RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

M. J. IRANZO

M. TORRES

The p^*p -injectors of a finite group

Rendiconti del Seminario Matematico della Università di Padova, tome 82 (1989), p. 233-237

http://www.numdam.org/item?id=RSMUP_1989__82_233_0

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The p*p-Injectors of a Finite Group.

M. J. IRANZO - M. TORRES (*)

1. Introduction and notation.

All groups considered in this note are finite. In ([2], 5.4 Satz) Blessenohl and Laue gave the description of the \mathfrak{N}^* -injectors of a grou G, where \mathfrak{N}^* is the class of the generalized nilpotent groups; these injectors are the subgroups $VF^*(G)$, where $F^*(G)$ is the generalized Fitting subgroup of G and G describes the conjugacy class of the nilpotent injectors of the subgroup $C_G(F^*(G)/F(G)) = C_G(E(G))$ where E(G) is the semisimple radical of G. In ([4], Proposition 8) it is shown that if G is a Fitting class between G (i.e. the class of nilpotent groups) and G, then in a group G such that $F^*(G) \in G$ there is a unique conjugacy class of G-injectors that are precisely the G-injectors of G, and conversely.

The aim of this note is to give a description of the p^* -by-p injectors and the p^*p -injectors of a group, by following the analogies between the class of semisimple groups and its radical E(G) and the class of p^* -groups and its radical $O_{p^*}(G)$ (i.e. the generalized p'-core of G) and those between the class of generalized nilpotent groups

Work supported by the DGICYT of the Spanish Ministry of Education and Science, project PS 87-0055-C02.

^(*) Indirizzo degli AA.: M. J. IRANZO: Departamento de Algebra, Facultad de Matemáticas, Universidad de Valencia, 46100 Burjasot (Valencia), Spain; M. Torres: Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain.

and its radical $F^*(G)$ and the class of the p^*p -groups and its corresponding radical $O_{p^*p}(G)$ as was developed by Bender in [1].

Given a fixed prime p we shall denote by \mathfrak{S}_p the class of all p-groups, \mathfrak{S}_{p^*} the class of all p-groups, \mathfrak{S}_{p^*} that of all p^* -groups and \mathfrak{S}_{p^*p} that of the p^*p -groups; the corresponding radicals in a group G are denoted, as usual, by $O_p(G)$, $O_{p^*}(G)$, $O_{p^*}(G)$ and $O_{p^*p}(G)$. $O^p(G)$ is the p-residual of G. Finally if H is a subgroup of G, $C_g^*(H)$ is the generalized centralizer of H in G.

For all definitions we refer to Bender [1].

2. The injectors.

LEMMA 1. The class $\mathfrak{E}_{p^{\bullet}}\mathfrak{S}_{p} = (G: O^{p}(G) \in \mathfrak{S}_{p^{\bullet}})$ is a Fitting class containing the Fitting class $\mathfrak{E}_{p^{\bullet}p}$. The corresponding radical is $O_{p^{\bullet},p}(G)$.

PROOF. The fact that $\mathfrak{E}_{\mathfrak{p}} \cdot \mathfrak{S}_{\mathfrak{p}}$ is closed for normal subgroups is precisely ([3], Ch. X, 14.11). If $G = N_1 N_2$ such that $N_i \subseteq G$ and $N_i \in \mathfrak{E}_{\mathfrak{p}} \cdot \mathfrak{S}_{\mathfrak{p}}$, i = 1, 2, we have $O_{\mathfrak{p}} \cdot (N_1) O_{\mathfrak{p}} \cdot (N_2) \leqslant O_{\mathfrak{p}} \cdot (G)$ and $P \cap N_i$ is a Sylow p-subgroup of N_i , i = 1, 2, if P is such a subgroup of G, then $N_i = (P \cap N_i) O_{\mathfrak{p}} \cdot (N_i)$, i = 1, 2, and finally we have $G = PO_{\mathfrak{p}} \cdot (G)$. For the remaining statements one can see ([1], 4.13) and ([1], 6.1 (iii), (iv)).

REMARKS. 1) The inclusion in the lemma is strict for every prime p, take for instance E a simple group with selfcentralizing Sylow p-subgroup P and C_p the cyclic group of order p, then the regular wreath product G = E wr C_p does not belong to \mathfrak{E}_{p^*p} because $C_q^*(P^p) \leqslant E^p$ (here E^p is the base group of G and P^p is a Sylow p-subgroup of E^p).

- 2) The class of all groups that are a central product of a p^* -group and a p-group is not a Fitting class.
- LEMMA 2. If \mathfrak{F} is any Fitting class such that $\mathfrak{E}_{p^*p} \subseteq \mathfrak{F} \subseteq \mathfrak{E}_p \cdot \mathfrak{E}_p$, then
- i) The \mathfrak{F} -maximal subgroups of G containing $G_{\mathfrak{F}}$ are the subgroups $(O_{x^*}(G)P)_{\mathfrak{F}}$ where P describes the Sylow p-subgroups of G.
- ii) If $(O_{v^{\bullet}}(G)P)_{\mathfrak{F}} \leqslant H \leqslant G$ then there is a Sylow p-subgroup P_0 of H such that $(O_{v^{\bullet}}(G)P)_{\mathfrak{F}} = (O_{v^{\bullet}}(H)P_0)_{\mathfrak{F}}$.

PROOF. i) Consider $G_{\mathfrak{F}} \leqslant S \leqslant G$ then $O_{\mathfrak{p}^*\mathfrak{p}}(G) \leqslant S$ allows us to use ([1], 4.22) and deduce that $O_{\mathfrak{p}^*}(S) = O_{\mathfrak{p}^*}(G)$; but if, moreover, S belongs to \mathfrak{F} , we have $S = O_{\mathfrak{p}^*}(G)Q$ where Q is a Sylow p-subgroup of S. By taking a Sylow p-subgroup P of G such that $Q \leqslant P$, we have $S = O_{\mathfrak{p}^*}(G)Q \preceq \preceq O_{\mathfrak{p}^*}(G)P$, so if S is \mathfrak{F} -maximal in G, clearly $S = (O_{\mathfrak{p}^*}(G)P)_{\mathfrak{F}}$.

ii) As before $O_{r^{\bullet}}(H) = O_{r^{\bullet}}(G)$, so if T is a Sylow p-subgroup of $(O_{r^{\bullet}}(G)P)_{\mathfrak{F}}$ and P_0 is one of H containing T we can write

$$(O_{p^*}(G)P)_{\mathfrak{F}} = O_{p^*}(G)T \preceq d O_{p^*}(H)P_0$$

therefore

$$(O_{\mathfrak{p}^*}(G)P)_{\mathfrak{F}} \leqslant (O_{\mathfrak{p}^*}(H)P_0)_{\mathfrak{F}}$$

both \mathfrak{F} -subgroups of G, so by (i), the equality is valid.

The first statement of this lemma means that the Fitting classes between \mathfrak{E}_{p^*p} and $\mathfrak{E}_{p^*}\mathfrak{E}_p$ are dominant in the class of all finite groups, so it describes the injectors of every group (see [2], 5.1 Satz). On the other hand, by the second part of the lemma every injector of a group G is an injector of each subgroup containing it.

REMARK. A group G is p-constrained if and only if $O_{\mathfrak{p}}(G) = O_{\mathfrak{p}'}(G)$ (see [1], 6.12 or [3], Ch. X, 14.12 Theorem b)); so if we restrict ourselves to the Fitting class of all p-constrained groups we can deduce from Lemma 2 that the class $\mathfrak{E}_{\mathfrak{p}'}\mathfrak{E}_{\mathfrak{p}}$ of p-nilpotent groups is dominant in the class of p-constrained groups by obtaining a description for the p-nilpotent injectors of a p-constrained group G they are the subgroups of the form $O_{\mathfrak{p}'}(G)P$ where P describes the set of Sylow p-subgroups of G and such a subgroup is a p-nilpotent injector of every subgroup of G containing it.

But conversely, let us assume that G is a group having a unique conjugacy class of p-nilpotent injectors, then the same is true for $\overline{G} = G/O_{r'}(G)$, therefore by [5] $E(\overline{G})$ is p-nilpotent and due to the fact that $O_{r'}(\overline{G})$ is trivial, $E(\overline{G})$ must be trivial too i.e. \overline{G} is p-constrained, so G itself is p-constrained.

LEMMA 3. Let G be an $\mathfrak{E}_{\mathfrak{p}}$ -group and Q a Sylow p-subgroup of $O_{\mathfrak{p}^*}(G)$, then $O_{\mathfrak{p}^*\mathfrak{p}}(G) = O_{\mathfrak{p}^*}(G) T$ where T is a Sylow p-subgroup of $C_q^*(Q)$.

PROOF. Let us write $X = O_{r^*r}(G)$, $Y = O_{r^*}(G)$, Z a Sylow p-subgroup of $O_{r^*r}(C_g^*(Q))$, and T a Sylow p-subgroup of $C_g^*(Q)$ such that $Z \leq T$. Put S = YT and observe that Y and S/Y are p^*p -groups; on the other hand $S \leq YC_g^*(Q)$ implies

$$S = Y(C_g^*(Q) \cap S) \leqslant YC_s^*(Q) \leqslant S$$

so $S = YC_s^*(Q)$ and by ([1], 4.10) we have that S is a p*p-group. But on the other hand by using ([1], 4.18) and ([1], 6.10) or ([3], Ch. X, 14.13) we can write

$$X = YO_{\mathfrak{p}^*\mathfrak{p}}(C_{\mathfrak{q}}^*(Q)) = YO_{\mathfrak{p}^*}(C_{\mathfrak{q}}^*(Q))Z = YZ \leqslant YT = S.$$

But G is an \mathfrak{E}_n -group, so S = X.

From the last two lemmas we can assure

THEOREM. The \mathfrak{G}_{p^*p} -injectors of a group G are the subgroups of the conjugacy class $O_{p^*}(G)T$ where T describes the set of all Sylow p-sybgroups of $C^*_{o_p^*(G)P}(Q)$ where P describes the set of such subgroups of G and Q those of $O_{p^*}(G)$.

If one follows the notation and the unified approach given by Bender ([1], § 4), namely taking for π either the set of all primes or a set consisting of a single one we can give a unified formula for the \Re^* -injectors and the \mathfrak{C}_{p^*p} -injectors of G; in an abridged form

$$\mathrm{Inj}_{\mathfrak{G}_{\pi^{\bullet}\pi}}(G) = \left\{ O_{\pi^{\bullet}}(G) \, T \colon T \in \mathrm{Inj}_{\mathfrak{R}_{\pi}} \left(C^{*}_{o_{\pi^{\bullet}(G)G_{\pi}}}(O_{\pi^{\bullet}}(G)_{\pi}) \right) \right\}$$

where if X is any group X_{π} stands for a Sylow π -subgroup of X in the above explained sense.

The p*p-counterpart of ([4], Proposition 8) is the following

PROPOSITION. Let \mathfrak{F} be a Fitting class such that $\mathfrak{F} \subseteq \mathfrak{E}_p \cdot \mathfrak{S}_p$ and $\mathfrak{F} \mathfrak{S}_p = \mathfrak{F}$, then if G is a group such that $O_{p \cdot p}(G)$ belongs to \mathfrak{F} , then G has a unique conjugacy class of \mathfrak{F} -injectors, namely the $\mathfrak{E}_p \cdot \mathfrak{S}_p$ -injectors. Conversely, if G is a group whose $\mathfrak{E}_p \cdot \mathfrak{S}_p$ -injectors belong to \mathfrak{F} , then $O_{p \cdot p}(G) \in \mathfrak{F}$.

PROOF. It is easy to prove that each \mathfrak{E}_p . \mathfrak{E}_p -injector of G belongs to \mathfrak{F} ; on the other hand given any \mathfrak{F} -injector H of G, then H contains $G_{\mathfrak{F}} = O_{p^*,p}(G)$ so there is an \mathfrak{E}_p . \mathfrak{E}_p -injector V of G containing H, therefore H = V; finally use the dominance of \mathfrak{E}_p . \mathfrak{E}_p to deduce the existence of such injectors. The converse is trivial.

REFERENCES

- [1] H. Bender, On the normal p-structure of a finite group and related topics I, Hokkaido Mathematical Journal, 7 (1978), pp. 271-288.
- [2] D. Blessenohl H. Laue, Fittingklassen endlicher Gruppen, in denen qewisse Hauptfaktoren einfach sind, J. Algebra, 56 (1979), pp. 516-532.
- [3] B. HUPPERT N. BLACKBURN, Finite Groups III, Springer-Verlag (1982).
- [4] M. J. Iranzo F. Pérez Monasor, F-constraint with respect to a Fitting class, Arch. Math., 46 (1986), pp. 205-210.
- [5] M. J. Iranzo F. Pérez Monasor, On the existence of certain injectors in finite groups, Comm. in Algebra, 15 (1987), pp. 2193-2197.

Manoscritto pervenuto in redazione il 2 novembre 1988.