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REND. SEM. MaT. UNn1v. Papova, Vol. 82 (1989)

Unitary Independence in the Study of Finitely
Generated and of Finite Rank Torsion-Free Modules
over a Valuation Domain.

PAoLO ZANARDO (*)

Introduction.

Let R be a valuation domain, S a fixed maximal immediate exten-
sion of R; if u,, ..., u, are units of §, and I is an ideal of R, then
Uyy ...y Uy aTe said to be unitarily independent (briefly: u-independent)
over I if the following property is satisfied:

n
(*) if ¢o+ Y c;u; €18, with ¢, ¢y, ..., ¢, € R, then ¢, ¢, ...,c,€P,
i=1

where P is the maximal ideal of R .

The notion of unitary independence was first introduced, in a
slightly different way, in [10], in order to construct indecomposable
finitely generated R-modules (see Prop. 4, Theorem 6 and Prop. 7
of [10]). Unitary independence was investigated by Facchini, Salce
and the author in [2, 5], and played a fundamental role for the clas-
sification of certain classes of indecomposable finitely generated R-
modules (see [11]).

L. Salce and the author made evident, in [7,8], a resemblance
between the theory of finitely generated R-modules and the theory

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata -
Via Roma - 67100 L’Aquila, Italia.
Lavoro eseguito con il contributo del M.P.I.
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of torsion-free R-modules of finite rank (see, in particular, Theorem 6.2
of [8]). This similarity suggests that the results on finitely generated
modules can be carried, with suitable modifications, over finite rank
torsion-free modules, and vice versa.

The purpose of this paper is to employ u-independence for the
investigation of finite rank torsion-free modules, obtaining results
analogous to the ones that hold for finitely generated modules. We
shall consider finite rank torsion-free modules which are homogeneous
and of co-rank 1 (see the preliminary Section 1).

In Section 2 we shall see that to any such module M, with rank
n 4+ 1, we can associate an n-tuple (u,, ..., #,) of units of §, and an
ideal I, in such a way that M is indecomposable if w,, ..., u, are
u-independent over I (Theorem 2). Conversely, starting from an
ideal I and an n-tuple (u,, ..., u,) of units of S u-independent over I,
we construct in Prop. 3 an indecomposable homogeneous module of
rank n 4+ 1 and co-rank 1. We note that Prop. 3 generalizes results
by Arnold [1], Prop. 4.3, and by Viljoen [9]. The starting point of
all these results is the classical construction of a rank-two torsion-
free indecomposable module over a discrete valuation ring, given by
Kaplansky in [4], p. 46.

The results in Section 3 show the central role of u-independence
for the investigation of both finitely generated and finite rank torsion-
free modules. In fact, if the n-tuple (u., ..., %,) and the ideal I are
associated to the finite rank torsion-free module M, and u,, ..., %,
are u-dependent over I, then, not only M is decomposable, but also
the relations of u-dependence among the w.'s produce, in a canonical way,
a decomposition of M into indecomposable summands (Theorem 4).
Finally, in Theorem 5 we prove an analogous result for finitely gen-
erated modules, giving a remarkable improvement of Prop. 7 of [10].

§ 1. For general facts about valuation domains and their modules
we refer to the book by Fuchs and Salce [3].

Let us fix some terminology. In the sequel, we shall always denote
by R a valuation domain, by P the maximal ideal of R, by @ the
field of fractions of R, by S a fixed maximal immediate extension
of R, and by U(R), U(S) the sets of units of R, 8§, respectively.

If we UNS)\R, the breadth ideal B(u) of u is defined as follows

(see [5]):
B(u) ={a€R: u¢ R + af}.
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We recall that an ideal I of R is the breadth ideal of a suitable unit »
of 8 not in R, I = B(u), if and only if R/I is not complete in the
R/[I-topology (see Prop. 1.4 of [5]).

Let us note that, if wu,, ..., u, € U(S) are u-independent over an
ideal I, then no u; belongs to R; if, moreover, j<n is such that
B(u;)< 1, then, necessarily, B(u;) = 1.

In Ch. X of [3], it is introduced the notion of basic submodule
of an R-module; when M is either finitely generated or torsion-free
of finite rank, which case we are interested to, then a submodule B
of M is basic if and only if:

1) B= @ U,, where U, is uniserial;
2) B is pure in M;

3) if V is a uniserial submodule of M, then either BN V == 0,
or BV is not pure in M.

Basic submodules are unique up to isomorphism ([3], Th. 3.2, p. 203)
hence the number of the uniserial summands of a basic submodule
is an invariant of M, which we shall denote by b(M); when M is
finitely generated, then b(M) = g(M) = Goldie dimension of M ([3],
Cor. 2.2, p.179). An R-module is said to be homogenecous if the
uniserial summands of a basic submodule are all isomorphic. If M
is finite rank torsion-free, we shall say that M has co-rank 1 if
rk (M) = b(M) + 1, or, equivalently, if M /B is uniserial, for B basic
in M.

In this preliminary section we recall some definitions and results
on finitely generated modules given in [10,11] (see also Ch. IX
of [3]), to emphasize the analogies with the discussion on finite rank
torsion-free modules of the next section.

Let X be a finitely generated module; the length of X, denoted
by I(X), is the minimal number of generators of X. We shall deal
with, the case when X is homogeneous and I(X)=b(X) 4+ 1 =g(X) +
+1=mn+41. For the fundamental notion of annihilator sequence
of a finitely generated module we refer to Ch. IX of [3]; in this
case it is enough to note that X uniquely determines two ideals,
A = Ann X < J, where J is such that X/B =~ R/J for any basic
submodule B of X (X/B is eyclic, because {(X) = b(X) +1). 4 and J
are said to be the ideals in the annihilator sequence of X.

We can choose a minimal set of generators = {%,, ®\, ..., @}
of X, such that:
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n
i) <@y ..., oy = @ Re; = B is basic in M, so that Rz, ~ R/A,
for ¢ =1, ..., n; i=1

ii) there exist wnits u] of R, for ¢ =1,...,n and redJ* =
= J\{0}. such that

n
1) o, =1 W, for all reJ*.
i=1

Note that J = Ann (x, + B), since X/B = R(x, + B).
From ii) it follows that, if rR<sR, with r, s € J*, then

(2) r(u,—u})e A for t=1,..,n.

Since § is a maximal immediate extension of R, for all ¢<n there
exists u; e U(S) such that

3) u;— u,er*AS8 for all reJ*.

In such a way we get an n-tuple (u,, ..., u,)€ U(8)"; if we set
I = r'4, by (3) and the definition of breadth ideal, it follows that

reJ*

oither w,€ R or B(u;)<I, for i =1, ..., n. The n-tuple (u, ..., %)
is said to be associated to X; we also say that the system of gen-
erators @ produces (U, ..., U,).

The content of Theorem 6 and Prop. 7 of [10] can be summarized
in the following

THEOREM O [10]. (1) Let X be a homogeneous finitely generated
module such that I(X) = b(X) +1=mn + 1, let (uy, ..., u,) € U(S)" be
an associated n-tuple of X, and let I = (| r 1A, where A <J are the

reJ*
tdeals in the annihilator sequence of X. Then X is indecomposable if
and only if wy, ..., u, are u-independent over I. (2) Let u,, ..., u, €
€ U(S) be u-independent over & suitable ideal I of R, and let B(w;)<I
for i =1, ..., n. Then there exists a finitely generated indecomposable
homogeneous module X, with I(X) = b(X) + 1 = n + 1, such that the
n-tuple (U, ..., u,) 18 associated to it.

ReEMARK. If X, as above, is indecomposable, X is called couniform
homogeneous. The ideals A and J and suitable equivalence classes
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of associated n-tuples provide a complete and independent system
of invariants for couniform homogeneous modules (see Th. 3 of [11];
see also [7]).

§ 2. Let us now denote by M a torsion-free module of finite rank
n + 1, which is homogenecous and has co-rank 1. We shall look at M
as an R-submodule of a vector space V ~@#+l. As in the case of
finitely generated modules, we want to find suitable systems of gen-
erators of M, in order to define n-tuples of units of S associated to M.
For this purpose we proceed by steps.

n
STeEP 1. A basic submodule B of M is of the form B = @ Lw,,
i=1

where L>R is a suitable R-submodule of @, and z,, ..., x, € M.

n

Let B= @ U; be a basic submodule of M, with U, uniserial

i=1
for all 7. Since M is homogeneous, all the U,s are isomorphic to
a suitable torsion-free uniserial module L; in view of Th. 1.1, p. 270
of [3], we can assume that L is an R-submodule of @, containing R.
If f,: L - U, is an isomorphism (¢ =1, ...,%), set f(1) =x,e M
(recall that 1 € L> R). It is then immediate that B has the desired
form. /]

StEP 2. M/B is isomorphic to H, where H is a suitable R-sub-
module of Q, containing L. /1]

STEP 3. There exists xy€ V such that:
i) {@, @1y ..., @,} is @ basis of V,

il) M can be written, by generators, in the form:

M = (B, z,: for all r1e HI\1L)

n
where x, = r—l(xo + > uZw,-), for suitable u} e L.
i=1

In view of Step 2, there exists an isomorphism f: H — M/B; for
all r1e H\L, choose x,€ M such that f(r-!) = x, + B, and choose
2, € M such that f(1) = x, + B. Since M/B is torsion-free, we have
Rz, B = 0, and this ensures that {x,, ®,, ..., %,} is a basis of V.
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In particular, for all r*e H\ L, there exists aj, a, ..., a, €@ such
that

n
(4) @, = am, + 3 aiw; ;
i=1

from rf(r-1) = f(1) and (4), it follows:
re,— L, € B for all r-1e H\L,

from which, using the fact that x,, «,, ..., #, are linearly independent,
we get, for all e H\L and for all i<n

ra,=1, ie. ay=17r1;
ra;e L, i.e. @] = ru for suitable u}e L.
It is clear that M = (B, x,: r*€ H\L), and we have proved that

x, is of the form x, = r-l(wo + > u{a:i). /1]
i=1

StEP 4. For a suitable choice of x, in Step 3, the w) turn out to be
units of R, for all r-1e H\L, and for all i<n.

In the notation of Step 3, note that, if H>s*R>r'R > L, from
f(r-*) = r-1sf(s7?) it follows

(5) risx,— x,€ B

from which, by the linear independence of x,, #,, ..., ,, we get, for
all i<n:

(6) w;—uierL (for all r,8: H>s8*R>r*R>L).
Fix now t-'e H\L; if we take an arbitrary r—1e H\ L, from (6) it
follows that either w}— wierL or w]— u!€tL; in any case u|— u!€ P,

because rL, tL<P, so that, for all e H\ZL and for all i<n,

o =u—u—1=u—a
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is a unit of B. Set now
n
Yo = @ + zaiwﬁ
i=1
then the x,’s can be written in the form
" n
g =gt 30— a)o) =r(v+ Soiai),
i=1 i=1

where o] € U(R) for all r€ H\L, and for all i<n. The desired con-
clusion follows. /[l

SteP 5. If we€ U(R), for all r and i, then there exist w,e€ U(S),
t =1, ..,n, such that

(7) u,— u;erLS for all rte H\L.

Since S is a maximal immediate extension of R, the assertion
follows from (6). /Il

Note that, differently from the case of finitely generated mod-
ules, M determines L and H only up to isomorphism; hence also

I= (| rL is determined up to isomorphism.
r-leH\L

It is clear that u,, ..., ,, found in Step 5, depend by the choice
of L, H and of the system of generators of M. By definition of
breadth ideal, the relations (7) show that either #;e€ R or B(u;)<I,
for all 1<n.

The n-tuple (u,, ..., u,)e U(8)* is said to be associated to M;
the ideal I = () rL is said to be the ideal of the n-tuple (uy, ..., U,).

r-leH\ L

By another pEint of view, we see that if (w,, ..., u,)€ U(S)" is
associated to a homogeneous torsion-free module M of finite rank
and co-rank 1, then M C@"*! can be written in the form

M= < @D L., r*l(xo + 2"2 uzw,-): r“leH\L>
i=1 i=1

for a suitable choice of {x,, @y, ..., ¥,} basis of @*+!, of H and L
R-submodules of ¢, and of «} units of R which satisfy the rela-
tions (7).
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The next Proposition 1 is the main ingredient to prove the analog
of Theorem 0 for finite rank torsion-free modules. In the proof of
it, we shall use the notion of height hy(x) of an element x of M, and
its properties; we refer to Ch. VIII of [3] for an extensive treatment
on heights.

PrOPOSITION 1. Let M be a homogeneous torsion-free module of

n
finite rank, with co-rank 1; let B = (P Lx; be basic in M, with L> R.
i=1
If M is decomposable, then there exists j<mn such that Lx; is a sum-
mand of M.

Proor. Suppose that M = M, D M, is a non trivial decomposi-
tion of M. Since rk (M) = b(M) + 1 and by the uniqueness of basic
submodules up to isomorphism, it follows that one of the summands,
say M,, is such that rk (M,) = b(M,). But then M, is a direct sum
of uniserial modules, all isomorphic to L. So we can assume, without
loss of generality, that M, is uniserial. Let m,: M — M,, 7,: M — M,
be the canonical projections, and, for ¢ =1, .., n, set z, = m(®),
@ = my(x,). It is clear that, if x; 7= 0, then the restriction m,: Lz, > M,
is injective, since each proper quotient of Lz, is torsion and M,
is torsion-free. Let us prove that there exists j<m such that m,:
Lx; — M, is onto, in which case m, restricted to Lx; will be an iso-
morphism. By contradiction, assume that for all i<n, 7,: Ly, — M,
is not surjective. In particular, for all i<n, m,(Lx;) = L&, is either
zero, or it is not pure in M,, because a nonzero pure submodule of
a torsion-free uniserial module is the whole module. From this fact
we deduce that, for all i<, hy(@;) = hy (@;) > L|R = hy(x;). But
then, from &, = «; + @, it follows hy(x;) = hy (#;) = L/R. Let us

n
prove that the w; are linearly independent; in fact, if Y a,x; =0,
with @, € R not all zero, it follows that i=1

n n
U4
O#Zaiwi == Ea/;wi )
i=1 i=1

and this is impossible, because the height of the second member is
strictly larger than the height of the first member. Let us now prove

that (—BLa: is pure in M,; it is enough to check that, for any choice

i=
of a,, ..., a,€ R, with some @, a unit of R, we have hM(zaw) L/R.

i=1
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This is true: in fact,

s

| é:laiw:.) = I

n n
a;r;— Za,.w:.') = hM( Ea,,-w,.) = L/R,
1 i=1 i

i=1

K3

It

n "
since B is pure and hM( zaix;') > L/R. But if @ La; is pure in M,
n i=1 i=1
then P Lz, ® M, is pure in M, from which » + 1<b(M) = n, which
i=1
is the desired contradiction.
If then we choose j <n in such a way that =,: Lr; — M, is an iso-

morphism, we obtain M = Lx;® M,. This concludes the proof. ///

THEOREM 2. Let M be a homogeneous torsion-free module of finite
rank, with co-rank 1; let (4., ..., w,) be an n-tuple associated to M, and
let I be the ideal of (uyy ..., Un). If uy, ..., u, are u-independent over I,
then M 1is indecomposable.

Proor. Let us write M in the form
M= <@La:,~ =B, x,= r—l(wo + 3> u;a:,.): r—leH\L> ;
i=1 i-1

by contradiction, let us suppose that M is decomposable. In view
of Prop. 1, we can assume, without loss of generality, that Lz, is a
direct summand of M, i.e. M = Lr,® N. Then we have

r; = b;x, + m; for t=0,1,...,n—1,
x, = b,x, + m, for all r*e H\ L,

where b;,b,€ L, m;, m,eN, for all ¢ and r. We obtain, for all

rie INL

n
(8) 1%, = rb, &, + rm, = o+ 3 wiw;, =

i=1

= (bo —l—';_g:biuj -+ u:)w,, 4 (mo +:§u:mi) .
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By the uniqueness of the decomposition we get

n—1
9) by+ X byu} + w, =rb.erL for all r1e H\L;
i=1

i=

multiplying, if necessary, (9) for a suitable element of R,we can get
a relation

(10) ¢+ >euierl,

i=1

where ¢,, ¢, ..., ¢, € R, and some ¢; is a unit. By (10), using (7), we
obtain
(11) ¢+ Deue (| rL8=18;

=1 rleH\ L

since u,, ..., u, are u-independent over I, (11) would imply ¢, ¢,, ...
...y Cx € P, contrary to our choice of the ¢’s. The desired conclusion
follows. /1]

Suppose now to have chosen w,, ..., u,€ U(S), and an ideal I
of R such that:

a) B(u,)<I for i =1, ..., m,
b) w,...,u, are u-independent over I.

As already observed, from a) and b) it follows B(u,) = I for all i<n.
In this situation, we ask if there exists an indecomposable finite
rank torsion-free module M, which is homogeneous, of co-rank 1,
and such that (u,, ..., w,) is associated to it.
For this purpose, we choose two submodules L, H of @, with
@>H > L> R, such that

i)y I= N rL;

rleHN\ L
ii) I <¢L for all r1e H\ L.

Such a choice is possible in view of the results given in [10, 6, 8];
as a matter of fact, it is enough to take L =R, H = {r1€Q: rL> I};
the triple (L, H, I) is said to be compatible (see [8, 6]). Since rL > 1
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for all e H\L, and B(u;) = I for all i, there exists a family
{u: i =1, ..,n, e H\L} of units of R, such that, for all ¢ and r,

(7) w;— ulerLS .

We define by generators an R-submodule of the vector space

V= @vaiy
i=1

in the following way:
n n
M= <@Lmi =B, z, = r—l(wo + 3 u:m,»): r*leH\L> .
i=1 i=1

PROPOSITION 3. In the above notation, M is indecomposable, homo-
geneous, with co-rank 1, and (u,, ..., %,) 18 an associated n-tuple of M.

Proor. If we prove that B is basic in M, we are done; in fact,
in that case, by the definitions, M has co-rank 1, (u,, ..., #,) is asso-
ciated to M, and I is the ideal of (u,, ..., u,), so that we can apply
Theorem 2, to obtain M indecomposable.

First of all, let us prove that B is pure in M; actually, we will
check that M/B is uniserial and torsion-free. Note that M/B =
= (w, + B: r1e H\L). To prove that M/B is uniserial, it is enough
to prove that the cyclic submodules R(x, + B), r*e H\ L, form
a chain with respect to inclusion. Let us choose r, s such that
H>s'R>rR> L; then (7) and rL>sL imply that, for i =1,...,n

(12) w,— uierkL.

From (12) it follows

n
(13) srlw,— w, = r1Y (ui— u})w, € B ;
i=1

from (13) we reach. at once the desired conclusion. Since M/B is uni-
serial, to prove that it is torsion-free, it is enough to exhibit an
element of M /B with zero annihilator. For instance, x, + B€ M|B,
and Rz, B = 0 implies that Ann,, (z,+ B) = 0.

Since rk (M) =rk (B) 4+ 1, to conclude that B is basic, it is enough
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to prove that M is not a direct sum of uniserial modules. Actually,

n
if M =@ U,, U; uniserial, since Lz, is pure in M, by Th. 5.6,
i=1
p. 192 of [3], we get that Lz, is a direct summand of M; using the
same argument as in the proof of Theorem 2, we contradict the

u-independence of the u,’s. This completes the proof. /1]

§ 3. The purpose of this section is to show in which way u-depend-
ence and decomposition of modules are related.

Let (uy, ..., w,) € U(8)"* be an n-tuple associated to a homogeneous
torsion-free module M, with co-rank 1; let I be the ideal of (u,, ..., %,).
We shall say that u; u-depends by u, over I, where i€ F C{1, ..., n} if

w; =0y + . 0 U, (mod I8)
i€F
with ¢,, ¢;€ R, for all ie F.

If w,,..., u, are not u-independent over I, using an easy induc-
tion, one proves that there exists a proper subset F of {1,...,n},
such that the s, ¢ € F, are u-independent over I, and u, u-depends
by u; over I, for all je {1, ..., n}\F. If, possibly, F = @, this simply
means that 4; e R + I8, for 1 <j<n. Let us suppose that such an F
is nonempty; let k¥ < n be the cardinality of F. Without loss of gen-
erality we can assume that F = {1, ..., k}; for j =k + 1, ..., n, we
have

k
(14) Uy = Co; + D, Cis Uy (mod I8),
i=1

for suitable ¢,;, ¢;; in R.

The following theorem shows that from the relations (14) we can
deduce a canonical decomposition into indecomposable summands of
the module M, which has (u,, ..., 4,) as associated n-tuple.

THEOREM 4. Let M be a torsion-free homogeneous module of finite
rank n -+ 1, with co-rank 1; let (uy, ..., ,) be an associated n-tuple
of M, and let I be the ideal of (uy, ..., un). Let us write MCV =

n
= @ Qux;, by generators, in the form
=0

n n ,
M= <':@1 L, x, = 'r—l(wo +i§1uiwi); "'_IGH\L> .



Unitary independence in the study of finitely generated ete. 197

If the relations (14) hold for a suitable k <n, where u,, ..., u, are

n
u-independent over I, set y, = x;+ > ¢;x;, for i =0,1, ...,k and
i=kt1
y; =ux; for j > k. Then M decomposes in the following way:

M =NOLypp®...® Ly,

where
k k
N = <@Ly,-, Y, = r—l(yo +> uiy,-): r—leH\L>
i=1 i=1
is indecomposable.

Proor. Let us note that @Lw = EI-)I/y,, a8 it is immediate
i=1

to check. From (14) and (7) we get, for all e H\ L, and for
i=k+1,...,n

k
(15) U = C; + D Ci; U] (mod »L) .
=1

For all r'e H\L, by the definitions of y,, ..., y, and of y,, using
(15) we obtain:

— Y= r"(zu @i— Z Coi5— Z“(‘”'+ > tua)) =

i=k+1 i=k+1

=1 i (u:.— 65— Zc,,u)m e@In,/, .

i=k+1 i=k+1

This shows, first of all, that y, € M for all », hence N C M; moreover

n

n
z,—y.€ @ Ly, for all r, implies that McN+ &P Ly, so

i=k+1 n i=k+1

that M =N + @ Ly,: Since N C@Qy,, it is also clear that
i=k+1
NN ( @ I/y,) =0.

i=k+1 k
It remains to prove that N is indecomposable. Since Q—)Ly is

basic in N, and rk (N) = k + 1, N is homogeneous with co-rank 1;
by the definitions, (u,, ..., 4;) is a k-tuple associated to N, and I is
the ideal of (u,, ..., 4;). It is then enough to invoke Theorem 2. [//
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It is easy to verify that the number of uniserial summands in any
indecomposable decomposition of a torsion-free module M of finite
rank, is an invariant of M (for example we can use the fact that the
endomorphism ring of a uniserial module U is local, so that U has
the exchange property).

In view of Theorem 4, we deduce that the positive integer k = |F|,
where F is as in the discussion before Th. 4, does not depend meither
by the choice of F, nor by the n-tuple (uy, ..., u,).

It is interesting to prove the analog of Theorem 4 for finitely
generated modules. The next Theorem 5 will be an improvement of
Prop. 7 of [10] (hence of Theorem 0, too).

Let X be a finitely generated homogeneous module such that
(X)=bX)+1=mn+4+1, and let (u,, ..., u,)€ U(S)* be associated
to X. Let A < J be the ideals in the annihilator sequence of X, and

let I = () r'4. As in the above discussion, we can assume that
reJ*
Uy, ..., W are u-independent over I, while u,,,, ..., 4, u-depend by

Uyy .ovy Uz, according to the relations (14).
Such relations of u-dependence give a canonical decomposition
of X; we have the following

THEOREM 5. Let X be a finitely generated homogeneous module such
that I(X) =b(X) +1=mn+ 1; let A <<J be the ideals in the annihi-

lator sequence of X, let I = (| rtA, and let (uy, ..., u,) be an asso-
reJ*
ciated n-tuple of X. Let x = {x,, @y, ..., o} be a system of generators

of X which produces (4, ..., u,). If the relations (14) hold for a suitable
k<mn, and uy, ..., . are u-independent over I, set

n n
Yo = Ty— 2 Coi%j o Yyi=w;+ E Ci;%;

i=k+1 i=k+1

for i=1,..,k and y;=uw;, for j=k+ 1, ...,m. Then X decom-
poses in the following way

X =YD Ry ® .. © RYn

where Y = Yo, Y1, ---y Yy 18 tndecomposadble, and (u,, ..., u;) s asso-
ciated to Y.

ProoFr. First of all, note that y = {yo, %1, ..., ¥»} is a minimal
system of generators of X, since the matrix 7' such that Tx = y is
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invertible in R. Moreover, (—DR:c = (Y14 .-y Yny, and it is an easy
i=1

exercise to verify that v,,...,y, are linearly independent, so that

n
@ Ry, is basic in X. Hence to prove that X = ¥ ® Ry,,, D ... ® Ry,
i=1 n
it is enough to verify that ¥ N ( &) Ry,-) = 0.
i=k+1
By contradiction, let us suppose that

n

(16) Y + Za Y+ D a;y; =0
1

i=k+

n

with > a,;y;7 0. From (16) and the definition of y, it follows that
i=k+1

YTy € Ty -ey Tnyy 80 that r€J = Ann (x, + (&, ..., #,)). If now r =0,

we have an immediate contradiction, since ¥, ..., y, are linearly inde-
n

pendent. We can thus assume that r € J*, and, since (P Ry, is pure
i=1

we can write a; = rb,, for suitable b;e R, for i =1, ..., k, k+1,...,n

Then (16) is equivalent to

z Co;%; Zb z;+ Zb( i G‘u'mi)‘}" ”z bixi) =0

i=k+1 i=1 ‘i=k+1 i=k+1

(17) r(

n
Now, since r € J*, we have rz, = r > u}x;, where u e U(R) are such
i=1
that u,— uler 148, for all i. Thus, substituting, in (17), r@, by
n
r > ux;, we obtain

i=1

» k
(18) rz(u +b)entr 3 (u;—co,-—}— S bioy -+ b,)x,:o
i=1

=k+1
from which
(19) u+b;=0 (modrt4) for i=1,..,k
and

k
(20) u;— ¢;+ D.bi¢i;+b; =0 (modr4) i=k4+1,..,n
i=1
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From the relations (14), using the fact that u,— u]er148, for
t=1,..,n, we get

(21) u; = 6, + z w; C; (mod r—14) .

Substituting (19) and (21) in (20), we get

bj=0 (modr14) for j=k+4+1,..,n

which is the required contradiction.
It remains to prove that Y is indecomposable, Since @—)Ry, is
bagic in ¥, we have, for all re J* i=1

k
(22) Yo =1 D VY; for suitable »fe R .
i=1

From (22) we get

(23) "(%—' 3: cof@'f) =r S: "’:(wi +. 3: ciiwi) .

n
From (23), since rw, = r > w[x;, we obtain, for all re J*
i=1
w;— v;ert4 for ¢ =1, ..,k

and also
u;— v;er1A8 for ¢ =1, ..,k and for all reJ*.

This implies that (%, ..., ;) is associated to Y. Since u,, ..., u, are
u-independent over I = [|r~14, where A < J are the ideals in the

reJ*

annihilator sequence of Y, we can apply Theorem 0 to Y, obtaining
that Y is indecomposable, as desired. /i
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REMARK. Let us consider a torsion-free module M, with rank

n
n + 1, containing a submodule B = @ La;, which is pure in M but
i=1
not necessarily basic (in other words: it can happen that M = B U,
with U uniserial). Again M can be written by generators in the form

M= <B, T, = r—l(wo + i u?wi): r—leH\L>
i=1

(in the discussion of § 2 we only use the fact that B is pure and M/B
is uniserial). We can also associate to M an n-tuple (w,, ..., u,) and
consider the ideal I of the n-tuple. It is easy to adapt Theorem 4
to this slightly more general situation, obtaining that such M is a
dirsct sum of uniserial modules if and only if there exist ¢, ...,c, € R
such that ¢; = w; (mod I8) for ¢ =1, ..., n. Analogous considerations
hold for the case of finitely generated modules.
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