z \cong PSL(2, 4) \cong PSL(2, 5)$ and $E(A) \cong SL(2, 5)$.
- If $K = O_{2'}(F(A))$, then, by 3.5(a), K is cyclic and (|K|, |E(A)|) = 1; also: $F^*(A) = E(A) \times K$. Now, let $C = C_A(E(A))$. By 2.5, $A/C \cong PSL(2,5)$, so A = E(A)C and $E(A) \cap C = Z$. Clearly F(C) = F(A), which is cyclic; whence C is 2-nilpotent. Moreover, by 3.9, A satisfies C_2^* . This implies that the Sylow 2-subgroups of C are elementary abelian. It follows that $Z = O_2(F(C))$ has a normal complement H in C. Now, clearly, F(H) = K and $A \cong E(A) \times H$. Furthermore, since, by 3.9, A satisfies C_p for every prime $p \neq 2, q$, we have that, for all such primes, A is either p-nilpotent or p-perfect (Robinson [8; Theorem 3]). Since $H' \leqslant K$ and (|E(A)|, |K|) = 1, we get $(|E(A)|, |H|) = 2^i q^j$, $i, j \in \mathbb{N}$. Finally, keeping in mind that H satisfies C_p (see Robinson [9; Corollary p. 936]) for every prime p dividing F(H) and that $F(H) \geqslant H'$, it is easy to see that H is a T-group.
- (b) q=2. Suppose that A is not soluble; then $E(A) \neq 1$, and, since in this case $O_2(A)=1$, Z(E(A))=1. Thus $F^*(A)=R\times K$, where K=F(A) is cyclic of odd order, and $R=R_1\times R_2\times ...\times R_s$ is the direct product of simple sn-groups. But, by 3.5(a), the Sylow p-subgroup of $F^*(A)$ are cyclic, for every odd prime p. Hence

(|R|, |K|) = 1 and, for every $i, j \in \{1, 2, ..., s\}$, $i \neq j$, the only prime dividing $(|R_i|, |R_j|)$ is 2. Now, for every $n \in \mathbb{N}$, 3 divides $|PSL(2, 2^n)|$ and 5 divides $|Sz(2^{2n+1})|$. Thus either R is simple or s = 2, $R = S \times T$, with $S \cong PSL(2, 2^n)$, $T \cong Sz(2^m)$, m odd, $m \geqslant 3$, and $(|S|, |T|) = 2^i$, $i \in \mathbb{N}$; it is easily seen that this last condition is satisfied if and on y if n, m are coprime odd numbers.

Let now $C = C_A(R)$; then $C \cap R = 1$ and it follows from Proposition 2.5 that A/C is the semidirect product of RC/C by an abelian group H/C. Hence $A \cong R \times H$, the semidirect product of R by H, where the action of H on R is as described in 2.5.

Now, $K \leqslant C \leqslant H$ and, by 3.5(b), $H' \leqslant F^*(A) \cap H = K$, whence, K = F(H). Finally, by 3.9, A satisfies C_p for every odd prime p and so does H. Thus A and H are either p-nilpotent or p-perfect, for every odd prime p. This yields at once $(|R|, |H|) = 2^j$ (recall that $(|R|, |K|) = 2^i$) and, since $H' \leqslant F(H)$ and F(H) is cyclic of odd order, implies that H is a T-group.

REFERENCES

- [1] H. Heineken, On E-groups in the sense of Peng, to appear.
- [2] B. HUPPERT, Endliche Gruppen I, Springer, Berlin, 1967.
- [3] B. HUPPERT N. BLACKBURN, Finite Groups III, Springer, Berlin-Heidelberg-New York, 1982.
- [4] G. GLAUBERMAN, Weakly closed elements of Sylow subgroups, Math. Z., 107 (1968), pp. 21-32.
- [5] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [6] D. GORENSTEIN, Finite Simple Groups, Plenum, New York, 1982.
- [7] J. LENNOX S. STONEHEWER, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987.
- [8] T. A. Peng, Finite soluble groups with an Engel condition, J. Algebra, 14 (1969), pp. 319-330.
- [9] D. Robinson, A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933-937.
- [10] H. Wielandt, Kriterien für Subnormalität in endlichen Gruppen, Math. Z., 138 (1974), pp. 199-203.

Manoscritto pervenuto in redazione l'11 marzo 1988.