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REND. SEM. MaT. UN1Vv. PADOVA, Vol. 82 (1989)

Finite Groups
in which Subnormalizers are Subgroups.

CARLO CAsoLo (*)

Let H be a subgroup of a group G. We put
So(H) = {g€ G; Hsn<H,g)}

and call it the « subnormalizer » of H in G (see [7; p. 238]). In gen-
eral, So(H) is not a subgroup (see [7]). The aim of this paper is to
study the class of groups (which we call sn-groups) in which the sub-
normalizer of every subgroup is a subgroup. As observed in [7; p. 238],
So(H) is a subgroup of G if and only if H is subnormal in <U, V),
whenever Hsn U<G and H sn V<(@G. Furthermore, if G is finite
and S¢(H)<@ then, by a subnormality criterion of H. Wielandt [10],
H is subnormal in S4(H); thus S¢(H) is the maximal subgroup of G
in which H is embedded as a subnormal subgroup.

From now on, «group » will mean «finite group ».

In the first section of this paper we show that the property of
being an sn-group has a local character. Namely, we define for every
prime p, the class of sn (p)-groups of those groups in which the sub-
normalizer of every p-subgroup is a subgroup, and prove that G is
an sn-group if and only if G is an sn(p)-group for every prime p di-
viding G. This in turn leads to the following characterization of
sn-groups:

a group @ is an sn-group if and only if the intersection of any
two Sylow subgroups of G is pronormal in G.

(*) Indirizzo dell’A.: Dipartimento di Matematica e Informatica, Uni-
versitd di Udine, Via Zanon 6, 1-33100 Udine, Italy.
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(We recall that a subgroup H of G is said to be pronormal if, for
every g€ @, H is conjugate to H? in (H, H?).)

At this stage we observe that the class of sn-groups has already
been studied. In fact, in [8], T. Peng defined the class of E-groups
as the class of those groups G in which Ey(z) := {g € G; [g, .#] = 1 for
some n € N} is a subgroup for every x € G; and, for any prime p, the
class E, of those groups in which E4(x) is a subgroup for every p-ele-
ment z of G. It turns out that the class of E-groups is the same as
the class of sn-groups, and that E,-groups are just the sn (p)-groups,
for every prime p. As a consequence, we have that G is an E-group
if and only if it is an E,-group for every prime p, giving a positive
answer to a question raised by Peng.

On the basis of these characterizations, we then give a more de-
tailed description of sn-groups, both in the soluble and in the gen-
eral case, extending some of the results obtained by Peng. In par-
ticular, we have that the only non abelian simple sn-groups are those
of type PSL(2, 2") and Sz(2?m*1); also an sn-group has generalized Fit-
ting length at most four, and all chief factors abelian or simple. Fi-
nally, we give necessary and sufficient conditions for a group G to
be an sn-group in terms of the automorphisms groups induced by G
on its chief factors; as a sample we quote the following: a group G
of odd order is an sn-group if and only if the group of automorphisms
induced by G on each chief factor is a T-group.

After this paper was written, I was informed that H. Heineken,
in his study on E-groups, had obtained indipendently part of the
results which appear in sections 2 and 3 of this paper. In his forth-
coming paper [1], other informations on (not necessarily finite)
E-groups are to to be found.

Notation is mostly standard. We shall make use of P. Hall’s
closure operations. A T-group is a group in which every sunbormal
subgroup is normal. For any group G, F(G) denotes the Fitting sub-
group of G, and, if U/V is a chief factor of G, A,(U/V) denotes the
group of automorphisms of U/V induced by conjugation by G (thus
Ao(U|V) == G[C(T[V)).

1. A characterization of sn-groups.

Our first Lemma gives some elementary properties of the set Sq(H).
The proof, which is straightforward, is omitted.
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1.1 LeMMA. Let H be a subgroup of the group G:
(i) If T sn H, then So(T)2 Seo(H).

(ii) If N < @, then Son(HN/N)2 S((H)N|N; if further N<H,
then So(H)/N = Son(H|N)

(obviously here Sq(H)/N := {gN € G|N; g€ Sy(H)}).

The next result, although very elementary, is fundamental.

1.2 LEMMA. Let H be a subnormal subgroup of G, and P a Sylow
p-subgroup of H, for some prime p; then
€ So(H)}) -

G = H(8,(P)> .

ProoF. By induction on the defect n of H in G. If H is normal
in G apply the usual Frattini argument. Let n >1; then H has de-
fect n» — 1 in its normal closure H¢ By inductive hypothesis:

(+) H¢ = H{8ys(P) .

Take now P, € Syl, (H¢) such that P<P,; then P sn Ny P,) and so
No(P,y) € 8e(P). By the Frattini argument we have also

G = H°Ny(Py) = H<{84(P))
which, together with (), gives:

G = H{Buo(P)) {Bo(P)) = H{8e(P)). m

We recall, from the introduction, that a group G is an sn-group
if S84(H) is a subgroup of G for every H<@, and G is an sn (p)-group,
p a prime, if S4(H)< @G for every p-subgroup H of G.

It then follows from 1.1 (ii) that the class of sn-groups is Q-closed
(that is every homomorphic image of an sn-group is an sn-group).
The class of sn-groups is also S-closed (that is every subgroup of an
sn-group is an sn-group), in fact, in any group ¢, if H< K <@, then
Sg(H) = 8¢(H) N K. Thus, for every prime p, the class of sn(p)-
groups is S-closed.
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1.3 LeEMMA. For every prime p, the class of sn(p)-groups is Q-closed.

Proor. Let G be an sn(p)-group, and N <1G. Let H/N be a
p-subgroup of G/N. Since the class of sn(p)-groups is s-closed, we
may assume G = {(Sy(H)), that is G/N = (Sgn(H/N)>. Let P be a
Sylow p-subgroup of H, then NP =H. If Hsn V<@, by 1.2 we
have V = H{Sy(P)> and so, since G is an sn(p)-group,

V=HSy(P) = NS,(P).
Thus:

NSoP)>(NSyP); Hsn V<G> =<(V; Hsn V<@ = {(Ss(H)) = Q.

Hence G/N = NS8yP)/N = 84P)/(8¢(P) N N). Since P(84(P) N N) is
subnormal in S¢(P), we conclude that H/N is subnormal in G/N,
and 8o Sgn(H/N) = (Sqn(H|N)>, which means that G/N is an sn(p)-
group. W

1.4 PROPOSITION. Let G be a group, p a prime number. The fol-
lowing are equivalent.
(i) G is an sn(p)-group;
(ii) for amy intersection R of Sylow p-subgroups of @,
84(R) = No(R);
(iii) for every P e Syl,(G) and ge G, PN P7<a Ny(P);

(iv) for every P € Syl, (@), g1y ..., gn € Gy (P, g1, ..., gn)> normalizes
PN P:N..N P,

PROOF. (i) = (ii). Let G be an sn (p)-groupand R =P, N .. N P,
with P, e Syl (@), ¢ =1, ...,7. Clearly Ny(R)C Ss(R). Set Se(R) = 8;
since R is a p-subgroup of G, S<@G and Rsn 8. Thus RS is a normal
p-subgroup of § and it is contained in every Sylow p-subgroup of S.
Now, for every ¢ = 1, ..., r, R is subnormal in P, and so P;C S. Hence
P, eSyl, (8), yielding

Rs<P,N..NP,=R.

Thus RS = R, that is §C Ny(R) and, consequently, S = N(R).
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(ii) = (iii). Let P eSyl,(G) and g€ G; where G satisfies condi-
tion (ii). Then NP)C Se(P N P?) = No(P N P?) and so PN P is
normal in N(P).

(iii) = (iv). Let @ satisfy condition (iii) and let P be a Sylow
p-subgroup of G; g¢,,...,9,€G. Set R = PN P N ..N P°», where
go = 1. Then for every ¢ = 0,1,...,n, we may write

E=( (PP,

Thus, by (iii), B <1 N¢(P*) for every ¢ = 0,1,...,n and so
E < (No(P), No(P%), ..., No(P?)y = T
Now, since for every g € G, g € (Ny(P), No(P)>, we have

T= <NG(P)7 G1y -eey gn> ’

whence, in particular, {P, gy, ..., §,> normalizes R.

(iv) = (i). Let G satisfy condition (iv) and let H be a p-subgroup
of G@. Denote by § the set of those Sylow p-subgroups of @, which

contain H, and put B = (| P. We show that Sg(H) = Ng(R) and so
Ped
that S¢(H) is a subgroup of G.

Since R is a p-subgroup of @, containing H, we have at once
H sn R <1 Nyg(R), whence Ny(R)C Sq(H).

Conversely, let V<@ such that Hsn V. Then H is contained
in every Sylow p-subgroup of V. If Pe§ and veV, we have:
H<PNV<P'NV, where ge @ is such that PPNV is a Sylow
p-subgroup of V. Thus:

H<(PPNV)y=P°NYV.
In particular
H<PNPrn P,
But, since G satisfies (iv), P NP7 N P is normalized by (g, gv) =

= {g, v). In particular, it is normalized by v and so H < P’, whence
Pre . This shows that V permutes by conjugation the elements
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of & and so V<NgR). We have therefore:
So(H) =U{V<G; HsnV}C Ny(R).

Thus S4(H) = Ng(R), as we wanted. MW
Now we can state our main characterization of sn (p)-groups.

1.5 THEOREM. Let G be a group. Then G is an sn(p)-group if
and only if for every P,Q € Syl,(G), P N Q is pronormal in Q.

Proor. Let @ be an sn (p)-group. Let P, Q be Sylow p-subgroups
of @ and put R= PN Q. Let also he G and write L = (R, R*).
Choose T e8Syl,(G) such that R<T N LeSyl,(L). Since R* is a
p-subgroup of L, there exists # € L such that R*< (T N L)=. In par-
ticular R*< T= and so R<T*". Thus

R=TNnT""NnPNQ.

By 1.4 (i) = (iv), #h~! normalizes R; then R* = R*, proving that R
is pronormal in G.

Conversely, assume that P N @ is pronormal in @, for every
P,Q eSyl,(G). Then PN @ is both pronormal and subnormal in
Ng(P). This forces P N Q to be normal in Ny (P). By 1.4 (iii) = (i),
we have that G is an sn(p)-group. =

1.6 LeMMA. Assume that G is an sn(p)-group for every prime p
dividing |G|, and let H be a perfect subnormal subgroup of G. Then
H<Q@.

Proor. Assume, firstly, that H is simple and non abelian. Then,
by a well known result of H. Wielandt (see [7, p. 54]), H® = H X K,
where K is the direct product of the conjugates of H, distinct from H.
Let p be a prime divisor of |H| and P € Syl, (H). Since @ is an sn (p)-
group, Lemma 1.2 yields

G — HS,(P).

Set § = S¢(P) and @ = P*. Since P is subnormal in 8, @ is a p-group
and it is contained in every Sylow p-subgroup of S. Let T' = @ N H€,
then T is a p-group and T>P. Since P is a maximal p-subgroup
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of H, we have:
T=Px(I'NK)=Px(@NK).

On the other hand, K centralizes P and so K <S8, whence Q " K < K.
But O,(K) =1, because K is either trivial or the direct product of
non abelian simple groups. Thus @ " K =1 and so @ N H¢ = P,
yielding P <a §. This gives § = N4(P) and, consequently, G = HN y(P).
Now, if ge Ny(P), 15~ P<H N H*. Simplicity of H now forces H — H*
Hence Ny (P)< N H) and thus H < @G.

We now turn to the case in which H is just a perfect subnormal
subgroup of G, and proceed by induction on |@G|. By 1.3 we may
therefore assume H; = 1. Let R be the soluble radical of H¢ Assume
R 1; then, as R is normal in G, HR/R is subnormal in G/R and
HR|R ~ H[H N R is perfect. By inductive hypothesis, HR <« G and
so HR = H¢. Let ge G such that H<(H, H’). Then HH’/H =~
=~ H°/(H N H*) is perfect; but also HH/H = (HH* N R)H|H =~
~ (HH* N R)/(H N R) is soluble. Thus HH?* — H, that is H = H".
Since H is subnormal in @, this implies that H is normal in G.

It remains the case in which B =1. Then, if A is a minimal sub-
normal subgroup of G contained in H, A is simple non abelian and
80, by the case discussed above, A is normal in G. Now, by induec-
tive hypothesis: H/A <G/A, yielding H<G. m

1.7 LEMMA. Let G be a group, G = TS with 8<@G, Tsn@. If
Psn S then {T,P) is subnormal in G.

Proor. By induction on the defect n of 7' in G. If » =1, T is
normal and G/T = T8|T ~ 8/T N 8; in this isomorphism, <7, P>/T =
= TP|T corresponds to P(SNT)/SNT which is subnormal in
8/8 N T; thus <T, Py is subnormal in G.

Let now n>1. Assume firstly that P normalizes T. Let
K = T[G, ,_,T], then T < K, K has defect n —1 in G and G = K&S.
Hence, by induective hypothesis 4 = (K, P) = KP is subnormal
in . Now ANS=KPN8=(KnNAS)P and Psn(K N S)P. Fur-
ther:

(KN S)PT = (EPNS)T =KPNST =KP = 4.

Since T<w A we have, by the case n =1, <T, P) = TP sn A and so
TPsn@.
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In the general case, set T = T® = (T*; he P)>. Then T, being
generated by subnormal subgroups, is subnormal in G, G = TS and
T is normalized by P. By the case discussed above (T, P) = TP
is subnormal in G. =

1.8 PROPOSITION. Suppose that G is not an sn-group. If H<@
is minimal such that So(H) <G, then either H is perfect or it is cyclic
of order a power of a prime.

ProoF. Let G, H be as in our hypothesis, and suppose that H
is not a perfect group. Then there exists a maximal normal sub-
group T of H, such that |H:T| = p for some prime p. Now Sg(T)2
2 8¢(H) and so, by our choice of H:

(Se(H)><8o(T)< @G .

Set L = (S¢(H)); then T'sn L. Let P e Syl,(H), thus TP = H.

Suppose that P = H; then Sg(P)<G. Let V<@ such that Hsn V;
then §,(P)= S (P )nV<V and, by Lemma 1.2, V = HS,(P). Thus
H permutes with K = {S,(P); H sn V<@). Now

HE>(HS,(P); HsnVy =(V; Hsn V) = L>HK ,

whence HK = L and so L = TK. Moreover, K < 8q(P) and so P sn K.
Since also T is subnormal in I, Lemma 1.7 yields H = {7, P> sn L;
thus S¢(H) = (S¢(H)) <@, contradicting our choice of H.

Therefore, we must have H = P. If H admits two distinct max-
imal subgroups R and @, then both are subnormal in H and so
L = {Se(H)) < 8a(R) N 8¢(Q). In particular R, Q are subnormal in L
and thus H = (R, Q) is subnormal in L, again contradicting the
choice of H. Hence H has a unique maximal subgroup and it is the-
refore cyclic. m

We now recall the definitions given by Peng in [8]. Let G be a
group, z € G; put E(x) = {g€ G;[g, .«] =1,n€N}. Then E is the
class of groups G in which H(x) is a subgroup, for every x € G. For
any prime p, E, is the class of groups in which Ey(z)<G for every
p-element = of @.

Peng raises the question as to whether G € E if (and only if) G € E,
for every prime p; he gives a positive answer for soluble groups of
2-length at most 1 [8, Corollary 3, p. 328].
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1.9 LemMA. Let G be a group, x€ G. If G is ansn(p)-group for
every prime p dividing |x|, then:

Bo(r) = Sq(2) <G .

ProOOF. Let 8 = S¢(<w)). If ge S then <(z)sn <z, g> and so
[g, »2] =1 for some mneN; thus ge Eyx) and SC Egx). Write
& =® ...2,, where {x,> (¢ =1, ...,7) are the primary components of
(x>, and set 8, = Sy({w,>). Then, for any 4, S, is a subgroup of G,

by our hypothesis. Let T = () 8,. Now, for any ¢ =1,..,r, (x>
i=1

is subnormal in T'; thus <z) = (@, ..., #,» sn T, whence 7' C S. Con-
versely, if ge 8, (w;> < <{x)>sn<wx,g) and so ge §; for every i =1,...,7;
thus ge 7T, yielding S C T and, consequently, § = T'<G@G.

Let now Y€ @ such that a¢€8; we show that ge 8. In fact
o =a)...22€ 8 and, the s being suitable powers of z, 2/ 8 for
every %; in particular € 8; for every ¢. Let p,,...,p, be primes
such that, for any ¢ =1, ..., r, x; is a p;-element. Further, for any ¢,
choose a Sylow p,-subgroup P; of §; such that 27 € P,. Then, since
wysn 8, z,€P; and so {(z><P,NP. By 14, P,NnP/'<
<1 {P;, g); in particular <{x,> is subnormal in <{(P,,g> and so ge 8.
This is true for every ¢ =1, ..., whence ge S.

Let now y e Hg(x); then, for some neN, [y, 2] =1. Let m be
the minimal natural number such that [y, ,#]€ 8 (we put [y, 2] = ¥).
Suppose m > 0, then:

83 ¥y m] = [Yy mar®y ] = (x~1)¥' "7 g, and this implies =17 8.
Thus [¥, m—2] € S, contradicting the choice of m. Hence m = 0 and,
therefore, y € 8. This yields Eg(z)C S completing the proof that
Eez)=8. m

An immediate consequence is the following.

1.10 COROLLARY. A group G is an sn(p)-group for some prime p
if and only if Ge E,.

Proor. If @ is an sn(p)-group, then Lemma 1.9 implies at once
that Hq(x) is a subgroup for every p-element x of G, and so Ge E,.
Conversely, let G € E, and suppose that G is not an sn (p)-group.
Thus, let H be a minimal p-subgroup of G such that S;(H) is not a
subgroup. Then, as in the proof of 1.8, H has a unique maximal
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subgroup, so H = (x> for some p-element x of G. Now Ey(x)<@G
and z is a left Engel element in Ey(x); thus <z) sn Eq(x) and Hy(xr) C
C 84(<x)). Since, clearly, Sg(<x)) C Es(x), we get So(H) = Eq(x)< @,
a contradiction. Hence @ is an sn(p)-group. N

1.11 THEOREM. Let G be a group. The following are equivalent.
(i) @ is an sn(p)-group for every p dividing |G|;
(ii) @ is an sn-group;
(iili) @ ¢s an E-group;
(iv) G is an E,-group for every p dividing |G|.

PrOOF. (i) = (ii). Let G be an sn(p)-group for every p dividing
|G| and suppose, by contradiction, that G is not an sn-group. Let
H <G be minimal such that S(H) is not a subgroup. Then, Propo-
sition 1.8 implies that H is perfect. Let H snV <(@. Since the class

of sn(p)-groups is S-closed, V is an sn(p)-group for every prime di-
viding its order, hence, by Lemma 1.6, H is normal in V. Thus:

Be(H)y =<V<G;HsnV) = No(H)C So(H)
and so Sg(H) = Ny(H) is a subgroup, a contradiction. Thus G is an
sn-group.
(ii) = (iii). This follows from Lemma 1.9.

(iii) = (iv). This is obvious.

(iv) = (i). This follows from Corollary 1.10. m

1.12 COROLLARY. A group G is an sn-group if and only if every
intersection of two Sylow subgroups of G is pronormal in G.

Proor. Immediate from 1.5 and 1.11. =

1.13 CoROLLARY. FEvery chief factor of an sn-group is simple or
abelian.

Proor. Follows from 1.11 and Lemma 1.6. =

1.14 CorROLLARY. (a) For any prime p, the class of sn(p)-groups
is a formation.

(b) The class of sn-groups is a formation.
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PrOOF. (a) Since the class of sn (p)-groups is both S and Q-closed,
it is sufficient to show that the direct product of two sn(p)-groups
is again an sn (p)-group, and this is clearly true in view of the iden-
tification of sn (p)-groups with E,-groups stated in 1.10.

(b) Follows in the same manner from 1.11 and the fact that
the class of sn-groups is both S and Q-closed. m

For further reference we state here some elementary consequences
of the results obtained in this section.

1.15 LEMMA. Let p be a prime: each of the following conditions
imply that the group G is an sn(p)-group.

(@) The Sylow p-subgroups of G are disjoint from their conju-
gates.

(b) The Sylow p-subgroups of G are cyclic.
(¢) G/OL(G) is an sn(p)-group.

(d) G|Z(G) is an sn (p)-group.
(observe that the last two conditions are also necessary for G to be
an sn(p)-group).

PrOOF. (a) and (b) follow immediately from Theorem 1.5.

(¢) This also follows from 1.5; in fact if R is an intersection
of Sylow p-subgroups of G, then R>O0,(G).

(d) Let Z = Z(G), H a p-subgroup of ¢ and U, V<G such
that Hsn U and HsnV. Then ZH sn (U, V)Z, because G/Z is an
sn (p)-group; thus there exists » e N such that [(U, V), , H]<ZH.
Then [<U, V), .ssH]< H, whence H sn (U, V). This implies that S;(H)
is a subgroup of @. m

2. Simple sn-groups.

The main result to be proved in this section is the following.

2.1 THEOREM. A nonabelian simple group is an sn-group if and
only if it is one of the following groups:

PSL(2,2"), n>2; Sz(22m+), m>1 .
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One way of proving this Theorem is to check the list of all simple
groups. Instead, we have chosen to use a Theorem of Goldschmidt
on strongly closed subgroups, which we will quote in due course.
Before, we proceed to eliminate some groups.

2.2 LEMMA. Let G be a group with no subgroups of index two and
dihedral Sylow 2-subgroups of order at least 8. Then @ is not an sn (2)-

group.

ProoF. Let @ be a Sylow 2-subgroup of @; z,y two involutions
such that @ = (x,y). Then (see [5; 7.7.3]) there exists g€ G such
that 2 =y and so ye @ NQ? = R. If G were an sn(2)-group, then,
by 1.4: R<(Q,g>. In particular, x =y '€ R = R. Thus R =
= <@,y = @ and g € Ny(@). This implies that # and y are conjugate
in @, which is not the case. Hence G is not an sn(2)-group. W

2.3 LeMMA. PSL(2, q) is an sn (2)-group if and only if ¢ = 3, 5, 27,

Proor. PSL(2,3) =~ 4, is an sn-group.

If ¢ =2 then the Sylow 2-subgroups of PSL(2,q) are disjoint
from their conjugates; thus, by 1.15, PSL(2, q) is an sn(2)-group.
Also, PSL(2,5) =~ PSL(2, 4) is an sn(2)-group.

Conversely, let G = PSL(2,q), with ¢ = p»> 3, p+# 2. We dis-
tinguish two cases.

(@) Let ¢ # 3.5 (mod 8). Then (see [5; 15.1.1]), the Sylow 2-sub-
groups of G are dihedral of order at least 8. Since G is simple, Lem-
ma 2.2 implies that G is not an sn(2)-group.

(b) Let ¢ =3,5 (mod 8). In this case, the Sylow 2-subgroups
of G are elementary abelian of order 4 and they coincide with their
centralizer in @ (see [5;15.1.1]). Let @ € Syl,(@) and suppose that G
is an sn((2)-group. Assume that there exists 1% x €@ such that
Ce(z)>Q and let g€ Co(x)\Q. Then x€@ NQr = R. If R = @, then
gE NgQ). But Ny(Q) ~ A, and s0o ge@, a contradiction. Hence
R = {x>; by 1.4 this implies <{x) <0 Ng(@), which is not possible.
Thus, for avery 1« €@, Co(x) = Q. By a Theorem of Suzuki (see
[6;9.3.2]), G is a Zassenhaus group of degree |Q| +1 =5 and so
G ~ PSL(2,5). This completes the proof. m

DEFINITION. Let @ be a subgroup of P eSyl,(G), G a group.
Then @ is said to be strongly closed in P (with respect to @) if, for
every x € Q and g € G, 2’ € P implies ¢ € Q.
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The Theorem of Goldschmidt that we are going to use is the fol-
lowing (see [6; Theorem 4. 128]).

THEOREM (Goldschmidt). Let G be a simple group; if a Sylow
2-subgroup S of G contains a non trivial elementary abelian subgroup
which is strongly closed in S with respect to G, then G is one of the fol-
lowing groups.

(a) PSL(2,2%), PSU(3, 22", n>1; Sz(22t1), m>1.
(b) PSL(2,q), q= 3,5 (mod 8).
(¢) The first Janko group J, or a Ree group *G,(3"), n odd, n > 1.

2.4 PROPOSITION. Let G be a simple non abelian group; then G
is an sn(2)-group if and only if G is one of the following groups.

PSLE2, 2%, PSUB3, 2, Se2m); n>1, m>1.

Proor. Let G be a simple non abelian sn(2)-group, and let S
be a Sylow 2-subgroup of G. Take R<S to be a non trivial intersec-
tion of Sylow 2-subgroups of G of minimal possible order (thus R = §
if the Sylow 2-subgroups of G are pairwise disjoint). Let A = Q,(Z(R));
then A is a nontrivial elementary abelian characteristic subgroup of E.
We show that A is strongly closed in §. Let 142 € A, g € G and sup-
pose 7€ 8. Then z€ A NS '<RN 8. Now, by our choice of R,
we get RN 8= R and so, by Proposition 1.4, g normalizes R,
whence g normalizes A. Thus e A, showing that A is strongly
closed in § with respect to G.

Therefore, G is one of the groups listed in Goldschmidt’s Theorem.
Now, groups in (@) are indeed sn (2)-groups, because in each of them
the Sylow 2-subgroups are disjoint from their conjugates. Groups
in (b) are not sn(2)-groups by Lemma 2.2, except when ¢ = 5, but
then G =~ PSL(2, 4).

The Janko group J, is not an sn(2)-group because, for instance,
it has a subgroup isomorphic to PSL(2,11). Finally, groups of Ree
type 2G,(3") are not sn (2)-groups: in fact 2G,(3") contains a subgroup
isomorphiec to PSL(2,3"),n>1. W

Proor or THEOREM 2.1. First, groups of type PSL(2,2") and
Sz(22m+1) are sn-groups. In fact, in both cases, the Sylow 2-subgroups
are disjoint from conjugates and the Sylow p-subgroups, p odd, are
cyclic. By 1.15 these groups are sn-groups.
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Conversely, if G is a nonabelian simple sn-group, it is, in partic-
ular, an sn(2)-group, hence one of those listed in Proposition 2.4.
Thus, to complete the proof of the Theorem, we have to show that
groups of type PSU(3, ¢*), ¢ = 27, m» > 1, are not sn-groups.

Now, by 1.15 (d) and 1.11, PSU(3, ¢*) is an sn-group if and only
if SU(3, ¢?) is an sn-group; we deal with this latter group, and thus
put G = 8U(3, ¢*?) (¢ = 2" n>1). Let also K = GF(q%) be the field
with ¢* elements.

We have |G| = ¢*(¢® +1)(¢>—1). Let p be an (odd) prime divid-
ing ¢ + 1 and let p~ be the highest power of p which divides ¢ + 1.
We observe that, as » >1, we may always choose p in such a way
that pr > 3. The order of a Sylow p-subgroup of G is now p* if p += 3,
and p*+1 if p = 3. Since pr divides ¢>— 1, the field K contains a
primitive p-th root of unity, which we denote by . Let also v = u®~/2
and observe that, since p > 3, u = v. In SL(3, ¢?) we take the ma-
trices:

’

uw 0 0
a — 0 v 0
0 0 v

S H=O
H O O
S O M

v 0 O
b:OvO, T =
0 0 u

Then |a| = |b| = p7, |#| =3, [a,b] =1 and P = {a, b) is an abelian
group of order p* which is normalized by z. Moreover a, b, e SU(3, ¢?)
(obviously, we are assuming that a base of the vector space over K
has been chosen in such a way the matrix of the Hermitian product
is the identity).

Thus, if p = 3, P is a Sylow p-subgroup of G; if p = 3, @ = (P, n)
is a Sylow p-subgroup of G. Now take 2z € K a root of the polynomial
x* + 2 + 1 over GF(2); then 2z 0,1 and, since ¢>4, 2? = 2. Thus
the matrix

1 0 0
h=1{0 2 z+1
0 241 2

is a unitary matrix, so k€ G. Moreover, |k = 2 and a* = a.
Let p 5= 3, then one easily checks that

PrNP=<a).
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If G were an sn-group, <a) should be normalized by N¢(P); in par-
ticular, » should normalize {a), which is not the case. Hence G is
not an sn-group.

If p = 3, then @* N Q = Z{a), where Z is the centre of &, which
in this case has order 3. Again Z<a) is not normalized by x € N(Q),
and so @ is not an sn-group.

The proof is now complete. m

We observed in Corollary 1.13 that a nonabelian chief factor of
an sn-group is simple. We end this section by describing the auto-
morphisms group induced by an sn-group on its nonabelian (simple)
chief factors. By Theorem 2.1 such factors are isomorphic to groups
of type PSL(2,2") or Sz(22+1). It is well known that the group of
automorphisms of any of these groups is the semidirect product of
the group of inner automorphisms by a cyclic group of those auto-
morphisms induced by the automorphisms of the underlying field.

2.5 PRrROPOSITION. Let U|V be a monabelian (simple) chicf factor
of an sn-group G. Then the group of outer automorphisms induced
by G on U|V is cyclic of order coprime to the order of U|V, or one of the
following two exceptions occurs:

(a) U]V ~PSL(2,2%) and Ay U|V) is isomorphic to the semi-
direct product of U|V by a (field) automorphism of order 3.

() UV =~ 82(2%) and Ag(U|V) is isomorphic to the semidirect
product of U|V by a (field) automorphism of order 5.

For the proof we need the following simple observation.

2.6 LEMMA. Let p be an odd prime;

(a) if p divides |PSL(2, 2?)|, then p = 3;
(b) if p divides |Sz(27)|, then p = 5.

PrOOF. (a) If pis an odd prime dividing |PSL(2, 27)| = 27(22? — 1),
then p divides 222 —1. Now: 3?2 = (22— 1)»=2??—1 (mod p). Thus
p|3? and so p = 3.

(b) If p is an odd prime dividing |Sz(2?)| = 227(22» 4 1)(2°—1),
then p|(2%” + 1)(2?—1) ans so, a fortiori, p|2»—1. Now: 157 =
= (2*—1)»=2% —1 (mod p). Thus p|15. Sinece 3 does not divide
the order of Sz(2?), we have p =5. N
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PROOF OF PROPOSITION 2.5. By the @-closure of the class of
sn-groups, we may assume ¥V = 1; also, since Co(U)N U =1, we may
assume Cq(U) = 1 and so view G as a subgroup of Aut(U). Thus U
is identified with Inn (U), and U =~ PSL(2, 2") or U ~ Sz(22m+1). Then
@ is a semidirect product U x|<{x), where z is an automorphism of U
induced by an automorphism of the underlying field K (thus
K = GF(2") or K = QF(2*»*1)). Without loss of generality, we may
also assume that || = p, p a prime number. Now, if U ~ PSL(2, 2"),
pln (and, if U =~ S8z(2*"+), p|2m + 1). We write n = ap (respecti-
vely, 2m + 1 = ap). Then we may take z as the automorphism in-
duced on U by the field automorphism mapping every » € K to u®".
Let C = Oy(w); then O ~ PSL(2, 2%) or, respectively, ¢ ~ Sz(2?) (here
we consider also S2(2), which is soluble of order 20). Suppose that p
divides the order of U.

Let P eSyl, (@) such that € P, and D = U N P; then D<a P
and P = DT where T = <{x). Let he C and suppose that D* = D;
thus, since in U the Sylow p-subgroups are disjoint from their con-
jugates (this is indeed true for every prime dividing |U|), D* N\ D = 1.
Hence

PNPPNU=(PNUPNPNU=D"'NnD=1.

Now, T'<P N P* because 2" = w, so T = P N P>

If G is an sn-group, then T <1 Ny (P). In particular, [D, T]<
<DNT=1 and thus D<C, which is not the case, because
D e 8yl, (U) while p divides |U:.C|. Thus, in order to have an sn-
group, ¢ must normalize D. But in U the normalizers of Sylow sub-
groups are soluble, so this forces C ~ PSL(2,2) or, respectively,
0 =2 82(2). Hence a =1 and n = p (or 2m + 1 = p).

If p is odd, by Lemma 2.6, we have therefore Uj=~ PSL(2,2%) and
p =3, or U= 82(2°) and p = 5.

If p =2, then U=~ PSL(2,4) >~ 4;, and G =~ §; is not an sn-
group (in this case, in the notation used above, C =~ 8, does not nor-
malize any subgroup of U).

Conversely, let G be a split extension of a group U of type PSL(2, 2)
or 8z(22m+1) by a group of automorphisms induced by field automor-
phisms, such that (|U|, |¢:U|) =1. Then @ is an sn-group because
its Sylow p-subgroups are disjoint from conjugates if p||U|, and cy-
clic if p||@:T]|.

Finally, let @ be one of the groups in (@) or (b) of our statement;
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then one checks that the Sylow 3-subgroups of the group in (a) and
the Sylow 5-subgroups of the group in (b) are, in fact, disjoint from
their coningates, and so the two groups are sn-groups. W

3. Automorphism groups induced on chief factors.

In this section we study the structure of sn-groups by looking
at the automorphism groups induced by conjugation on each chief
factor. By 1.13, the chief factors of an sn-group are simple or abelian.
The case of a simple nonabelian chief factor has already been treated
in Proposition 2.5; thus, from now on, we deal with abelian chief
factors. We remid that, if U/V is a chief factor of a group G, we put
Ay(U[V) = G|Co(T]V).

3.1 LEMMA. Let U|V be an abelian chief factor of an sn (p)-group @,
and let A = Ag(U|V). Then O,(A) acts as a group of fixed point free
(f.p.f.) automorphisms on U[V.

PRrROOF. In view of the @-closure of the class of sn(p)-groups, we
may assume V=1. Hence U is a minimal normal subgroup of G
and it is an elementary abelian g-group, for some prime ¢. If ¢ = p,
it is well known that 0,(4) = 1. Let p += q and assume, by contra-
diction, that there exists 1~ Z € 0,(A4) such that K = Cy(Z) %= 1. If
C = Cg(U), let £ = Cxr with € G\ C; write L = (C, x> and take a
Sylow p-subgroup p of L. Then [K, P] = 1. But S¢(P) is a subgroup
of G and Psn Sg(P). Thus: S¢(P)N U = Cy(P) = K; whence, in
particular, K < Sg(P). Now, L/C<O0,(G/C), so L is subnormal in G
and, by 1.2, @ = LS(P), which implies that K is normal in G. Min-
imality of U gives K =1 or K = U, both contradicting our choice
ofz. m

We denote by I(@) the Fitting length of the group G.

3.2 COROLLARY. Let G be an sn-group. Then:
(@) for every abelian chief factor U|V of G, F(A«(U|V)) acts as
a group of f.p.f. automorphisms on U|V;
(b) if G is soluble, then U(G)<4 and if, further, S, is not involved
in G, (G)<3.

PRrROOF. (a) This follows at once from Lemma 3.1.
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(b) It is a consequence of (a) that, for every chief factor U/V
of a soluble sn-group @, F(A4(U/V)) is either cyclic or the direct
product of a cyclic group of odd order and a generalized quaternion
group. In particular, the chief factors of A4(U/V) are cyclic or of
order 4, and so the automorphism group induced by A4 (U/V) on
each of its chief factors is abelian or it is isomorphic to S, (and it is
always abelian if S, is not involved in @, see [4; Lemma 6]). Thus
AgU|V)' <F(Ag(U|V)) and A((U|V) <F(Ai(U|V)) if 8, is not in-
volved in Ag(U/V). Hence 1(A4(U[/V)) <3 and (4s(U/V))<2 if 8,
is not involved in A4 U/V).

Since F(G) = () Ce(U/V), U/V the chief factors of G, we get
(G)<4 and l(G)<3 if S, is not involved in @. N

REMARK. 4 is the best possible bound for the Fitting length of
a soluble sn-group. Indeed, we shall see that every soluble Frobenius
group is an sn-group; and there exist soluble Frobenius groups of
Fitting length 4.

DEFINITION. (a) Let G be a group. Following Robinson [9], we
say that G satisfies condition C,, p a prime, if every subgroup of a
Sylow p-subgroup P of G is normal in N,(P). We quote from [9]
the following results.

1) (J. Rose). A group G satisfies C, if and only if every p-sub-
group of G is pronormal in G.

2) (D. Robinson). A group G is a soluble T-group if and only
if it satisfies C, for every prime (dividing |@|).

(b)) We say that the group G satisfies condition C¥ if

(i) every Sylow 2-subgroup P of G is either abelian or
P = @ xA, where @ is a generalized quaternion group and A4 is ele-
mentary abelian; and

(i) 2(P)<Z(Ng(P)) (We observe that, if P is abelian, then
(ii) implies P<Z(No(P))).

It follows from Proposition 1.4 that a group satisfying C,, for a
prime p, is an sn (p)-group. Indeed we can say a little more.

3.3 LEMMA. Let p,q be prime numbers and let M be a normal
q-subgroup of the group G; C = Oo(M). If G[M is an sn (p)-group and
G|C satisfies condition C,, then G is an sn (p)-group.
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Proor. If p = ¢, then M <O0,(@) and so, by the @-closure of the
class of sn(p)-groups, G/0,(G) is an sn(p)-group. By 1.15, G is an
sn (p)-group.

Let p # q; we prove that P N P?<a1 N(P) for every P e Syl,(G)
and g € G; by Proposition 1.4, this implies that G is an sn (p)-group.

Put N = Ny (P) and R= PN P’; we have that PM/M and
PrM|/M are Sylow p-subgroups of G/M and NM|M = Ngu(PM|M).
Thus, since G/M is an sn (p)-group:

1) L=PMNP'M is normalized by N .

Now, (LNP)M =L NPM =L and so L " P and, analogously,
L N P7 is a Sylow p-subgroup of L; whence there exists u € M such
that L N P?= (L N P)*= L N P* Thus:

) R=PNP=LNPANP=LNPNP.

Set R,= PN P Now, G/C satisfies condition C,; thus, since
PC|C e Syl, (G/C) and

R,C|C<PC|C<NC|C<Nq(PC|C),

we have: R,C/C <« NC/C. Hence R,C is normalized by N, and, con-
sequently, P N\ R,C = Ry(P N C)<a N. But, since [C, %] =1, PN (0 =
=PnNnO0r=PnNnC. Thus PN C<P N P*= R,, yielding:

Ry=R(PNC)< N.

This, together with (1) and (2), shows that N normalizes R =
= P N P7, concluding the proof. m

We observe that condition C} alone is not enough to ensure that
a group satisfying it is an sn(2)-group. Let H = SL(2,3) and M
be an odd order elementary abelian group on which H acts irreducibly
and in such a way Cy(M) = Z(H). Take G = MH the semidirect
product; then @ satisfies C¥ but G is not an sn(2)-group (the reason
for that will be clear soon).

In the next Lemma we isolate an argument which will be fre-
quently used in the sequel.
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3.4 LeMMA Let M be an abelian normal subgroup of the sn-group G,
and write G = G|Co(M). Then the following condition (%) is satisfied:

(%) For every prime p, with (p, ]MI) =1, and every H<P e Syl, (G),
Cu(H) is invariant for N-(P ) (see Peng [8; Lemma 4]).

Proor. Let N = N—(P) and let H, N be the inverse images of
H,N respectively, in the canonical homomorphism @ —>@. Then
H is subnormal in N. Since N is an sn-group, by Lemma 1.2 we
have: N = HSy(Q), where @ eSyl,(H). Now, since (p,|M|) =1:
Sy(@) N M = Cy(Q) = Cu(H), whence Cy(H) is normal in Sy(Q),
yielding: Cy(Q) <t HSy(Q) = N, as we wanted. m

Let G be a group; we denote by F*(G) the generalized Fitting
subgroup of G (see [3; §13]). Then [3; 13.14]: F*(@) = E(Q)F(Q),
where F(@) is the Fitting subgroup of G, and E(G) is a perfect char-
acteristic subgroup of G such that E(G)/Z(E(G@)) is the direct pro-
duct of simple non abelian groups. Further, [E(G), F(G)] =1 and
E(G) N F(G) = Z(E(Q)).

We now consider the groups A¢(U/V), where U/V is an abelian
chief factor of an sn-group G. In view of Lemma 3.4, and in order
to simplify notations, we state here the following common hypothesis
for the next results:

(I) A s an sn-group acting faithfully and irreducibly on a F,A-
module M (q a prime), in such & way condition (*) is satisfied, for
every subgroup K of A acting on M viewed as a F,K-module.

Now, Lemma 3.4 ensures that hypothesis (I) is satisfied when
M = U|V is an abelian chief factor of an sn-group @, and 4 =
= Ay(U|V). Also Lemma 3.1 follows from hypothesis (I); in fact
if H<O,(A), then H is contained in every Sylow p-subgroup of A
and so hypothesis (I) yields Cy(H) invariant by (N ,(P))4= A (where
PeSyl,(4)); thus Cyu(H) =1. We shall refer to this fact as to
Lemma 3.1.

The next Lemma may be compared to Corollary 3.2.

3.5 LEMMA. Assume hypothesis (I). Then:
(a) For every prime p, p = q, the Sylow p-subgroups of F*(A)
are cyclic or gemeralized quaternion.

(b) Let A = A|F*(A); then |A'|<3 and, if A is mot soluble,
A4'=1.
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ProoF. (a) If E(A) = 1, then F*(4) = F(A) acts, by Lemma 3.1,
as a group of f.p.f. automorphisms on M; thus the result follows.

Hence assume H(A) 1 and let Z = Z(E(A)). Since 4 is an sn-
group, E(A)/Z is the direct product of groups of type PSL(2,r) or
Sz(r), where r is a power of 2. Since the Schur multiplicator of such
groups is elementary abelian of order 1,2 or 4 (this last case occur-
ring only for 8%(8)), we have that Z is an elementary abelian 2-group;
as Z<F(A), this yields |Z|<2.

Let p be odd, and assume, by contradiction, that the Sylow
p-subgroups of F*(A) are not cyclic; let P e Syl, (F*(4)). Then there
exists a non trivial component § of E(A4) (see [3; X.13.17]) such
that D = P N S 1. D is cyclic, because such are the Sylow p-sub-
groups (p odd) of the groups of type PSL(2, 2*) and Sz(2™+1). Further,
since P is not ecyclic, there exists an element x of order p in P, such
that 8§ N (@) = [8, 2] = 1 (here we use the fact that Z is a 2-group
and, in particular, D N F(G) = 1). Let y be an element of order p
in D and put B = <{x,y)>. Then B is an elementary abelian p-group
acting faithfully on M. Let M,= C,(B) and M = M|M,; thus M is
non trivial and, since p 5= q: M = {C5(a); 1 # a € B) (see [3; X.1.9]).
Let N=N S(D) now, N normalizes B (since it fixes (y) and cen-
tralizes <z)) and so it acts on M. Hypothesis (I) implies that, for
every 1 a€ B, Cy(a) is N-invariant and thus {a)” acts trivially on
C;(a). Now, <{a)” = {a) or {(a)”= B; if the second case occurs,
O;(a) =1. Hence, if 1#aeB and (Oy(a)# 1, then <(a) < N. In
this case, suppose {a) 7= (x> and <{a) # {y); since N centralizes B/{y),
we have that N centralizes {a)> and so N centralizes <{a, > = B, which
is not possible because N does not centralize the cyclic group D.
Thus, if 17 a€ B and O3(a) # 1, then a e {(u) U {y)>; hence:

M= <Oﬂ(w)7 Cj(?/» .

Therefore, if M, = Oy(x), M, is N-invariant and y centralizes M/M,.
Since [S, 2] = 1, we may apply the same argument for every conju-
gate of D in 8. M, is S-invariant and {y)*® centralizes M/M,. This
implies [M, <y>*] = M. But {y>*= 8§ is normal in 4, being a perfect
subnormal subgroup. This contradicts the fact that M is a faithful
irreducible module for A. Thus, if p is odd, the Sylow p-subgroups
of F*(A) are cyclic.

Let now p = 2, then ¢ = 2. Let P € Syl, (F*(4)); we show that P
acts as a group of f.p.f. automorphisms on M. Let @ € Syl, (4) such
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that P<@Q and let L = N ,(Q). Take x € P of order 2 such that |Cy(x)|
is maximal. Write My= Cy(z) and K = {x)%; then K<P =QnN
N F*(A) and, since M, is L-invariant, K< O, (M,). If {x)+~ {x),
then {(z)* is not cyclic and there exists 1 % y € {w)* such that M,/M, =
= Cym,(y) # 1. Now, [M,,y,yl<[M,, K]=1 and, since ¢ 2,
[M,, y] = 1. Our choice of x gives M, = M,, a contradiction. Hence:K
is eyeclic, that is {(z) is normal in L.

Let now ge A such that a?€@; then e P = Q N F*(A) and
|Cu(2?)| = |Cu(x)|. Thus, again, <x*> <t L. By a classical Theorem of
Burnside, this implies () = <{x’) and, since |z| = 2, & = 2¢. There-
fore, « is an isolated involution of . By Glauberman Z*-Theorem
(see [6; Th. 4.95]):

we Z*(A), where Z*(A4)/0,(4A) = Z(A4/0,(4)) .
Hence, for every he A:
[k, @] € 02:(4) N F*(A) = 0,(F(4));

since F'(4) is the hypercentre of F*(A), we conclude that x# belongs to
F(A) and so, by Lemma 3.1, Cy(x) = 1. This shows that the Sylow
2-subgroups of F*(A) are cyclic or generalized quaternion, concluding
the proof of point (a).

(b) Since A is an sn-group, by Proposition 2.5, we have that A’
induces a group of inner automorphisms on every non abelian chief
factor of A. Now, if A is not soluble, E(4) = 1, and so, by point (a),
F(A) is cyelic (in fact, this follows from 3.1 if ¢ = 2, and the fact that
(a) implies that any Sylow 2-subgroup of F*(4) is a Sylow 2-subgroup
of E(A) if E(A)#1 and ¢+ 2; we recall that E(4)N F(4) =
= Z(E(A))). Thus A’ induces a group of inner automorphisms on
every chief factor of A, and so A’'<F*(A).

If A is soluble, then F*(A) = F(A) and there is at most one non
cyclic composition factor U/V of A, between 1 and F(A) in every
chief series of A through F(A) (this follows from Lemma 3.1). In
this case |U/V| = 4 and, if ¢ = C,(U/V), A/C is isomorphic to a sub-
group of Aut(U[V) =~ 8;. Now, A’ N C centralizes every chief fac-
tors of A and so A' N C<F(4), proving our assertion: |[4'|<3. u

We denote by I*(G) the generalized Fitting length of the group @.

3.6 COROLLARY. Let G be an sn-group. Then 1¥(G)<4. More pre-
cisely, if F = F(Q) and H|F = F*(Q/F), then G/H is metabelian.
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ProoF. Let F*= F*(G). By definition, F* is the set of those
elements of G which act, by conjugation, as an inner automorphism
on every chief factor of G. By 2.5 and 3.5 (together with Lemma 3.4),
the chief factors of G/F* are simple or of order 4. Hence, the same is
true for G/F, because all chief factors of G lying between F and F*
are non abelian and thus simple. So, if H/F = F*(G/F), G/H is me-
tabelian.

3.7 LEMMA. Assume hypothesis (I) and let p be a prime p # q.
If p is odd, then A satisfies C,; if p = 2, then A satisfies CF.

Proor. (4) p odd. Let PeSyl,(4) and N = N (P). Firstly,
we observe that P is abelian. In fact, as p 7= q, M is completely re-
ducible as a F,P-module. Now, hypothesis (I) implies, via Lem-
ma 3.1, that P/Cp(U) is cyclic, for every P-component U of M.
Since P is faithful on M, it follows that P is abelian.

Now, in order to prove that A satisfies C,, it is enough to show
that N fixes by conjugation every cyclic subgroup of B = £,(P).

Let D = P N F*(4); then, by 3.5, D is cyeclic.

Let 1 € B; thus |¢| =p. If xe€ D then () car D< N, and
so <) <a N. Hence assume x ¢ D, so <o) "D =1. Let D1.

If D<S8 for some component 8 of E(A), then, since P is abelian,
x centralizes D and it follows from 2.5 that x induces on § an inner
automorphism. Without loss of generality, we may assume that
centralizes §; now, the argument used in the proof of 3.5(a) leads
to a contradiction.

Thus DN E(A) =1 and so D<F(A). Suppose that p*3 or 4
is non soluble. By Lemma 3.5(b), we have in this case [P, N]<
<P N F*A) =D and so P/[D<Z(N|D). In particular, (D,x) <x< N.
Take z € D of order p, and set L = <z, 2). Then L is elementary abelian
of order p2, whence

M= {Oya);1#acky.

Since 2z acts f.p.f. on M, there exist u, v € L\ (2> such that {u) %= (v}
and Cy(w) 7% 1 5% Oy(v). Now, hypothesis (I) implies Cy (%) = Cy(<u)?),
and the same for ». But L <« N, because L = £,(<z, D)) <« N. Hence
{uy¥< L and <{v)¥< L. Since z € L acts f.p.f. on M this yields {up<aN
and (v) << N. Thus, N normalizes the non trivial pairwise disjoint
subgroups <z}, (uy, <v) of L. Since |L| = p?, it follows that N acts
as a group of powers on L; in particular <{x) is normalized by N, as
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we wanted. Observe that if D = 1, then, as in this case P<Z(N),
condition C, follows trivially.

Now assume that A is soluble and p = 3. Then, since z ¢ F(4) =
= F*(A), v does not centralize some 0,(4), r % p. Suppose that x
does not centralize K = O,(4) for some r 2, and let @ = Q,(K);
since @ is cyclic, <@, x> is a Frobenius group acting faithfully on M
(observe that we certainly have r 7 ¢), and so Cy(x) 5= 1 (see [4; 3.4.4]).
Now, Cu(x) = Ou(T), where T = {x)¥ < B. If T # {x), then C,(Q) = 1,
because T/C,(Q) is cyclic. If M, = Cy(C,(Q)), M/M,+1 and, by the
same argument used before Oum (®) 7~ 1. But Cyyu (v) = Ou(z) Mo/ M,,
contradicting the fact that Cu(x) = Cu(T)<Cu(C,(Q)) = M,. Thus
T = <{x) and so <{z) is normalized by N.

Finally, suppose that the only r-component, r= 3, of F(A4) not
centralized by x is R = 0,(4). This implies that R is a quaternion
group of order 8. Also, we have that {(F(4), x> is normal in 4 (this
is because z centralizes 0, (F(4)), so (F(A), x)/F(A) = (A/F(4)),
by 3.5). Now, arguing as in the case p = 3, we conclude that {x)
is also normalised by N. This completes the proof for p odd.

(B) p=2. Again, let PeSyl,(4) and set N = N¥P), D =
— PN F*A).

(1) 2,(P)<Z(N). Write B = Q,(P).

Let U be an F,N-chief factor of M. Then hypothesis (I) and lem-
ma 3.1 imply that B/Cy(U) is cyclic or generalized quaternion.
Since B is generated by elements of order 2, we get |B/Cy(U)|<2
and so [B, N]<OCs(U). This holds for every N-chief factor of M.
Since ¢ 2 and B acts faithfully on M, we have [B, N] = 1.

If P is abelian (1) implies that condition C, is satisfied. Hence
assume, for the fest of the proof, that P is not abelian.

(2) PID<Z(N|D). In fact, Lemma 3.5(b) implies, in parti-
cular, that the derived subgroup of NF*(A4)/F*(A) has order 1 or 3.
This entails: [P, N]<P N F*(A) = D, thus giving (2).

If D =1, we are done. Thus assume, from now on, D 5= 1.
(3) Let ge P, |g| = 4; then g2 D.

Suppose, by contradiction g2¢ D. Then {g> N D =1 and, if &) =
= (D), <g> N z) = 1. Let a = g*; <2, a) is an elementary abelian

group of order 4, and so M = QOM(w); 1#x€z a>>. Because z
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does not fix any element of M, it follows that Cy(a)== 1. Since
a € Z(P), there exists a non trivial irreducible F, P-submodule V of M,
such that a acts trivially on V. Let C*= C,(V) and R = C* N (z, ¢).
Then R = {g) or R = <{zg), because a € R, {z, g>/R is cyclic by Lem-
ma 3.1, and 2¢ R. Further, C*< P, C* "D =1 and so, by (2):
[C* P]<P' N C*< DN C*=1, whence C*<Z(P). Thus, ge Z(P) or
zg € Z(P); since 2z € Z(P), we get ge Z(P).

Let now U be an irreducible F,P-submodule of M such that
a ¢ C,(U) (this certainly exists, because M is faithful and completely
reducible as an F,P-module). Then also we have C,(U)NnD=1
and, by 3.1, P/Cx(U) is cyclic or generalized quaternion. Now,
gC:(U) is a central element of order 4 in P/Cp(U) and so P[/Cp(U)
is eyclic. But then, P'<D N Cp(U) = 1, which is not the case. This
contradiction shows that a = g?>e D.

(4) Conclusion. Let K be a subgroup of P maximal in order
to contain D and such that Q,(K) = £,(D) = <z). Then, by (2),
K< N. Let W be a non trivial irreducible F, P-submodule of M and
let ¢ = Cp(W). Then CN D=1 and so CNEK =1; by (3), C is
elementary abelian. Moreover, since P is not abelian and P'<D,
P|C is generalized quaternion. The proof is completed by showing
that P = K(C. Suppose, by contradiction, that KC = P. Since P/C
is generated by elements of order 4, there exists y € P such that
|lyC| = 4 and y¢ KC. Now, y*e C and, since (z, C>/C = Q,(P/0),
y*e KC. Hence y*e KN C =1 and so, by (3), y2 = zeD. Consider
now L =<K,y)>. Since K< P and y¢ K, |L:K| =2 and, by our
choice of K, Q,(L) >,(K) = <{z). Thus L = KQ\,(L)< KQ,(P) and,
consequently, y e KQ,(P) = K{z, C> = KC, contradicting the choice
of y. Thus P = KC and the Lemma is proved. N

Before stating the next Theorem, we observe the following trivial
property of groups satisfying CF.

3.8 LEMMA. Let G be a group satisfying condition CF. Let
PeByl,(G) and N = NyP). If H<P, then H< N, or P =Q x A,
where @ is generalized quaternion, and H > Z(Q).

ProoF. If P is abelian, then P<Z(N) and the result is trivial.
Hence assume P = @ x A, with @ generalized quaternion and A
elementary abelian; also suppose Z(Q) <« H<P. Then HNQ =1
and so H=H|(H N Q) >~ HQ|Q is elementary abelian. Thus H<
<(P)<Z(N); in particular H< N. =
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3.9 THEOREM. Let G be a group. Then G is an sn-group if and
only if for every chief factor U[V of G the following conditions hold:

(@) if U]V is non abelian, then it is simple and A (U|V) is as
described in Proposition 2.5;

(b) if UV is an elementary abelian g-group, then Aq(U|V) sat-
isfies C, for every odd prime p, p +~ q, and it satisfies C¥ if q+ 2.

Proor. (=-) This follows at once from Proposition 2.5 and Lem-
ma 3.5 (via Lemma 3.4).

(<=) Suppose that for every chief factor of the group G condi-
tions (a) and (b) are satisfied. We proceed by induction on G. Let M
be a minimal normal subgroup of @&. Then, by inductive hypothesis,
G/M is an sn-group. Let C = Cyo(M). If M is simple non abelian,
then C N M =1. By 2.5 and condition (a), we have that G/C is an
sn-group. Since the class of sn-groups is a formation, we conclude
that G is an sn-group.

Otherwise M is an elementary abelian ¢-group, for some prime gq.
Now, by Lemma 3.3 and condition (b), G is an sn(p)-group for every
odd prime p, p = q. Also, by 1.15, since M <O0,(G), G is an sn(g)-
group. In order to apply Theorem 1.11 and conclude that G is an
sn-group, we have to show that, if ¢ == 2, G is an sn(2)-group. Let P
be a Sylow 2-subgroup of G, and P = PC/C. If P is abelian, then
G/C actually satlsﬁes condition C, and we may apply Lemma 3.3.
Thus, assume P = P = Q x4, with Q generalized quaternion and 4
elementary abelian. Let 2 € P, such that, if Z = Oz, ) = Z(Q). We
show that z acts as the inversion on M. Let G = @/C, F = F(G).
Since @ satisfies C, for every odd prime p, p # ¢, it follows that every
subgroup of O,(F) is normal in G; in fact any such subgroup is both
subnormal (being contained in ) and pronormal (by Rose’s char-
acterization of groups satisfying C,, see [8; p. 936]) Thus G centralizes
0,(F); in particular zZe P’ centralizes O, (F). Moreover, it is easy
to check that z is an isolated involution of P. By Glauberman’s
Z*-Theorem, z e Z*(G) = K. Now, K is 2-nilpotent and Z centralizes
0. (F(K)). Tt follows that zZ € F(K)<F; this in turn implies z € Z(G).
Thus, since M is a minimal normal subgroup of G, z acts as the in-
version on M.

Now, we have to show that, for every g€ G, P N P?<x N, where
N = N4(P). Arguing as in the proof of Lemma 3.3, it is enough to
show that this is true when ge M. Let R = P N P?. Suppose that
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RC|C is not normalized by NC/O<NgzP). Then, by Lemma 3.8,
RC|C >%; hence there exists y € R acting as the inversion on M.
In particular, g = g—*. Since R = P N P¢, this implies g =1, and
80 R = P < N. Otherwise RC is normalized by N. Then, arguing
as in the proof of Lemma 3.3, N normalizes RCNP = R(CNP)=R
This completes the proof of the Theorem. m

We now exploit Theorem 3.9 (and the preceding lemmas) to give
some more explicit descriptions of the groups A (U/V), for an sn-
group G.

3.10 THEOREM. Let G be a group of odd order. Then G is an sn-group
if and only if Ag(U|V) is a T-group for every chief factor U|V of G.

PRrOOF. Let G be an odd order sn-group, U/V a chief factor of G
and set G = A4(U/V). Let U/V be a g-group, ¢ a prime. Then, by
Theorem 3.9, and the fact that 24|G|, G satisfies condition C, for every
P # q. Moreover, by Corollary 3.2, F= F(G) is cyelic. Thus Q' <F;
hence, if @ is a Sylow g-subgroup Of G, [Q,N Q 1<@Q N F =1. Then
G satisfies also condition C,. If now follows from Robinson [9; Theo-
rem 1] that G is a (soluble) T-group.

Conversely, a soluble T-group satisfies condition C, for every
prime p ([9; Theorem 1*]). Thus, by Theorem 3.9, a soluble group in
which A4¢(U/V) is a T-group, for every chief factor U/V, is an sn-group;
in particular this is true for groups of odd order. m

REMARKS (a) Arguing as in the first part of the proof of 3.10,
it is easy to show that, in a soluble sn-group G, A.(U/V) satisfies
condition C} also when U/V is a 2-group (in this case it indeed sat-
isfies G,).

(b) Every soluble Frobenius group is an sn-group. This is not
true for Frobenius groups in general. In fact the non split extension
of SL(2,5) by a group of order 2 is a Frobenius complement, but it
is not an sn-group. Accordingly to Zassenhaus’s results on Frobenius
groups, every such group has a subgroup of index 2 which is an
sn-group.

Finally, we describe A¢(U/V) in (non soluble) sn-groups. To avoid
heavy notations we come back to hypothesis (I).

3.11 THEOREM. Assume that hypothesis (I) holds for the group A
and the F,A-module M. Then:
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(a) If g5~ 2, then A is soluble or F*(A) ~ SL(2,5) X K, where K
is cyclic and (K|, |SL(2,5)]) =1. Also A ~ SL(2,5)xH, where H
is a T-group, K = F(H), the Sylow 2-subgroups of H are elementary
abelian and the only possible prime common divisors of (|H|, |SL(2, 5)|)
are q and 2.

(b) If q =2, then A is soluble or F*(A) = RX K where K is
cyclic of odd order and R is either simple or R = SxT with S ~
=~ PSL(2,2"), T =~ 82(2™) and n, m are odd and coprime (this ensures
(I8, |T)) = 27%). Moreover A is a semidirect product RX|H, where H
is a T-group, acting on R in the way described in 2.5, K = F(H) and
(B[, [H]|) = 2".

PROOF. (a) g+ 2. If A is not soluble, then, by 3.5 (b), E(4) %~ 1,
and, as we observed in the first part of the proof of 3.5, Z = Z(E(A))
has order at most 2. Furthermore, by 3.5(a), the Sylow 2-subgroups
of F*(A) are generalized quaternion (if they were cyclic, F*(4), and
so A, would be soluble). It follows that the Sylow 2-subgroups of
E(4A) are generalized quaternion. Now, E(A)/Z is the direct product
of groups of type PSL(2,27) and Sz(22*m*!). Thus, the only pos-

If K = 0,.(F(4)), then, by 3.5(a), K is cyclic and (|K|, [E(4)]) =1;
also: F*(4) = E(4)xK. Now, let ¢ = C,(E(4)). By 2.5, A/C ~
=~ PSL(2,5), so A= FEA)C and EA)N C=Z. Clearly F(C) =
= F(4), which is cyclic; whence C is 2-nilpotent. Moreover, by 3.9,
A satisfies C}. This implies that the Sylow 2-subgroups of C are ele-
mentary abelian. It follows that Z = O,(F(C)) has a normal com-
plement H in C. Now, clearly, F(H) =K and A ~ E(A)xH.
Furthermore, since, by 3.9, A satisfies C, for every prime p = 2, ¢,
we have that, for all such primes, A is either p-nilpotent or p-perfect
(Robinson [8; Theorem 3]). Since H'<K and (|E(4)|, |K|) =1, we
get (|E(4)|, |H|) = 2'¢/, 4,j€ N. Finally, keeping in mind that H
satisfies C, (see Robinson [9; Corollary p. 936]) for every prime p
dividing F(H) and that F(H)>H', it is easy to see that H is a
T-group.

(b) ¢ = 2. Suppose that A is not soluble; then F(A4)=~ 1, and,
since in this case 0,(4) =1, Z(E(A)) =1. Thus F*(4) = RXxK,
where K = F(A) is cyeclic of odd order, and B = R, X R, X... X R, is
the direct product of simple sm-groups. But, by 3.5(a), the Sylow
p-subgroup of F*(A) are cyclic, for every odd prime p. Hence
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(|R|, |[K|]) =1 and, for every i,je{1,2,...,s}, i j, the only prime
dividing (|R.|, |R,|) is 2. Now, for every n € N, 3 divides |PSL(2, 2)|
and 5 divides |S8z(22#t1)|. Thus either R is simple or s = 2, R = §x T,
with 8 ~ PSL(2,2"), T ~ 8z2(2™), m odd, m>3, and (|8|, |T]) = 27,
1 € N; it is easily seen that this last condition is satisfied if and on y if
n, m are coprime odd numbers.

Let now C = C (R); then C N R =1 and it follows from Propo-
sition 2.5 that A4/C is the semidirect product of RC/C by an abelian
group H|C. Hence A =~ RXI|H, the semidirect product of R by H,
where the action of H on R is as described in 2.5.

Now, K<CO<H and, by 3.5(b), H' <F*(A)N H = K, whence,
K = F(H). Finally, by 3.9, A satisfies C, for every odd prime p
and so does H. Thus A and H are either p-nilpotent or p-perfect, for
every odd prime p. This yields at once (|R|, |H|) = 2’ (reca,ll that
(IR}, |K)) = 2") and, since H' < F(H) and F(H) is cyclic of odd order,
implies that H is a T-group. ™
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