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Fading Memory Spaces and Approximate Cycles
in Linear Viscoelasticity.

MAURO FABRIZIO - ANGELO MORRO (*)

SUMMARY - The theory of linear isothermal viscoelasticity is revisited within
the context of materials with fading memory. The compatibility with
thermodynamics is investigated by considering approximate cycles in a
very general sense. As a result, necessary and sufficient conditions, on
the relaxation function, for the validity of the second law are derived
which emphasize the role of sinusoidal histories.

1. Introduction.

When dealing with mathematical problems in linear viscoelasticity,
any information on the relaxation function makes the developments
handier and leads to more detailed conclusions. This is the essential

motivation for a renewed interest into the thermodynamic restric-
tions on the relaxation function (see, e.g., [1, 2]) and references therein.
It is the purpose of this paper to develop a general thermodynamic
analysis of linear viscoelasticity and provide a necessary and sufB.-
cient set of conditions, on the relaxation function, for compatibility
with thermodynamics.

In linear viscoelasticity, when the reference state is stress-free, the

(*) Indirizzo degli AA.: M. FABRIZIO: Dipartimento di Matematica, Piazza
di Porta S. Donato 5, 40127 Bologna (Italy); A. MORRO : DIBE - Universita,
Viale Causa 13, 16145 Genova (Italy).

Lavoro svolto nell’ambito del GNFM-CNR e del Progetto 40% « Problemi
di evoluzione nei fluidi e nei solidi ».
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relevant constitutive equation takes the form

where T is the Cauchy stress tensor, E is the infinitesimal strain tensor, y
and G (with G’= dGld8) is a function mapping R+ into the space
of linear transformations of symmetric tensors into symmetric tensors.
The function G, called retaxation f unction, characterizes the material
under consideration. Constitutive equations of the form (1.1) were
introduced by Boltzmann [3], were studied at length by Volterra [4],
and have given rise to a large and growing literature ( 1) .

The principle of fading memory employed by Coleman and Noll [91
furnishes a general hypothesis of smoothness for non-linear simple
materials with memory that yields (1.1) as a complete first-order
approximation for infinitesimal deformations from a stress-free equi-
librium state. In his development of the thermodynamics of (non-
linear) materials obeying the principle of fading memory, y Coleman
[10,11] showed that, because of the second law, G(O) and G( oo)
(with G( oo) = lim G(s)) must be symmetric and such that G(0) -

s-+oo

- G(oo) is positive semidefinite, namely

for all symmetric tensors (2). Later, Day [12] showed that the
second law also implies that, for all s E G(o) - G(s) is positive
semidefinite, namely

for all symmetric tensors E.

(1) See, e.g., Graffi [5], Bland [6], Gurtin &#x26; Sternberg [7], and Leitman
&#x26; Fisher [8].

(2) Here GT is the transpose of G, namely -= E2. GEl for all

symmetric tensors El , E2 , while Ei E2 = trace ’r’2 ) -
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Long before the modern theory of thermodynamics of materials
with fading memory was formulated, Graffi [13], while investigating
one-dimensional deformations and using a principle of positive work
for cycles, obtained a result which, in tensor form, can be stated as
follows. If the fourth-order tensor G(s) is symmetric for all 8 then
the second law requires that the sine-transform defined by

be negative semidefinite, i.e.

for every oi E and all symmetric tensors E. In this paper we show
that the validity of the condition

for all symmetric tensors El and E2, is necessary and sufficient for
the validity of the second law of thermodynamics. When the material
symmetry implies that G(s) = for all s (3), the relation (1.6)
is equivalent to (1.2a) and (1.5): in such a case (1.2a) and (1.5) are
also sufficient for compatibility of the relaxation function with thermo-
dynamics. This emphasizes the importance of the inequality (1.5)
for 1i§ (4).

To get the aforementioned result we develop an approach which
can be summarized as follows. In section 2 we define a topology for
the state space ~; such a topology is similar to that introduced by
Coleman and Mizel [14] and used by Coleman and Owen [15]. On

(3) This occurs, for example, when the material is isotropic.
(4) Its opposite, - G$ , is usually called the lass modulus.
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the basis of this topology we introduce the concept of approximate
cycle. Moreover, in section 3, we show that the set of periodic histo-
ries is dense in E, relative to the topology at hand. In section 4 we

derive the work inequality induced by the second law of thermody-
namics on approximate cycles (in linear isothermal viscoelasticity).
Finally, in section 5, we prove that the relation (1.6) is necessary
and sufficient for the validity of the second law (work inequality).

The results of this paper generalize those exhibited in [16] in that
they are based on the more general notion of approximation cycle
as stated in [15,17 ].

2. Fading memory space and approximate cycles.

As usual, by a history we mean a function defined on .R+ and by
a past history a function defined on R-’-+. Given any function 99
on I~ and a time t E .R, we define the history 991 of 99 up to time t as

the restriction of 991 to provides the past history 991 of cp up to
time t.

Since we are dealing with linear viscoelastic materials we consider
histories of the infinitesimal-strain tensor E’; their values are in the
set Jsym of symmetric second-order tensors. The relaxation function G
is assumed to be a C" map from R+ into the set of endomorphysms
of Jsym. The equilibrium elastic modulus G( is taken to be positive
definite, namely E. G( oo)E &#x3E; 0 for each nonzero E E 

The state c~ (at time t) of a linear viscoelastic material is given by
the history Et, namely the pair (E(t), rEt) of the present value E(t)
and the past history rEt. The set of states cr is denoted by E. To

accomplish our procedure we need a topology for 27. A standard way
of specifying the topology is through a norm involving an influence
function h.

CONSTITUTIVE HYPOTHESIS. The relaxation f unction G is such that
there is a scalar monotone-decreasing function h, mapping R+ into .R+,
with
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and, f or any 7: E .Z~+,

Let H be the Banach space formed from the set of past histories
E’ defined as

the norm of a past history rEt is then defined by

The Banach space H becomes a Hilbert space as soon as we introduce
the inner product of two past histories rEi1, as

The analogous inner product for histories, y namely,

ascribes to the set .~ of states or with finite norm,

the structure of a Hilbert space called fading memory space of (total)
histories.

The definition of 27 leads at once to the following statements [14].
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(i) If ~~ is in Z then, for each T &#x3E; 0, the static continuation
of E~, defined by

is in ~.

(ii) The distance between the static continuation Et+T of E’

and the constant history Eft(8) = E(t) tends to zero, i.e.,

The assumption (2.1) implies the continuity of the functional T,
given by (1-1), with respect to a~ in the sense of the norm (2.4).

A function f is said piecewise continuous on [0, d,) if lim f(E) ==
E-+t+

= f(t) and lim f(E) exists for each t E [0, and lim f(E) = f(t) at all
but a finite number of points in [0, d f). 

E-+t-

DEFINITION 1. A deformation process, of duration dp &#x3E; 0, is a

piecewise continuous function P : [0, d,) ~ defined by

The collection of deformation processes P is denoted by II, the restric-
tion of P to [0, t) c [0, dp) by Pt .

We can now make precise the meaning of state transformation
function p:E+II-+E providing the final state af = (E(t + 
in terms of the initial state or* = (E(t), rEt) and of the deformation
process P : [0, dp) -¿. according to Definition 1. Specifically

with
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For any P E II and e[0y d~), the mapping ê(’, P t): .E 0-1:, char-
acterized by (2.6), is uniformly continuous for any t [15].

A pair ((1, P) such that ~(c~, P) - or is called a cycles. For

materials with fading memory cycles are rare; a broader class of

processes, to which our investigation applies, is that of approximate
To make the meaning precise let 08(a) stand for the B-neigh-

bourhood of c~ consisting of the set of elements 5 such that ~~  E.
A pair P) is called an 8-approximate cycle if é(a, P) E 08(a).

3. Periodic histories.

For any history Et in Z we define the periodic history E~ of pe-
riod T as

The following theorem ascribes to the set S of all periodic histories
(in 2.’) a prominent role.

THEOREM 1. The set S of all periodic histories belonging to 27
is dense in Z.

PROOF. For any history Et in Z let E,,, be the associated periodic
history according to the definition (3.1). For the sake of definiteness
we let = na, a E R++. As n runs from 1 to any natural number,
the set E§ constitutes a sequence of elements of Z. Since the present
value of .Et is equal to that of to prove the theorem we have

simply to show that

Because we have
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By hypothesis

and hence

As to the integral concerning we observe that

Because of (2.2)

Then, taking the limit as n tends to infinity yields

This proves that (3.2) holds and hence that S is dense in ~. D

4. Second law of thermodynamics and work inequality.

Following Coleman and Owen [15] we take the action having the
Clausius property (at any material point of the body) as the statement
of the second law of thermodynamics. To make this assertion opera-
tive we observe that, as usual in the approximation of small displace-
ment gradients, the rate-of-strain tensor can be replaced by the time
derivative E. Then it follows that the power of the stress is 
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Hence the Clausius property at a state d is expressed by saying that
for each 8 &#x3E; 0, there exists ve &#x3E; 0 such that, for each v,,.-approximate
cycle (or, P),

where at == ~(~, Pt) ; here q is the heat flux, 0 the temperature, and
eo the (constant) mass density while g = When 0 is con-

stant, and g = 0, the contribution to the internal energy e is simply
- Then, in view of the continuity of the functional e

we can write the second law of thermodynamics in the following form.

WORK INEQUALITY. For each 8 &#x3E; 0, there exists 176&#x3E; 0 such that

f or each cycle {~, P),

The work inequality (4.2) may be phrased by saying that the
work done in an approximate cycle is approximately positive.

Upon substitution of the constitutive relation (1.1) it follows from

(4.2) that

In the next section we derive the restrictions placed by the work
inequality on the relaxation function G. In this regard we observe
that, in the case of cycles, the inequality (4.3) is replaced by [15]

For later convenience we prove now that the work performed by
the stress is a continuous functional on 17; the work P) associated
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with the process P starting from the state a is expressed by

LEMMA 1. For every process P the functional

is continuous on 27.
PROOF. In view of the unif orm continuity P t ) on Z it fol-

lows that for every 8 &#x3E; 0 there exists 0 such that

whenever

On the other hand,

Then, since the functional T(O’t) is linear and bounded while the func-
tion P is bounded on [0, d,), there exists a number such that

whenever (4.5) holds, which proves the continuity of L(., P). 0

5. Thermodunamic restrictions on the relaxation function.

Besides being important for easy correlation with experiments [6],
as we shall see in a moment sinusoidally time variation proves to be
especially fruitful in connection with the derivation of thermodynamic
restrictions on the relaxation function [1]. This motivates the recourse
to oscillatory strain-tensor evolution of the form
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The corresponding process P E II may be expressed as

with d = m being any integer. Accordingly, y it follows at

once that any current state

and the process constitute a cycle in that

We are now in a position to derive some necessary conditions for the
validity of the second law.

THEOREM 2. A necessary condition for the validity of the second
law is that the inequality

holds for every and every *

N IV

PROOF. Consider the cycle (6E, P) E I xII, with 8,, P as given
by (5.3), (5.2). Substitution into the inequality (4.4) and integration
with respect to t E [0, yield

whence (5.4).
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As shown below, in the particular cases (o 2013~ oo, co --? 0 the ine-

quality (5.4) yields two important results.

COROLLARY 1. Letting w - o the integrals in (5.4) vanish. Then
the arbitrariness of El, E2 implies the symmetry of G(O), namely

COROLLARY 2. In the limiting case co --* 0 the inequality (5.4)
reduces to

The arbitrariness of .~2 implies that

In view of the result (5.5) we can write a significant consequence
of the second law on the function G’(s), s E I~+.

COROLLARY 3. A necessary condition for the validity of the second
law is that the inequality

holds for every m E R++ and every Ei, E2 E * r-i

Let 1i’ s be the half-range Fourier sine transform of G’, namely

Upon choosing El = E2 = E, it follows immediately from (5.6) that
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REMARK. By virtue of the Fourier integral theorem we have

Then in view of (5.7) we obtain

for every s E R+ and E E -. Hence it follows the negative semi-
definiteness of G’(0) and the positive semidefiniteness of G(o) - G( 00);
the last result traces back to Coleman [11].

The main result to emerge from this paper is that the condition

(5-4), which is a restriction on the relaxation function G, is also suf-
ficient for the validity of the second law; thus (5.6), along with the
symmetry of G(O), embodies all the restrictions placed by the second
law. The sufficiency property is proved as follows.

THEOREM 3. If G satisfies the condition (5.4) for every m E R++
then for every s &#x3E; 0 there exists 0 such that the inequality (4.3)
holds for every ne-approximate cycle.

PROOF. As a first step we prove that the cycles satisfy (4.4).
If (f:1, P) is a cycle then f:1 represents a periodic history of period dp .
Now, each periodic history with period 7: n = na, can be

expressed through its Fourier series as

where on = 2nfTn = 2/noc. Consider the state an = (E-rn(t), and

the process Pn of duration vn defined as

Then the pair (an, Pn) is a cycle. In such a case the work L turns
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out to be given by

The first integral vanishes because _ E-rn(O) and G(o) is

symmetric. The integration term by term of the double series shows
that the only non-vanishing terms are those with h = l~. Then we
are left with

whence

The hypothesis that (5.6) holds yields .L~ 0. Then, owing to (5.5),
it is proved that (4.4) follows from (5.6) in the case of periodic histories.

As a second step, completing the proof of the theorem, we show
that (5.6) ensures the validity of (4.3). Let cr e E be a state and E,
the corresponding history. For every 77 &#x3E; 0 consider a process Pn
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such that the final state af = o(~, Pn) belongs to 0n(J) namely

In conjunction with the state at and the associated history .~f define
the periodic history with period = dpl1’ y as in (5.8) and denote
the corresponding state by af . Then 

"

(5.11)

with

To prove (5.11) let n ~ 1 be any integer and let crn be the state corre-

sponding to the history defined as

Of course al = at. Observe now that

Because En(t) = for any value of n we have

By virtue of (2.2) it follows that
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Hence we obtain

whence the inequality (5.11). As a consequence

Owing to the continuity of L’ , P), for every s &#x3E; 0 there exists q &#x3E; 0
such that

whenever ê(a, E 0n(J). On the other hand, because (8’, P,~) is a
cycle, it follows that

Hence, in view of (5.12), we obtain (4.2) and (4.3). 0

Based on Theorem 3 we observe that the second law for linear
viscoelastic materials may be stated in terms of cycles only. In such
a case the second law is expressed by the inequality (4.4).
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