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Finite Groups
in which Subnormalizers are Subgroups.

CARLO CASOLO (*)

Let H be a subgroup of a group G. We put

and call it the « subnormalizer » of H in G (see [7 ; p. 238]). In gen-

eral, Ba(H) is not a subgroup (see [7]). The aim of this, paper is to

study the class of groups (which we call sn-groups) in which the sub-
normalizer of every subgroup is a subgroup. As observed in [7; p. 238],

is a subgroup of G if and only if H is subnormal in  U, V~,
whenever and Furthermore, if G is finite

and Ba(H)  G then, by a subnormality criterion of H. Wielandt [10],
.g is subnormal in Ba(H); thus SG(H) is the maximal subgroup of G
in which g is embedded as a subnormal subgroup.

From now on, « group » will mean « finite group ».
In the first section of this paper we show that the property of

being an sn-group has a local character. Namely, we define for every
prime p, the class of sn (p)-groups of those groups in which the sub-
normalizer of every p-subgroup is a subgroup, and prove that G is
an sn-group if and only if G is an sn (p)-group for every prime p di-
viding G. This in turn leads to the following characterization of

sn-groups:
a group G is an sn-group if and only if the intersection of any

two Sylow subgroups of G is pronormal in G.

(*) Indirizzo dell’A.: Dipartimento di Matematica e Informatica, Uni-
versith di Udine, Via Zanon 6, 1-33100 Udine, Italy.
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(We recall that a subgroup H of G is said to be pronormal if, for
every g E G, H is conjugate to gg in .g, 

At this stage we observe that the class of sn-groups has already
been studied. In fact, in [8], T. Peng defined the class of E-groups
as the class of those groups G in which Ea(x) = ~g E G; [g, ,x] = 1 for
some n E N} is a subgroup for every x E G; and, for any prime p, the
class Ep of those groups in which Ea(x) is a subgroup for every p-ele-
ment x of G. It turns out that the class of E-groups is the same as
the class of sn-groups, and that Ep-groups are just the sn (p)-groups,
for every prime p. As a consequence, we have that G is an E-group
if and only if it is an Ep-group for every prime p, giving a positive
answer to a question raised by Peng.

On the basis of these characterizations, we then give a more de-
tailed description of sn-groups, both in the soluble and in the gen-
eral case, extending some of the results obtained by Peng. In par-

ticular, we have that the only non abelian simple sn-groups are those
of type PSL(2, 2n) and also an sn-group has generalized Fit-
ting length at most four, and all chief factors abelian or simple. Fi-

nally, we give necessary and sufficient conditions for a group G to
be an sn-group in terms of the automorphisms groups induced by G
on its chief factors; as a sample we quote the following: a group G
of odd order is an sn-group if and only if the group of automorphisms
induced by G on each chief factor is a T-group.

After this paper was written, I was informed that H. Heineken,
in his study on E-groups, had obtained indipendently part of the
results which appear in sections 2 and 3 of this paper. In his forth-

coming paper [1], other informations on (not necessarily finite)
E-groups are to to be found.

Notation is mostly standard. We shall make use of P. Hall’s

closure operations. A T group is a group in which every sunbormal
subgroup is normal. For any group G, denotes the Fitting sub-
group of G, and, if UIV is a chief factor of G, AG(UjV) denotes the
group of automorphisms of induced by conjugation by G (thus
AG(U/V)=G/C(U/V)).

1. A characterization of sn-groups.

Our first Lemma gives some elementary properties of the set 
The proof, which is straightforward, is omitted.
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1.1 LEMMA. Let H be a subgroup of the group G:

(obviously here

The next result, although very elementary, is fundamental.

1.2 LEMMA. Let H be a subnormal subgroup of G, and P a Sylow
p-subgroup of H, for some prime p; then
E ~SG(H)~) .

PROOF. By induction on the defect n of H in G. If H is normal

in G apply the usual Frattini argument. Let n &#x3E; 1; then H has de-
in its normal closure HG. By inductive hypothesis:

Take now Po E Sylp (HG) such that P ~ Po ; then P sn Na(Po) and so
N a(Po) ç S~(P). By the Frattini argument we have also

which, together with (+), gives:

We recall, from the introduction, that a group G is an sn-group
if is a subgroup of G for every and G is an sn (p)-group,
p a prime, if for every p-subgroup .H of G.

It then follows from 1.1 (ii) that the class of sn-groups is Q-closed
(that is every homomorphic image of an sn-group is an sn-group).
The class of sn-groups is also S-closed (that is every subgroup of an
sn-group is an sn-group), y in fact, in any group G, if then

8,(H) = 8G(H) n K. Thus, for every prime p, the class of sn (p)-
groups is S-closed.
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1.3 LEMMA. For every prime p, the class o f sn( p)-groups is Q-closed.

PROOF. Let G be an sn(p)-group, and Let be a

p-subgroup of GIN. Since the class of sn(p)-groups is s-closed, we
may assume G = that is = Let P be a

Sylow p-subgroup of H, then NP = H. If by 1.2 we
have V = and so, since G is an sn(p)-group,

Thus:

Hence G/N = SG(P)/(SG(P) t’1 N). Since r1 N) is
subnormal in S,9(P), we conclude that HIN is subnormal in GIN,
and so which means that G/N is an sn (p)-
group.

1.4 PROPOSITION. Let G be a group, p a prime number. The fol-
lowing are equivalent.

(i) G is an sn ( p)-group ;

(ii) tor any intersection R of Sylow p-subgroups of G,
SG(R) = 1

(iii) for every P E Sylp (G) and ;

(iv) for every P E 8ylp (G), normalizes

PROOF. (i) =&#x3E; (ii). Let G be an sn (p)-group and = Pi r1 ... r1 Pr
with Pi E Syl, (G), i = 1, ... , r. Clearly C Set _ S;
since R is a p-subgroup of G, and 1~ sn S. Thus I~s is a normal

p-subgroup of S and it is contained in every Sylow p-subgroup of S.
Now, for every i = 1, ... , r, R is subnormal in Pi and so P, C S. Hence
Pi E Sylp ( ~S’), yielding

Thus that is and, consequently, S = 
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(ii)=&#x3E; (iii). Let and where G satisfies condi-
tion (ii). Then NG(P) ç n Pg) = NG(P t1 Pg) and so P n Pg is

normal in 

(iii) =&#x3E; (iv). Let G satisfy condition (iii) and let P be a Sylow
p-subgroup of G; E G. = n Pg- r1 ... t1 pUn, where

Then for every i = 0, 1, ... , n, we may write

Thus, by (iii), for every i = 0, 1, ..., n and so

Now, since for every we have

whence, in particular, ~P, g1, ... , gn ~ normalizes .R.

(iv) =&#x3E; (i). Let G satisfy condition (iv) and let lq be a p-subgroup
of G. Denote by J the set of those Sylow p-subgroups of G, which
contain .H, and put R = n P. We show that = and so

pEP

that BG(H) is a subgroup of G.
Since .R is a p-subgroup of G, containing :g, we have at once

H sn R a NG(R), whence BG(H).
Conversely, let such that Then H is contained

in every Sylow p-subgroup of V. If P c- T and v E Y, we have:
where g E G is such that Pgn V is a Sylow

p-subgroup of V. Thus:

In particular

But, since G satisfies (iv), P r1 Pg n Pgv is normalized by g, gv) =
- g, v). In particular, it is normalized by v and so whence
P’~ c q. This shows that V permutes by conjugation the elements
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of 5’ and so We have therefore:

Thus Sg(H) = as we wanted.

Now we can state our main characterization of sn (p)-groups.

1.5 THEOREM. Let G be a group. Then G is an sn (p)-group if
and only i f for every P, Q E Sylp (G), P r1 Q is pronormal in G.

PROOF. Let G be an sn (p)-group. Let P, Q be Sylow p-subgroups
of G and put R = P n Q. Let also h E G and write L = I~, Rh).
Choose T c Syl, (G) such that Sin~ce Rh is a

p-subgroup of L, there exists x E L such that (T r1 L)z. In par-
ticular and so .R c Thus

By 1.4 (i) =&#x3E; (iv), xh-l normalizes R; then Rx = Rh, proving that .R
is pronormal in G.

Conversely, assume that P r1 Q is pronormal in G, for every
P, Q E Then P r1 Q is both pronormal and subnormal in

This forces P n Q to be normal in Na(P). By 1.4 (iii) ~&#x3E; (i),
we have that G is an sn (p)-group.

1.6 LEMMA. Assume that G is an sn (p)-group for every prime p
dividing [GI, and let H be a perfect subnormal subgroup of G. Then
g a G.

PROOF. Assume, firstly, that .H is simple and non abelian. Then,
by a well known result of g. Wielandt (see [7, p. 54]), Ha = H X .g,
where K is the direct product of the conjugates of g, distinct from H.
Let p be a prime divisor of and P E Sylp (.g). Since G is an sn (p)-
group, Lemma 1.2 yields

Set S _ 8G(P) and Q = Ps. Since P is subnormal in S, Q is a p-group
and it is contained in every Sylow p-subgroup of S. Let T = Q r1 HG;
then T is a p-group and T ~ P. Since P is a maximal p-subgroup
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of ~, we have:

On the other hand, K centralizes P and so K  S, whence Q n .g « K.
But =1, because .g is either trivial or the direct product of
non abelian simple groups. Thus Q r1 K == 1 and so Q r1 HG = P,
yielding P a S. This gives S = NG(P) and, consequently, G = 
Now, if g E 1 =F P  H r1 Hg. Simplicity of .g now forces H = Hg
Hence and thus H a G.

We now turn to the case in which H is just a perfect subnormal
subgroup of G, and proceed by induction on By 1.3 we may
therefore assume HG == 1. Let .R be the soluble radical of HG. Assume
R ~ 1; then, as R is normal in G, is subnormal in G/R and

H/H r’1 R is perfect. By inductive hypothesis, .g.R 4 G and
so H.R = HG. Let such that .Ha (H, Hg~. Then HH91H -
~ Hgl(H n Hg) is perfect; but also .HHg/H = (HH9 r1 
~ (HHg n R)/(H n R) is soluble. Thus HHg = H, that is H = Hg.
Since H is subnormal in G, this implies that H is normal in G.

It remains the case in which R =1. Then, if A is a minimal sub-
normal subgroup of G contained in H, A is simple non abelian and
so, by the case discussed above, A is normal in G. Now, by induc-
tive hypothesis: H/A -aG/A, yielding H -a G. o

1.7 LEMMA. Let G be a group, G = T S with SG, T sn G. If
P sn S then (T, P) is subnormal in G.

PROOF. By induction on the defect n of T in G. If n == 1, T is
normal and G/T = S/T r1 S; in this isomorphism, (T, P)/T =
- TP jT corresponds to P(S n T)/S r1 T which is subnormal in

T ; thus is subnormal in G.
Let now n &#x3E; 1. Assume firstly that P normalizes T. Let

K = then has defect n -1 in G and G = KS.

Hence, by inductive hypothesis A = .K, P~ _ KP is subnormal
in G. Now Fur-

ther :

Since A we have, by the case n = 1, T, P~ = TP sn A and so
TP sn G.
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In the general case, set T = TP = Then if, being
generated by subnormal subgroups, is subnormal in G, G = TS and
T is normalized by P. By the case discussed above T, P) = TP
is subnormal in G.

1.8 PROPOSITION. Suppose that G is not an sn-group. If HG
is minimal such that then either H is perfect or it is cyclic
o f order a power o f a prime.

PROOF. Let G, H be as in our hypothesis, and suppose that H
is not a perfect group. Then there exists a maximal normal sub-

group T of .H, such that = p for some prime p. Now So(T) D
D Ba(H) and so, by our choice of H:

Set L = then T sn L. Let P E Syl2J (H), thus TP = H.
Suppose H; then Sa(P)  G. Let such that H sn Y;

then ~’~(P) = r~ Y c V and, by Lemma 1.2, V = HS,(P). Thus
.g permutes with K = H sn Now:

whence HK = L and so L = TK. Moreover, and so P sn K.
Since also T is subnormal in L, Lemma 1.7 yields H = T, P&#x3E; sn L;
thus S,9(H) =  G, contradicting our choice of H.

Therefore, we must have H = P. If H admits two distinct max-
imal subgroups Rand Q, then both are subnormal in H and so

L = In particular are subnormal in L
and thus H = R, Q) is subnormal in L, again contradicting the
choice of H. Hence H has a unique maximal subgroup and it is the-
refore cyclic.

We now recall the definitions given by Peng in [8]. Let G be a

group, x E G; put Ea(x) = {g E G; [g, =1, n Then E is the
class of groups G in which Ea(x) is a subgroup, for every x E G. For

any prime p, E, is the class of groups in which for every
p-element x of G.

Peng raises the question as to whether G E E if (and only if) G E E~
for every prime p; he gives a positive answer for soluble groups of
2-length at most 1 [8, Corollary 3, p. 328].
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1.9 LEMMA. Let G be a group, x E G. If G is an sn (p)-group for
every prime p dividing lxl, then :

PROOF. Let ~S = If g E S then x&#x3E; sn x, g) and so

[g, ,x] =1 for some n thus g E EG(x) and S C .EG(x). Write
x = xr, where (zz) (i =1, ... , r) are the primary components of
x&#x3E;, and set Si = Sa«Xi»)’ Then, for any i, Si is a subgroup of G,

r

by our hypothesis. Let T = Now, for any i ==1, ... , r, xi&#x3E;
i=l

is subnormal in T ; thus x~ _ ... , zr) sn T, whence T C S. Con-

versely, if g E S, (zz) a (z) sn (z, g) and so g E Si for every i =1, ... , r;
thus g E T, yielding S c T and, consequently, S = T c G.

Let such that we show that In fact

and, the xi’s being suitable powers of x, z§ e 8 for
every i ; in particular i for every i. Let be primes
such that, for any i - 17 ... , r, xi is a p i-element. Further, for any i,
choose a Sylow pi-subgroup Pi of 8z such that Then, since

xi E Pi and so By 1.4, 
in particular is subnormal in (P,, g) and 

This is true for every i =1, ... , r whence 
Let now then, for some [y,.,,x] =1. Let m be

the minimal natural number such that e /S’ (we put [y, ox] = y).
Suppose m &#x3E; 0, then:

s -=) IY7 -Xl - = and this implies 
Thus [y, e S, contradicting the choice of m. Hence m = 0 and,
therefore, yES. This yields completing the proof that

~’.

An immediate consequence is the following.

1.10 COROLLARY. A group G is an sn ( p)-group f or some prime p
i f and onZy i f G E Ep.

PROOF. If G is an sn (p)-group, then Lemma 1.9 implies at once
that EG(X) is a subgroup for every p-element x of G, and so G E Ep .

Conversely, let G E Ep and suppose that G is not an sn (p)-group.
Thus, let .H be a minimal p-subgroup of G such that SG(H) is not a
subgroup. Then, as in the proof of 1.8, H has a unique maximal



34

subgroup, so H = ~x~ for some p-element x of G. Now .EG(x) c G
and x is a left Engel element in EG(x); thus x&#x3E; sn EG(x) and EG(x) k
C ~’a(x~) . Since, clearly, 8~((z)) C E,(x), we get EG(x)  G,
a contradiction. Hence G is an sn (p)-group. 1

1.11 THEOREM. Let G be a group. The following are equivalent.

(i) G is an sn ( p )-group for every p dividing ;

(ii) G is an sn-group ;

(iii) G is an E-group;

(iv) G is an Ep-group for every p dividing I G .

PROOF. (i) =&#x3E; (ii). Let G be an sn (p)-group for every p dividing
IGI and suppose, by contradiction, that G is not an sn-group. Let

be minimal such that is not a subgroup. Then, Propo-
sition 1.8 implies that H is perfect. Let Since the class
of sn (p)-groups is S-closed, V is an sn (p)-group for every prime di-
viding its order, hence, by Lemma 1.6, H is normal in V. Thus:

and so rSG(H) = N a(H) is a subgroup, a contradiction. Thus G is an

sn-group.

(ii) =&#x3E; (iii ) . This follows from Lemma 1.9.

(iii) ~ (iv). This is obvious.

(iv) ~ (i). This follows from Corollary 1.10.

1.12 COROLLARY. A group G is an sn-group if and only if every
intersection of two subgroups of G is pronormal in G.

PROOF. Immediate from 1.5 and 1.11..

1.13 COROLLARY. Every chief factor of an sn-group is simple or
abelian.

PROOF. Follows from 1.11 and Lemma 1.6..

1.14 COROLLARY. (a) For any prime p, the class of sn ( p)-groups
is a f ormation.

(b) The class of sn-groups is a f ormation.
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PROOF. (a) Since the class of sn (p)-groups is both ,S and Q-closed,
it is sufficient to show that the direct product of two sn (p)-groups
is again an sn (p)-group, and this is clearly true in view of the iden-
tification of sn (p)-groups with E1)-groups stated in 1.10.

( b ) Follows in the same manner from 1.11 and the fact that
the class of sn-groups is both S and Q-closed.

For further reference we state here some elementary consequences
of the results obtained in this section.

1.15 LEMMA. Let p be a prime: each of the following conditions

imply that the group G is an sn (p)-group.

(a) The p-subgroups of G are disjoint from their conju-
gates.

(b) The p-subgroups of G are cyclic.

(c) an sn ( p)-group.

(d) GfZ(G) is an sn (p)-group.
(observe that the last two conditions are also necessary for G to be
an sn (p)-group) .

PROOF. (a) and (b) follow immediately from Theorem 1.5.

(c) This also follows from 1.~ ; in fact if 1~ is an intersection
of Sylow p-subgroups of G, then 

(d) Let Z = Z(G), g a p-subgroup of G and U, such
that H sn U and H sn V. Then ZH sn  U, V)Z, because G/Z is an

sn (p)-group; thus there exists such that [ U, V), 
Then [ U, V), whence H sn  U, V). This implies that 
is a subgroup of G.

2. Simple sn-groups.

The main result to be proved in this section is the following.

2.1 THEOREM. A nonabelian simple group is an sn-group if and
only if it is one of the following groups:
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One way of proving this Theorem is to check the list of all simple
groups. Instead, we have chosen to use a Theorem of Goldschmidt
on strongly closed subgroups, which we will quote in due course.

Before, we proceed to eliminate some groups.

2.2 LEMMA. Let G be a group with no subgroups of index two and
dihedral Sylow 2-subgroups of order at least 8. Then G is not an sn (2)-
group.

PROOF. Let Q be a Sylow 2-subgroup of G; x, y two involutions
such that Q = ~x, y~. Then (see [5; 7.7.3]) there exists g c G such
that xg = y and so y E Q r1 Q9 = R. If G were an sn (2)-group, then,
by 1.4: Q, g). In particular, x = Rg-1 = .R. Thus I~ _

- x, y) = Q and g E No(Q). This implies that x and y are conjugate
in Q, which is not the case. Hence G is not an sn (2)-group..

2.3 LEMMA. q) is an sn (2)-group if and only if q = 3, 5, 2n.

PROOF. PSL(2, 3) ~ A4 is an sn-group.
If q = 2n then the Sylow 2-subgroups of q) are disjoint

from their conjugates; thus, by 1.157 PSL(2, q) is an sn (2)-group.
Also, (2, 5) PSL(2, 4) is an sn (2)-group.

Conversely, let G = q), with q = pn &#x3E; 3, p ~ 2. We dis-
tinguish two cases.

(a) Let q ~ 3. 5 (mod 8). Then (see [5; 15.1.1]), the Sylow 2-sub-
groups of G are dihedral of order at least 8. Since G is simple, Lem-
ma 2.2 implies that G is not an sn (2)-group.

(b) Let q = 3, 5 (mod 8). In this case, the Sylow 2-subgroups
of G are elementary abelian of order 4 and they coincide with their
centralizer in G (see [5; 15.1.1]). Let Q E Syl2(G) and suppose that G
is an sn ( (2 )-group. Assume that there exists such that

and let g E Then x E Q f1 Q9 = R. If .R = Q, then
g E NG(Q). But ~ A4 and so g E Q, a contradiction. Hence

.R = x~ ; by 1.4 this implies ~x~ a NG(Q), which is not possible.
Thus, for avery CG(x) = Q. By a Theorem of Suzuki (see
[5; 9.3.2]), G is a Zassenhaus group of degree IQI -~- 1 = 5 and so
G = PSL(2, 5). This completes the proof.

DEFINITION. Let Q be a subgroup of a group.
Then Q is said to be strongly closed in P (with respect to G) if, for
every x E Q and g E G, xg c- P implies xg E Q.
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The Theorem of Goldschmidt that we are going to use is the fol-
lowing (see [6; Theorem 4. 128]).

THEOREM (Goldschmidt). Let G be a simple group; if a ,Sylow
2-subgroup S of G contains a non trivial elementary abelian subgroup
which is strongly closed in S with respect to G, then G is one of the fol-
lowing groups.

(a) I’S U(3, 22n), n &#x3E; 1; SZ(221n+l), 

(b) PSL(2, q), q = 3, 5 (mod 8).

(c) The first Janko group ~T1 or a Ree group 2G2(3n), n odd, n &#x3E; 1.

2.4 PROPOSITION. Let G be a simple non abelian group; then G

is an sn (2)-group if and only if G is one of the following groups.

PROOF. Let G be a simple non abelian sn (2)-group, and let S
be a Sylow 2-subgroup of G. Take to be a non trivial intersec-
tion of Sylow 2-subgroups of G of minimal possible order (thus 1-~ = S

if the Sylow 2-subgroups of G are pairwise disjoint). Let A = 
then A is a nontrivial elementary abelian characteristic subgroup of R.
We show that A is strongly closed in S. Let and sup-
pose xg E S. Then x E A n r1 Sg-1. Now, by our choice of R,
we get and so, by Proposition 1.4, g normalizes R,
whence g normalizes A. Thus xg E A, showing that A is strongly
closed in S with respect to G.

Therefore, G is one of the groups listed in Goldschmidt’s Theorem.
Now, groups in (c~) are indeed sn (2)-groups, because in each of them
the Sylow 2-subgroups are disjoint from their conjugates. Groups
in (b) are not sn (2)-groups by Lemma 2.2, except when q = 5, but

4).
The Janko group Jl is not an sn (2)-group because, for instance,

it has a subgroup isomorphic to P~’L(2,11). Finally, groups of Ree
type 2G2(3n) are not sn (2)-groups: in fact 2G2(3n) contains a subgroup
isomorphic to PSL(2, 3n), n &#x3E; 1.

PROOF OF THEOREM 2.1. First, groups of type .P~S’L(2, 2 n ) and
are sn-groups. In fact, in both cases, the Sylow 2-subgroups

are disjoint from conjugates and the Sylow p-subgroups, p odd, are
cyclic. By 1.15 these groups are sn-groups.
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Conversely, if G is a nonabelian simple sn-group, it is, in partic-
ular, an sn (2)-group, hence one of those listed in Proposition 2.4.

Thus, to complete the proof of the Theorem, we have to show that
groups of type PS U(3, q2), q = 2n, n &#x3E; 1, are not sn-groups.

Now, by 1.15 (d) and 1.11, q2) is an sn-group if and only
if SU(3, q2) is an sn-group ; we deal with this latter group, and thus

put G = ~’ U(3, q2) (q = 2 n, n &#x3E; 1). Let also IT = be the field

with q2 elements.
We have |G| = q3(q3 + 1)(q2 -1). Let p be an (odd) prime divid-

ing q + 1 and let pr be the highest power of p which divides q + 1.
We observe that, as n &#x3E; 1, we may always choose p in such a way
that pr &#x3E; 3. The order of a Sylow p-subgroup of G is now p2r 3,
and if p = 3. Since pr divides q2 - 1, the field K contains a
primitive pr-th root of unity, which we denote by u. Let also v = 
and observe that, since pr &#x3E; 3, ~c ~ v. In SL(3, q2) we take the ma-
trices :

Then = Ibl = pr, Inl = 3, [a, b] = 1 and P = (a, b&#x3E; is an abelian

group of order p 2r which is normalized by ~. Moreover a, b, nEBU(3, q2 )
(obviously, we are assuming that a base of the vector space over K
has been chosen in such a way the matrix of the Hermitian product
is the identity).

Thus, if p # 3, P is a Sylow p-subgroup of G; if p = 3, Q = P, ~~
is a Sylow p-subgroup of G. Now take z E g a root of the polynomial
x2 -f- x + 1 over GF(2); then z # 0, 1 and, since q&#x3E;4, zq = z. Thus

the matrix

is a unitary matrix, G. Moreover, I h = 2 and ah = a.
Let p =1= 3, then one easily checks that
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If G were an sn-group, ~a~ should be normalized by NG(P) ; in par-
ticular, yr should normalize (~, which is not the case. Hence G is
not an sn-group.

If p = 3, then Qh r1 Q = ~~~ where Z is the centre of G, which
in this case has order 3. Again Z a~ is not normalized 
and so G is not an sn-group.

The proof is now complete.

We observed in Corollary 1.13 that a nonabelian chief factor of
an sn-group is simple. We end this section by describing the auto-
morphisms group induced by an sn-group on its nonabelian (simple)
chief factors. By Theorem 2.1 such factors are isomorphic to groups
of type PSL(2, 2n) or Sz(22m+1). It is well known that the group of

automorphisms of any of these groups is the semidirect product of
the group of inner automorphisms by a cyclic group of those auto-
morphisms induced by the automorphisms of the underlying field.

2.5 PROPOSITION. Let U jV be a nonabelian. (simple) chief factor
of an sn-group G. Then the group of outer automorphisms induced
by G on cyclic of order coprime to the order of UIV, or one of the
following two exceptions occurs:

(a) PSL(2, 23) and is isomorphic to the semi-

direct product of UIV by a (field) automorphism of order 3.

(b) and AG(UjV) is isomorphic to the semidirect

product of UIV by a (field) automorphism of order 5.

For the proof we need the following simple observation.

2.6 LEMMA. Let p be an odd prime;

(a) if p divides IPSL(2, 2P)1, then p = 3 ;
(b) if p divides I Sz(2P) I, then p = 5.

PROOF. (a) If p is an odd prime dividing 2?) I = 2P(2 2P
then p divides 22~ -1. Now: 3p = (22 -1)p - 22~-1 (mod p). Thus

p[3P and so p = 3.
(b) If p is an odd prime dividing = 22P(22P +1)(2P- 1),

then p ~ (22p -~ 1 ) (2p -1 ) ans so, a fortiori, pl24P -1. Now: 15P -
- (24 - 1 )p _--_ 24p -1 (mod p). Thus p 115. Since 3 does not divide

the order of Sz(2P), we have p = 5. ·



40

PROOF OF PROPOSITION 2.5. By the Q-closure of the class of

sn-groups, we may assume V = 1; also, since CG( U) r1 U = I, we may
assume CG( U) = 1 and so view G as a subgroup of Aut ( U). Thus U
is identified with Inn ( U), and U ~ 2n) or U ^~ Then

G is a semidirect product where x is an automorphism of U
induced by an automorphism of the underlying field K (thus
K = GF(2n) or K = GF(22m+l)). Without loss of generality, we may
also assume that lxl = p, p a prime number. Now, if U ^~ 2n),
pin (and, if U + 1). We write n = ap (respecti-
vely, 2m + 1 = ap). Then we may take x as the automorphism in-
duced on U by the field automorphism mapping every u E .g to u2~.
Let C = Cu(x); then 2a) or, respectively, C ^~ (here
we consider also ~’z{2 ), which is soluble of order 20). Suppose that p
divides the order of U.

Let such that x E P, and D = then D a P

and P = DT where T _ x&#x3E;. Let h E C and suppose that D’" =1= D;
thus, since in U the Sylow p-subgroups are disjoint from their con-
jugates (this is indeed true for every prime dividing Dh r1 D = 1.

Hence

Now, Ph , because = X7 so T = P n Ph.
If G is an sn-group, then In particular, [D, T] c

and thus DC, which is not the case, because

D E Sylp (U) while p divides Thus, in order to have an sn-
group, C must normalize D. But in U the normalizers of Sylow sub-
groups are soluble, so this forces 2) or, respectively,
C m Sz(2). Hence a = 1 and n = p (or 2m + 1 = p).

If p is odd, by Lemma 2.6, we have therefore PSL(2, 23) and
p = 3, or U ~ SZ(25) and p = 5.

If p = 2 , then U ~ 4) !2t~ A,, and G ~ ~Ss is not an sn-

group (in this case, in the notation used above, C ~ S3 does not nor-
malize any subgroup of U).

Conversely, let G be a split extension of a group U of type 2n)
or Sz(22m+1) by a group of automorphisms induced by field automor-
phisms, such that 1 G: U 1) - 1. Then G is an sn-group because
its Sylow p-subgroups are disjoint from conjugates if and cy-
clic if 

Finally, let G be one of the groups in (a) or (b) of our statement;
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then one checks that the Sylow 3-subgroups of the group in (a) and
the Sylow 5-subgroups of the group in (b) are, in fact, disjoint from
their coniugates, and so the two groups are sn-groups.

3. Automorphiaxn groups induced on chief factors.

In this section we study the structure of sn-groups by looking
at the automorphism groups induced by conjugation on each chief
factor. By 1.13, the chief factors of an sn-group are simple or abelian.
The case of a simple nonabelian chief factor has already been treated
in Proposition 2.5; thus, from now on, we deal with abelian chief
factors. We remid that, if is a chief factor of a group G, we put
ÅG(UjV) = 

3.1 LEMMA. Let an abelian chief factor of an sn (p) -group G,
and let A = AG( UjV). Then 0,(A) acts as a group of f ixed point free
(f.p.f.) automorphisms on U jY.

PROOF. In view of the Q-closure of the class of sn (p)-groups, we
may assume Y = 1. Hence U is a minimal normal subgroup of G
and it is an elementary abelian q-group, for some prime q. If q = p,
it is well known that = 1. Let and assume, by contra-
diction, that there exists x E Op(A) such that K = Cu(x) =1= 1. If

C = let x = Cx with x E GBC; write L = C, x~ and take a
Sylow p-subgroup p of L. Then [K, P] = 1. But SG(P) is a subgroup
of G and P sn 8G(P). Thus : 8G(P) n U = Cu(P) = g; whence, in

particular, g w Now, so L is subnormal in G

and, by 1.2, G = which implies that .g is normal in G. Min-

imality of U gives K = 1 or .g = U, both contradicting our choice
of x.

We denote by the Fitting length of the group G.

3.2 COROLLARY. Let G be an sn-group. Then:

(a) for every abelian chief factor UIV of G, acts as

a group of f.p.f. automorphisms on U/ Y;
(b) if G is soluble, then l(G) c 4 and i f, further, S4 is not involved

in G, t(G) c 3.

PROOF. (a) This follows at once from Lemma 3.1.
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(b) It is a consequence of (a) that, for every chief factor ~7/F
of a soluble sn-group G, F(AG(UjV)) is either cyclic or the direct

product of a cyclic group of odd order and a generalized quaternion
group. In particular, the chief factors of are cyclic or of
order 4, and so the automorphism group induced by on

each of its chief factors is abelian or it is isomorphic to Sa (and it is
always abelian if ~S4 is not involved in G, see [4; Lemma 6]). Thus

and if ~’4 is not in-

volved in AG(UIV). Hence and if S4
is not involved in 

Since UIV the chief factors of G, we get
Z(G) c 4 and Z(G) c 3 if S, is not involved in G. 1

REMARK. 4 is the best possible bound for the Fitting length of
a soluble sn-group. Indeed, we shall see that every soluble Frobenius
group is an sn-group; and there exist soluble Frobenius groups of

Fitting length 4.

DEFINITION. (a) Let G be a group. Following Robinson [9], we
say that G satisfies condition C, p a prime, if every subgroup of a
Sylow p-subgroup P of G is normal in We quote from [9]
the following results.

1) (J. Rose). A group G satisfies ep if acnd only if every p-sub-
group of G is pronormal in G.

2) (D. Robinson). A group G is a soluble T-group if and only
if it satisfies ep for every prime (dividing 

(b) We say that the group G satisfies condition C* if

(i) every Sylow 2-subgroup P of G is either abelian or

P = Q X A, where Q is a generalized quaternion group and A is ele-
mentary abelian; and

(ii) (we observe that, if P is abelian, then
(ii) implies P ~ Z(NG(P))).

It follows from Proposition 1.4 that a group satisfying C,, for a
prime p, is an sn (p)-group. Indeed we can say a little more.

3.3 LEMMA. Let p, q be prime numbers. and let .lVl be a normal

q-subgroup of the group G; C = If G/lVl is an sn (p)-group and
GIC satisfies condition ep, then G is an sn (p)-group.
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PROOF. If p = q, and so, by the Q-closure of the
class of sn (p)-groups, Gf0p(G) is an sn (p)-group. By 1.15, G is an
sn (p)-group.

Let p o q; we prove that for every P c- Syl, (G)
and by Proposition 1.4, this implies that G is an sn (p)-group.

Put N = Na(P) and R = P n Pg; we have that and

Pg MIX are Sylow p-subgroups of and NMIM = 
Thus, since is an sn ( p )-group :

Now, (L n P) M = L n L and so L n P and, analogously,
L n P9 is a Sylow p-subgroup of L ; whence there exists u E .~ such
that L n Pg = (L n P)u = L n Pu. Thus:

Set Now, satisfies condition ev; thus, since

POjO E Sylp (GjO) and

we have: NCIC. Hence is normalized by N, and, con-
sequently, P n Ro C = n N. But, since [C, u] = 1, Pu n C =
== (P n C)u = P n C. Thus P n C c P r) Pu = .Ro , yielding:

This, together with (1) and (2), shows that N normalizes R =
- P n Pg, concluding the proof .

We observe that condition e: alone is not enough to ensure that
a group satisfying it is an sn (2)-group. Let .H = SL(2, 3) and M
be an odd order elementary abelian group on which H acts irreducibly
and in such a way OH(M) = Z(H). Take G = MH the semidirect

product; then G satisfies C* but G is not an sn (2)-group (the reason
for that will be clear soon).

In the next Lemma we isolate an argument which will be fre-

quently used in the sequel.
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3.4 LEMMA Zet M be an abelian normal subgroup of the sn-group G,
and write G = Then the following condition (*) is satisfied:

) For every prime p, with (p, == 1, and every 
invariant for (see Peng [8; Lemma 4]).

_ 

PROOF. Let N = and let H, N be the inverse images of

respectively, in the canonical homomorphism G -+ G. Then
H is subnormal in N. Since N is an sn-group, by Lemma 1.2 we
have: N = HS,(Q), where QESylp(H). Now, since ( p, 1M!) = 1:
SN(Q) f1 M = C.(Q) = C.(H), whence OM(H) is normal in SN(Q),
yielding: OM(Q) HSN(Q) = N, as we wanted. o

Let G be a group; we denote by F*(G) the generalized Fitting
subgroup of G (see [3 ; § 13]) . Then [3; 13.14]: F*(G) = E(G)F(G),
where F(G) is the Fitting subgroup of G, and E(G) is a perfect char-
acteristic subgroup of G such that E(G)/Z(E(G)) is the direct pro-
duct of simple non abelian groups. Further, [E(G), F(G)] = 1 and

E(G) n F(G) = Z(E(G)).
We now consider the groups AG( U/V), where Ul V is an abelian

chief factor of an sn-group G. In view of Lemma 3.4, and in order
to simplify notations, we state here the following common hypothesis
for the next results:

(I) A is an sn-group acting faithfully and irreducibly on a F,A-
modules M (q a prime), in such a way condition (*) is satisfied, for
every subgroup K of A acting on M viewed as a 

Now, Lemma 3.4 ensures that hypothesis (I) is satisfied when
.M = is an abelian chief factor of an sn-group G, and A =

Also Lemma 3.1 follows from hypothesis (I) ; in fact

if then .g is contained in every Sylow p-subgroup of A
and so hypothesis (1) yields CM(H) invariant by (NA(P))A = A (where
P E Sylp (A)) ; thus CM(H) = 1. We shall refer to this fact as to

Lemma 3.1.
The next Lemma may be compared to Corollary 3.2.

3.5 LEMMA. Assume hypothesis (1). Then:

(a) For every prime p, p ~ q, the Sylow p-subgroups of F*(A)
are cyclic or generalized quaternion.

(b) Let A = A/T’*(A) ; then and, if A is not soluble,
A’=1.
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PROOF. (a ) If E(A ) = 1, then F*(A) = F(A) acts, by Lemma 3.1,
as a group of f.p.f. automorphisms on M; thus the result follows.

Hence assume 1 and let Z = Z(E(A)). Since A is an sn-

group, E(A)fZ is the direct product of groups of type PSL(2, r) or

Sz(r), where r is a power of 2. Since the Schur multiplicator of such
groups is elementary abelian of order 1, 2 or 4 (this last case occur-
ring only for Sz(8)), we have that Z is an elementary abelian 2-group;
as ZF(A), this yields )Z) 2.

Let p be odd, and assume, by contradiction, that the Sylow
p-subgroups of F*(A) are not cyclic; let Then there
exists a non trivial component S of E(A ) (see [3; X.13.17]) such

that D = P 1. D is cyclic, because such are the Sylow p-sub-
groups (p odd) of the groups of type P8L(2, 2n) and 8z(2m+l). Further,
since P is not cyclic, there exists an element x of order p in P, such
that 8 r1 (z) = [S, x] = 1 (here we use the fact that Z is a 2-group
and, in particular, D r1 F( G ) = 1). Let y be an element of order p
in D and put B = x, y~. Then B is an elementary abelian p-group
acting faithfully on M. Let Mo = CM(B) and M = thus Xl is
non trivial and, q : 111 = ~ CM(a) ; 1 =I=- a E B) (see [3; X.1.9]).
Let N = Ns(D) ; now, N normalizes B (since it fixes (y) and cen-
tralizes x&#x3E;) and so it acts on ill. Hypothesis (I) implies that, for
every E B, is N-invariant and thus a~N acts trivially on
C,(a). Now, (a)N == (a) or (a)"= B; if the second case occurs,

C~(a) = 1. Hence, if Gy(a) =I=- 1, then (a) « N. In

this case, suppose (a) # (x) and a~ ~ y~ ; since N centralizes 
we have that N centralizes a~ and so N centralizes x~ = B, which
is not possible because N does not centralize the cyclic group D.
Thus, if and GM(a) =1= 1, hence:

Therefore, if .lVh = CM(x), is N-invariant and y centralizes 
Since [S, x] = 1, we may apply the same argument for every conju-
gate of D in S. M1 is S-invariant and centralizes Mfmi. This

implies [M, ~)~] 5~ M. But = S is normal in A, being a perfect
subnormal subgroup. This contradicts the fact that M is a faithful
irreducible module for A. Thus, if p is odd, the Sylow p-subgroups
of F*(A) are cyclic.

Let now p = 2, 2. Let P E Syl2 (F*(A)); we show that P
acts as a group of f.p.f. automorphisms on M. Let Q E Syl2 (A) such
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that P ~ Q and let L = NA(Q). Take x E P of order 2 such that IOM(X)1 I
is maximal. Write and g = x~L; then 

and, since Mo is L-invariant, g c OL(Mo). If x~,
then (X)L is not cyclic and there exists 1 ~ y E such that =

Now, and, since q ~ 2,
y] = 1. Our choice of x gives Mi = Ma , a contradiction. Hence’K

is cyclic, that is x~ is normal in L. 
’

Let now g E A such that xg E Q ; then xg E P = Q r’1 I’* (A ) and
IOM(Xg)I == . Thus, again, (xg) « L. By a classical Theorem of
Burnside, this implies ~x~ _ xg&#x3E; and, since Ixl = 2, x = xg. There-

fore, x is an isolated involution of Q. By Glauberman Z*-Theorem
(see [6; Th. 4.95]):

Hence, for every h E A :

since is the hypercentre of F*(A), we conclude that x belongs to
F(A) and so, by Lemma 3.1, C,(x) = 1. This shows that the Sylow
2-subgroups of F*(A) are cyclic or generalized quaternion, concluding
the proof of point (a).

(b) Since A is an sn-group, by Proposition 2.5, we have that A’
induces a group of inner automorphisms on every non abelian chief
factor of A. Now, if A is not soluble, 1, and so, by point (a),
F(A) is cyclic (in fact, this follows from 3.1 if q = 2, and the fact that
(a) implies that any Sylow 2-subgroup of F*(A) is a Sylow 2-subgroup
of E(A) if and q 0 2; we recall that E(A) r1 F(A) ===
= Z(E(A))). Thus A’ induces a group of inner automorphisms on
every chief factor of A, and so A’ c I’* (A ) .

If A is soluble, then F*(A) = F(A) and there is at most one non
cyclic composition factor of A, between 1 and F(A) in every
chief series of A through F(A) (this follows from Lemma 3.1). In
this case = 4 and, if C = is isomorphic to a sub-
group of Aut(!7/F) ^~ S3 . Now, A’ n C centralizes every chief fac-
tors of .A and so A’ n C c I’(A), proving our assertion: 

We denote by l*(G) the generalized Fitting length of the group G.

3.6 COROLLARY. Let G be an sn-group. Then t*(G) c 4. More pre-
cisely, if F = F(G) and then GIH is metabelian.
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PROOF. Let F* = F*(G). By definition, F* is the set of those

elements of G which act, by conjugation, as an inner automorphism
on every chief factor of G. By 2.5 and 3.5 (together with Lemma 3.4),
the chief factors of are simple or of order 4. Hence, the same is
true for because all chief factors of G lying between F and F*
are non abelian and thus simple. So, if HIF - F*(GfF), GIH is me-
tabelian.

3.7 LEMMA. Assume hypothesis (I) and let p be a prime p =1= q.
If p is odd, then A satisfies ep; if p = 2, then A satisfies 

PROOF. (A) p odd. Let and N = NA(P). Firstly,
we observe that P is abelian. In fact, q, M is completely re-
ducible as a Fq P-module. Now, hypothesis (I) implies, via Lem-

ma 3.1, that P/CP( U) is cyclic, for every P-component U of M.
Since P is faithful on M, it follows that P is abelian.

Now, in order to prove that A satisfies C , it is enough to show
that N fixes by conjugation every cyclic subgroup of B = 

Let D = P n F* (A ) ; then, by 3.5, D is cyclic.
Let = p . If x E D then ~x~ car D a N, and

so (z) « N. Hence assume D, so ~x~ r1 D = 1. Let D =1= 1.
If D  S for some component S of E(A), then, since P is abelian,

x centralizes D and it follows from 2.5 that x induces on S an inner

automorphism. Without loss of generality, we may assume that x
centralizes S; now, the argument used in the proof of 3.5(a) leads
to a contradiction.

Thus D n E(A) = 1 and so DF(A). Suppose 3 or A

is non soluble. By Lemma 3. ~ (b ), we have in this case [P, N] 
c P r1 F*(A) = D and so P/D c Z(N/D). In particular, D, x) a N.
Take z c D of order p, and set L = (z, ~). Then L is elementary abelian
of order p 2, whence

Since z acts f.p.f. on M, there E LB~z~ such that ~~c~ ~ v~
and 1 ~ C,(v). Now7 hypothesis (I) implies = 

and the same for v. But L m .N, because L = D)) N. Hence
and Since z E L acts f.p.f. on M this yields 

and v~ a N. Thus, N normalizes the non trivial pairwise disjoint
subgroups ~y (~~ (v) of L. Since ILl = p 2, it follows that N acts
as a group of powers on L ; in particular x~ is normalized by N, as
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we wanted. Observe that if D = 1, then, as in this case P ~ Z(N),
condition Cp follows trivially.

Now assume that A is soluble and p = 3. Then, since x 0 peA) ==
- P*(A), x does not centralize some Or(A), Suppose that x
does not centralize K = Or(A) for some r 0 2, and let Q = 
since Q is cyclic, Q, x~ is a Frobenius group acting faithfully on M
(observe that we certainly q), and so 1 (see [4; 3.4.4]).
Now, OM(T), where T =  B. If T =1= x?, then CT (Q) 0 1,
because TjOT(Q) is cyclic. If Mo = CM(CT(Q)), M/Mo=l= 1 and, by the
same argument used before 1. But GM/Mo(X) = C,(x) 
contradicting the fact that = = Mo . Thus
T = x&#x3E; and so x~ is normalized by N.

Finally, suppose that the only r-component, y’~3, of F(A) not
centralized by x is ..R = 0,(A). This implies that .R is a quaternion
group of order 8. Also, we have that F(A), z) is normal in A (this
is because x centralizes 02-(I’(A)), so .F(A), = (AIF(A))’,
by 3.5). Now, arguing as in the case 3, we conclude that x&#x3E;
is also normalised by N. This completes the proof for p odd.

(B) p = 2. Again, let P E Syl2 (A) and set N = D =

- P n F*(A).

Let U be an FN-chief factor of Then hypothesis (I) and lem-
ma 3.1 imply that BjOB( U) is cyclic or generalized quaternion.
Since B is generated by elements of order 2, we get 
and so This holds for every N-chief factor of M.

2 and B acts faithfully on M, we have [B, N] = 1.
If P is abelian (1) implies that condition e2 is satisfied. Hence

assume, for the fest of the proof, that P is not abelian.

(2) P/D c Z(N/D). In fact, Lemma 3.5(b) implies, in parti-
cular, that the derived subgroup of has order 1 or 3.
This entails: [P, N] c P r1.F’* (A ) = D, thus giving (2).

If D = 1, we are done. Thus assume, from now on, D ~ 1.

Suppose, by contradiction g2 w D. Then g&#x3E; r’1 D = 1 and, if (z) =
= g~ n z~ = 1. Let a = g2; z, a) is an elementary abelian

group of order 4, and so l~ _ ~ CM(x) ; 1 ~ x E z, a~ ~ . Because z
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does not fix any element of M, it follows that OM(a) =1= 1. Since

a E Z(P), there exists a non trivial irreducible Fq P-submodule V of M,
such that acts trivially on V. Let C* = Cp( Y) and .R = C* n z, g).
Then = ~g~ or R = zg&#x3E;, because a E R, z, is cyclic by Lem-
ma 3.1, and Further, C* r1 D = 1 and so, by (2):

whence C* c Z(P). Thus, g E Z(P) or
zg E Z(P) ; since z E Z(P), we get g E Z(P).

Let now U be an irreducible F~P-submodule of M such that

a 0 OfJ( U) (this certainly exists, because M is faithful and completely
reducible as an Fq P-module). Then also we have n D = 1

and, by 3.1, P/Cp( U) is cyclic or generalized quaternion. Now,
gCP( U) is a central element of order 4 in P/CP( U) and so P/CP( U)
is cyclic. But then, P’ ~ D n 1, which is not the case. This

contradiction shows that a = g2 E D.

(4) Conclusion. Let .g be a subgroup of P maximal in order
to contain D and such that = = z&#x3E;. Then, by (2),
.g a N. Let W be a non trivial irreducible Fq P-submodule of M and
let C = Cp( W ). Then and so by (3), C is

elementary abelian. Moreover, since .P is not abelian and P’D,
PIC is generalized quaternion. The proof is completed by showing
that P = KC. Suppose, by contradiction, that P. Since P/C
is generated by elements of order 4, there exists y e P such that
)yC) = 4 and y 0 KC. Now, y4 E C and, since z, C)jC = 
y2 E KC. Hence y4 E g r1 C = 1 and so, by (3), y2 = z E D. Consider
now L = K, y). Since .K « P and y 0 K, 1 2 and, by our
choice of .g, z&#x3E;. Thus L = KQI(L) c gS21(P) and,
consequently, y E = Kz, C) = KC, contradicting the choice
of y. Thus P = KC and the Lemma is proved. ·

Before stating the next Theorem, we observe the following trivial
property of groups satisfying 

3.8 LEMMA. Let G be a group satisfying condition ~2 . Let

P E Syl2 (G) and N = Na(P). If H  P, 
where Q is generalized quaternion, and H &#x3E; Z(Q).

PROOF. If P is abelian, then P c Z(N) and the result is trivial.
Hence assume P = Q X A, with Q generalized quaternion and A
elementary abelian; also suppose Z(Q ) ~ g c P. Then 
and so H = H/(H r1 is elementary abelian. Thus .H c
c S2,,(P)  Z(N) ; in particular H « N..
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3.9 THEOREM. Let G be a group. Then G is an sn-group i f and
only if for every chief factor U/ Y of G the following conditions hold:

(a) if UIV is non abelian, then it is simple and Aa(UjV) is as
described in Proposition 2.5;

(b) if UIV is an elementary abelian q-group, then Aa(UjV) sat-

isfies C, for every odd prime p, p ~ q, and it satisfies e: if q =1= 2.

PROOF. ( ~) This follows at once from Proposition 2.5 and Lem-
ma 3.5 (via Lemma 3.4).

(=) Suppose that for every chief factor of the group G condi-
tions (a) and (b) are satisfied. We proceed by induction on G. Let M
be a minimal normal subgroup of G. Then, by inductive hypothesis,

is an sn-group. Let C = Ca(lVl). If ~VI is simple non abelian,
then C r1 .M~ = 1. By 2.5 and condition (a), we have that G/C is an
sn-group. Since the class of sn-groups is a formation, we conclude
that G is an sn-group.

Otherwise if is an elementary abelian q-group, for some prime q.
Now, by Lemma 3.3 and condition (b), G is an sn(p)-group for every
odd prime p, Also, by 1.15, since is an sn(q)-
group. In order to apply Theorem 1.11 and conclude that G is an
sn-group, we have to show that, 2, G is an sn(2)-group. Let P

be a Sylow 2-subgroup of G, and P = PCIC. If P is abelian, then
G/ C actually satisfies condition e2 and we may apply Lemma 3.3.
Thus, assume P = P = Q x A, with Q generalized quaternion and A
elementary abelian. Let z E P, such that, if ~ = Cz, (~) = Z(Q). We
show that z acts as the inversion on M. Let G = GIC, F = F(G).
Since G satisfies ep for every odd_prime p, p # q, it follows that every
subgroup of 02, (F) is normal in G_; in fact any such subgroup is both
subnormal (being contained in F) and pronormal (by Rose’s char-
acterization of groups satisfying ep, see [8; p. 936]). Thus G centralizes
02’(F); in particular Z E P’ centralizes 0,,(F). Moreover, it is easy
to check that ~ is an isolated involution of P. By Glauberman’s
Z*-Theorem, z- E Z* (G) _ K. Now_, K is 2-nilpotent and z centralizes
02- (F(I~)) . It follows this in turn 

Thus, since M is a minimal normal subgroup of G, z acts as the in-
version on M.

Now, we have to show that, for every g E G, P r1 Pg a N, where
N = Na(P). Arguing as in the proof of Lemma 3.3, it is enough to
show that this is true when Let R = P n Pg. Suppose that



51

is not normalized by Then, by Lemma 3.8,
hence there exists acting as the inversion on M.

In particular, g-1. Since R = P r1 Pg, this implies g = 1, and
so .R = P a_ N. Otherwise RC is normalized by N. Then, arguing
as in the proof of Lemma 3.3, N normalizes r1 P = R(C r1 P) _ R.
This completes the proof of the Theorem.

We now exploit Theorem 3.9 (and the preceding lemmas) to give
some more explicit descriptions of the groups for an sn-

group G.

3.10 THEOREM. Let G be a group of odd order. Then G is an sn-group
if and only if T-group for every chief factor UIV of G.

PROOF. Let G be an odd order sn-group, UjVa chief factor of G
and set G = Let be a q-group, q a prime. Then, by
Theorem 3.9, and the fact that G satisfies condition ep for every
p # q. Moreover, by Corollary 3.2, .F_= _I’(G) is cyclic. Thus G’ c .I’;
hence, if Q is a Sylow q-subgroup of G, [Q, = 1. Then
G satisfies also condition ea. If now follows from Robinson [9; Theo-
rem 1] that G is a (soluble) T-group.

Conversely, a soluble T-group satisfies condition C, for every
prime p ([9; Theorem 1*]). Thus, by Theorem 3.9, a soluble group in
which is a T-group, for every chief factor is an sn-group;
in particular this is true for groups of odd order.

REMARKS (a) Arguing as in the first part of the proof of 3.10,
it is easy to show that, in a soluble sn-group G, AG( U/Y) satisfies
condition ~2 also when is a 2-group (in this case it indeed sat-
isfies C,).

(b) Every soluble Frobenius group is an sn-group. This is not
true for Frobenius groups in general. In fact the non split extension
of SL(2,5) by a group of order 2 is a Frobenius complement, but it
is not an sn-group. Accordingly to Zassenhaus’s results on Frobenius
groups, every such group has a subgroup of index 2 which is an

sn-group.
Finally, we describe in (non soluble) sn-groups. To avoid

heavy notations we come back to hypothesis (I).

3.11 THEOREM. Assume that hypothesis (I) holds for the group A
and the F,,A-module M. Then:
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(a) I f q ~ 2, then A is soluble or I’*(A) --~ ~SL(2, 5) X g, where K
is cyclic. and (~~,~Z(2,5)~)==1. Also JL~~Z(2,5)xJ3’, where H
is a F(H), the Sylow 2-subgroups of H are elementary
abelian and the only possible prime common divisors of ISL(2, ~) ~)
are q and 2.

(b) I f q = 2, then A is soluble or I’* (A ) = R X g where K is
cyclic of odd order and .R is either simple or R = S X T with S !2t~

~ PSL(2, 2n), T ~ Sz(2m) and n, m are odd and coprime (this ensures
- 22) Moreover A is a semidirect product RXIH, where H

is a T-group, acting on R in the way described in 2.5, K = F(H) and
(|R|, |H|)=2j.

PROOF. (a) 2. If A is not soluble, then, by 3.5 (b), 1,
and, as we observed in the first part of the proof of 3.~, Z = Z(E(A))
has order at most 2. Furthermore, by 3.5(a), the Sylow 2-subgroups
of F*(A) are generalized quaternion (if they were cyclic, ~’* (A ), and
so A, would be soluble). It follows that the Sylow 2-subgroups of
E(A) are generalized quaternion. Now, is the direct product
of groups of type PSL(2,2n) and Thus, the only pos-

sibility is 4) ^· PSL(2, 5) and .E(A) -v SL(2, 5).
If K = 02,(F(A)), then, by 3.5(a), g is cyclic and (IK 1 7 JE(A) 1) =1;

also: F*(A) = E(A) Now, let C = C,(E(A)). By 2.5, AjC 
5), so A = E(A) C and E(A) f1 C = Z. Clearly F(C) _

- F(A), which is cyclic; whence C is 2-nilpotent. Moreover, by 3.9,
A satisfies C*. This implies that the Sylow 2-subgroups of C are ele-
mentary abelian. It follows that Z = 02 (F( C)) has a normal com-
plement .g in C. Now, clearly, F(H) = K and A = E(A) X g.
Furthermore, since, by 3.9, A satisfies Cp for every prime p # 2, q,
we have that, for all such primes, A is either p-nilpotent or p-perfect
(Robinson [8; Theorem 3]). Since H’  K and IKI) - 1, we
get Finally, keeping in mind that H

satisfies C, (see Robinson [9; Corollary p. 936]) for every prime p
dividing F(H) and that .F(g) ~ g’, it is easy to see that H is a

T-group.

(b) q = 2. Suppose that A is not soluble; then E(A) ~ 1, and,
since in this case 02 (A) = 19 Z (E(A ) ) - 1. Thus 
where K = F(A) is cyclic of odd order, and = is
the direct product of simple sn-groups. But, by 3.5(a), the Sylow
p-subgroup of F*(A) are cyclic, for every odd prime p. Hence
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IKI) == 1 and, for every 119 2, ... , s~ , the only prime
dividing (I-Ri 1 7 lRj 1) is 2. Now, for every 3 divides 2-)l [
and 5 divides . Thus either 1~ is simple or s = 2, 1~ _ ~ X T,

P8L(2, 2n), 8z(2m), m odd, m &#x3E; 3, and (B81, ~T~) 2 i7
i e N; it is easily seen that this last condition is satisfied if and on y if
n, m are coprime odd numbers.

Let now C = 0 A (R); then C r’1 I~ = 1 and it follows from Propo-
sition 2.5 that A/C is the semidirect product of .RC/C by an abelian
group Hence the semidirect product of R by H,
where the action of H on .R is as described in 2.5.

Now, and, by 3 . ~ ( b ), whence,
K = F(H). Finally, by 3.9, A satisfies C, for every odd prime p
and so does H. Thus A and H are either p-nilpotent or p-perfect, for
every odd prime p. This yields at once - 2i (recall that

= 2i) and, since H’ F(H) and F(H) is cyclic of odd order,
implies that H is a T group. 1
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