RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

PAOLO ZANARDO

Unitary independence in the study of finitely generated and of finite rank torsion-free modules over a valuation domain

Rendiconti del Seminario Matematico della Università di Padova, tome 82 (1989), p. 185-202

http://www.numdam.org/item?id=RSMUP_1989__82__185_0

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Unitary Independence in the Study of Finitely Generated and of Finite Rank Torsion-Free Modules over a Valuation Domain.

Paolo Zanardo (*)

Introduction.

Let R be a valuation domain, S a fixed maximal immediate extension of R; if $u_1, ..., u_n$ are units of S, and I is an ideal of R, then $u_1, ..., u_n$ are said to be *unitarily independent* (briefly: u-independent) over I if the following property is satisfied:

(*) if
$$c_0 + \sum_{i=1}^n c_i u_i \in IS$$
, with $c_0, c_1, ..., c_n \in R$, then $c_0, c_1, ..., c_n \in P$, where P is the maximal ideal of R .

The notion of unitary independence was first introduced, in a slightly different way, in [10], in order to construct indecomposable finitely generated R-modules (see Prop. 4, Theorem 6 and Prop. 7 of [10]). Unitary independence was investigated by Facchini, Salce and the author in [2, 5], and played a fundamental role for the classification of certain classes of indecomposable finitely generated R-modules (see [11]).

L. Salce and the author made evident, in [7,8], a resemblance between the theory of finitely generated R-modules and the theory

(*) Indirizzo dell'A.: Dipartimento di Matematica Pura e Applicata -Via Roma - 67100 L'Aquila, Italia.

Lavoro eseguito con il contributo del M.P.I.

of torsion-free R-modules of finite rank (see, in particular, Theorem 6.2 of [8]). This similarity suggests that the results on finitely generated modules can be carried, with suitable modifications, over finite rank torsion-free modules, and vice versa.

The purpose of this paper is to employ *u*-independence for the investigation of finite rank torsion-free modules, obtaining results analogous to the ones that hold for finitely generated modules. We shall consider finite rank torsion-free modules which are homogeneous and of co-rank 1 (see the preliminary Section 1).

In Section 2 we shall see that to any such module M, with rank n+1, we can associate an n-tuple $(u_1, ..., u_n)$ of units of S, and an ideal I, in such a way that M is indecomposable if $u_1, ..., u_n$ are u-independent over I (Theorem 2). Conversely, starting from an ideal I and an n-tuple $(u_1, ..., u_n)$ of units of S u-independent over I, we construct in Prop. 3 an indecomposable homogeneous module of rank n+1 and co-rank 1. We note that Prop. 3 generalizes results by Arnold [1], Prop. 4.3, and by Viljoen [9]. The starting point of all these results is the classical construction of a rank-two torsion-free indecomposable module over a discrete valuation ring, given by Kaplansky in [4], p. 46.

The results in Section 3 show the central role of u-independence for the investigation of both finitely generated and finite rank torsion-free modules. In fact, if the n-tuple $(u_1, ..., u_n)$ and the ideal I are associated to the finite rank torsion-free module M, and $u_1, ..., u_n$ are u-dependent over I, then, not only M is decomposable, but also the relations of u-dependence among the u_i 's produce, in a canonical way, a decomposition of M into indecomposable summands (Theorem 4). Finally, in Theorem 5 we prove an analogous result for finitely generated modules, giving a remarkable improvement of Prop. 7 of [10].

§ 1. For general facts about valuation domains and their modules we refer to the book by Fuchs and Salce [3].

Let us fix some terminology. In the sequel, we shall always denote by R a valuation domain, by P the maximal ideal of R, by Q the field of fractions of R, by S a fixed maximal immediate extension of R, and by U(R), U(S) the sets of units of R, S, respectively.

If $u \in U(S) \setminus R$, the breadth ideal B(u) of u is defined as follows (see [5]):

$$B(u) = \{a \in R \colon u \notin R + aS\}.$$

We recall that an ideal I of R is the breadth ideal of a suitable unit u of S not in R, I = B(u), if and only if R/I is not complete in the R/I-topology (see Prop. 1.4 of [5]).

Let us note that, if $u_1, ..., u_n \in U(S)$ are *u*-independent over an ideal I, then no u_i belongs to R; if, moreover, $j \leq n$ is such that $B(u_i) \leq I$, then, necessarily, $B(u_i) = I$.

In Ch. X of [3], it is introduced the notion of basic submodule of an R-module; when M is either finitely generated or torsion-free of finite rank, which case we are interested to, then a submodule B of M is basic if and only if:

- 1) $B = \bigoplus U_i$, where U_i is uniserial;
- 2) B is pure in M;
- 3) if V is a uniserial submodule of M, then either $B \cap V \neq 0$, or $B \oplus V$ is not pure in M.

Basic submodules are unique up to isomorphism ([3], Th. 3.2, p. 203) hence the number of the uniserial summands of a basic submodule is an invariant of M, which we shall denote by b(M); when M is finitely generated, then b(M) = g(M) = Goldie dimension of M ([3], Cor. 2.2, p. 179). An R-module is said to be homogeneous if the uniserial summands of a basic submodule are all isomorphic. If M is finite rank torsion-free, we shall say that M has co-rank 1 if rk(M) = b(M) + 1, or, equivalently, if M/B is uniserial, for B basic in M.

In this preliminary section we recall some definitions and results on finitely generated modules given in [10, 11] (see also Ch. IX of [3]), to emphasize the analogies with the discussion on finite rank torsion-free modules of the next section.

Let X be a finitely generated module; the length of X, denoted by l(X), is the minimal number of generators of X. We shall deal with the case when X is homogeneous and l(X) = b(X) + 1 = g(X) + 1 = n + 1. For the fundamental notion of annihilator sequence of a finitely generated module we refer to Ch. IX of [3]; in this case it is enough to note that X uniquely determines two ideals, $A = \operatorname{Ann} X < J$, where J is such that $X/B \cong R/J$ for any basic submodule B of X (X/B is cyclic, because l(X) = b(X) + 1). A and J are said to be the ideals in the annihilator sequence of X.

We can choose a minimal set of generators $x = \{x_0, x_1, ..., x_n\}$ of X, such that:

i) $\langle x_1, ..., x_n \rangle = \bigoplus_{i=1}^n Rx_i = B$ is basic in M, so that $Rx_i \cong R/A$, for i = 1, ..., n;

ii) there exist units u_i^r of R, for i = 1, ..., n and $r \in J^* = J \setminus \{0\}$, such that

(1)
$$rx_0 = r \sum_{i=1}^n u_i^r x_i \qquad \text{ for all } r \in J^*.$$

Note that $J = \text{Ann}(x_0 + B)$, since $X/B = R(x_0 + B)$. From ii) it follows that, if $rR \leqslant sR$, with $r, s \in J^*$, then

(2)
$$r(u_i^r - u_i^s) \in A$$
 for $i = 1, ..., n$.

Since S is a maximal immediate extension of R, for all $i \le n$ there exists $u_i \in U(S)$ such that

(3)
$$u_i - u_i^r \in r^{-1}AS \qquad \text{for all } r \in J^*.$$

In such a way we get an *n*-tuple $(u_1, ..., u_n) \in U(S)^n$; if we set $I = \bigcap_{r \in J^*} r^{-1}A$, by (3) and the definition of breadth ideal, it follows that either $u_i \in R$ or $B(u_i) \leqslant I$, for i = 1, ..., n. The *n*-tuple $(u_1, ..., u_n)$ is said to be associated to X; we also say that the system of generators x produces $(u_1, ..., u_n)$.

The content of Theorem 6 and Prop. 7 of [10] can be summarized in the following

THEOREM 0 [10]. (1) Let X be a homogeneous finitely generated module such that l(X) = b(X) + 1 = n + 1, let $(u_1, ..., u_n) \in U(S)^n$ be an associated n-tuple of X, and let $I = \bigcap_{r \in J^*} r^{-1}A$, where A < J are the ideals in the annihilator sequence of X. Then X is indecomposable if and only if $u_1, ..., u_n$ are u-independent over I. (2) Let $u_1, ..., u_n \in U(S)$ be u-independent over a suitable ideal I of R, and let $B(u_i) \leqslant I$ for i = 1, ..., n. Then there exists a finitely generated indecomposable homogeneous module X, with l(X) = b(X) + 1 = n + 1, such that the n-tuple $(u_1, ..., u_n)$ is associated to it.

REMARK. If X, as above, is indecomposable, X is called *couniform* homogeneous. The ideals A and J and suitable equivalence classes

of associated n-tuples provide a complete and independent system of invariants for couniform homogeneous modules (see Th. 3 of [11]; see also [7]).

§ 2. Let us now denote by M a torsion-free module of finite rank n+1, which is homogeneous and has co-rank 1. We shall look at M as an R-submodule of a vector space $V \cong Q^{n+1}$. As in the case of finitely generated modules, we want to find suitable systems of generators of M, in order to define n-tuples of units of S associated to M. For this purpose we proceed by steps.

STEP 1. A basic submodule B of M is of the form $B = \bigoplus_{i=1}^{n} Lx_i$, where $L \geqslant R$ is a suitable R-submodule of Q, and $x_1, ..., x_n \in M$.

Let $B=\bigoplus_{i=1}^n U_i$ be a basic submodule of M, with U_i uniserial for all i. Since M is homogeneous, all the U_i 's are isomorphic to a suitable torsion-free uniserial module L; in view of Th. 1.1, p. 270 of [3], we can assume that L is an R-submodule of Q, containing R. If $f_i\colon L\to U_i$ is an isomorphism $(i=1,\ldots,n)$, set $f_i(1)=x_i\in M$ (recall that $1\in L\geqslant R$). It is then immediate that B has the desired form.

Step 2. M/B is isomorphic to H, where H is a suitable R-submodule of Q, containing L.

STEP 3. There exists $x_0 \in V$ such that:

- i) $\{x_0, x_1, ..., x_n\}$ is a basis of V,
- ii) M can be written, by generators, in the form:

$$M = \langle B, x_r : \text{ for all } r^{-1} \in H \setminus L \rangle$$

where $x_r = r^{-1} \Big(x_0 + \sum_{i=1}^n u_i^r x_i \Big)$, for suitable $u_i^r \in L$.

In view of Step 2, there exists an isomorphism $f: H \to M/B$; for all $r^{-1} \in H \setminus L$, choose $x_r \in M$ such that $f(r^{-1}) = x_r + B$, and choose $x_0 \in M$ such that $f(1) = x_0 + B$. Since M/B is torsion-free, we have $Rx_0 \cap B = 0$, and this ensures that $\{x_0, x_1, ..., x_n\}$ is a basis of V.

In particular, for all $r^{-1} \in H \setminus L$, there exists a_0^r , a_1^r , ..., $a_n^r \in Q$ such that

(4)
$$x_r = a_0^r x_0 + \sum_{i=1}^n a_i^r x_i;$$

from $rf(r^{-1}) = f(1)$ and (4), it follows:

$$rx_r - x_0 \in B$$
 for all $r^{-1} \in H \setminus L$,

from which, using the fact that $x_0, x_1, ..., x_n$ are linearly independent, we get, for all $r^{-1} \in H \setminus L$ and for all $i \le n$

$$ra_0=1$$
 , i.e. $a_0^r=r^{-1}$;
$$ra_i^r\in L \ , \qquad \text{i.e.} \ a_i^r=r^{-1}u_i^r \ \text{for suitable} \ u_i^r\in L \ .$$

It is clear that $M = \langle B, x_r : r^{-1} \in H \setminus L \rangle$, and we have proved that x_r is of the form $x_r = r^{-1} \left(x_0 + \sum_{i=1}^n u_i^r x_i \right)$.

STEP 4. For a suitable choice of x_0 in Step 3, the u_i^r turn out to be units of R, for all $r^{-1} \in H \setminus L$, and for all $i \leqslant n$.

In the notation of Step 3, note that, if $H \geqslant s^{-1}R \geqslant r^{-1}R > L$, from $f(r^{-1}) = r^{-1}sf(s^{-1})$ it follows

$$(5) r^{-1} s x_s - x_r \in B$$

from which, by the linear independence of $x_0, x_1, ..., x_n$, we get, for all $i \le n$:

$$(6) \hspace{1cm} u_{i}^{r} - u_{i}^{s} \in rL \hspace{1cm} (\text{for all } r, \, s \colon \, H \! \geqslant \! s^{-1}R \! \geqslant \! r^{-1}R \! > L) \; .$$

Fix now $t^{-1} \in H \setminus L$; if we take an arbitrary $r^{-1} \in H \setminus L$, from (6) it follows that either $u_i^r - u_i^t \in rL$ or $u_i^r - u_i^t \in tL$; in any case $u_i^r - u_i^t \in P$, because rL, $tL \leq P$, so that, for all $r^{-1} \in H \setminus L$ and for all $i \leq n$,

$$v_i^{\mathsf{r}} = u_i^{\mathsf{r}} - u_i^{\mathsf{t}} - 1 = u_i^{\mathsf{r}} - a_i$$

is a unit of R. Set now

$$y_0 = x_0 + \sum_{i=1}^n a_i x_i ;$$

then the x_r 's can be written in the form

$$x_r = r^{-1} \Big(y_0 + \sum_{i=1}^n (u_i^r - a_i) x_i \Big) = r^{-1} \Big(y_0 + \sum_{i=1}^n v_i^r x_i \Big) \ ,$$

where $v_i^r \in U(R)$ for all $r \in H \setminus L$, and for all $i \le n$. The desired conclusion follows.

STEP 5. If $u_i' \in U(R)$, for all r and i, then there exist $u_i \in U(S)$, i = 1, ..., n, such that

(7)
$$u_i - u_i^r \in rLS$$
 for all $r^{-1} \in H \setminus L$.

Since S is a maximal immediate extension of R, the assertion follows from (6).

Note that, differently from the case of finitely generated modules, M determines L and H only up to isomorphism; hence also $I = \bigcap_{n \in I} rL$ is determined up to isomorphism.

It is clear that $u_1, ..., u_n$, found in Step 5, depend by the choice of L, H and of the system of generators of M. By definition of breadth ideal, the relations (7) show that either $u_i \in R$ or $B(u_i) \leqslant I$, for all $i \leqslant n$.

The *n*-tuple $(u_1, ..., u_n) \in U(S)^n$ is said to be associated to M; the ideal $I = \bigcap_{r^{-1} \in H \setminus L} rL$ is said to be the ideal of the n-tuple $(u_1, ..., u_n)$.

By another point of view, we see that if $(u_1, ..., u_n) \in U(S)^n$ is associated to a homogeneous torsion-free module M of finite rank and co-rank 1, then $M \subseteq Q^{n+1}$ can be written in the form

$$M = \left\langle \bigoplus_{i=1}^n Lx_i, r^{-1}\left(x_0 + \sum_{i=1}^n u_i^r x_i\right): r^{-1} \in H \setminus L \right\rangle$$

for a suitable choice of $\{x_0, x_1, ..., x_n\}$ basis of Q^{n+1} , of H and L R-submodules of Q, and of u_i^r units of R which satisfy the relations (7).

The next Proposition 1 is the main ingredient to prove the analog of Theorem 0 for finite rank torsion-free modules. In the proof of it, we shall use the notion of $height h_M(x)$ of an element x of M, and its properties; we refer to Ch. VIII of [3] for an extensive treatment on heights.

PROPOSITION 1. Let M be a homogeneous torsion-free module of finite rank, with co-rank 1; let $B = \bigoplus_{i=1}^n Lx_i$ be basic in M, with $L \geqslant R$. If M is decomposable, then there exists $j \leqslant n$ such that Lx_i is a summand of M.

Proof. Suppose that $M = M_1 \oplus M_2$ is a non trivial decomposition of M. Since rk (M) = b(M) + 1 and by the uniqueness of basic submodules up to isomorphism, it follows that one of the summands, say M_2 , is such that rk $(M_2) = b(M_2)$. But then M_2 is a direct sum of uniserial modules, all isomorphic to L. So we can assume, without loss of generality, that M_2 is uniserial. Let $\pi_1: M \to M_1, \pi_2: M \to M_2$ be the canonical projections, and, for i = 1, ..., n, set $x'_i = \pi_1(x_i)$, $x_i'' = \pi_2(x_i)$. It is clear that, if $x_i'' \neq 0$, then the restriction $\pi_2 \colon Lx_i \to M_2$ is injective, since each proper quotient of Lx_i is torsion and M_2 is torsion-free. Let us prove that there exists $j \le n$ such that π_2 : $Lx_i \to M_2$ is onto, in which case π_2 restricted to Lx_i will be an isomorphism. By contradiction, assume that for all $i \leq n$, $\pi_2: Lx_i \to M_2$ is not surjective. In particular, for all $i \leqslant n$, $\pi_2(Lx_i) = Lx_i''$ is either zero, or it is not pure in M_2 , because a nonzero pure submodule of a torsion-free uniserial module is the whole module. From this fact we deduce that, for all $i \leqslant n$, $h_M(x_i'') = h_{M_1}(x_i'') > L/R = h_M(x_i)$. But then, from $x_i = x_i' + x_i''$, it follows $h_M(x_i') = h_{M_1}(x_i') = L/R$. Let us prove that the x_i' are linearly independent; in fact, if $\sum_{i=1}^{n} a_i x_i' = 0$, with $a_i \in R$ not all zero, it follows that

$$0 \neq \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i x_i''$$

and this is impossible, because the height of the second member is strictly larger than the height of the first member. Let us now prove that $\bigoplus_{i=1}^n Lx_i'$ is pure in M_1 ; it is enough to check that, for any choice of $a_1, \ldots, a_n \in R$, with some a_i a unit of R, we have $h_{M_1}(\sum_{i=1}^n a_i x_i') = L/R$.

This is true: in fact,

$$h_{M_1}\!\!\left(\sum_{i=1}^n\!a_ix_i'
ight) = h_{M}\!\!\left(\sum_{i=1}^n\!a_ix_i\!\!-\!\sum_{i=1}^n\!a_ix_i''
ight) = h_{M}\!\!\left(\sum_{i=1}^n\!a_ix_i
ight) = L/R\;,$$

since B is pure and $h_M\left(\sum_{i=1}^n a_i x_i''\right) > L/R$. But if $\bigoplus_{i=1}^n Lx_i'$ is pure in M_1 , then $\bigoplus_{i=1}^n Lx_i' \oplus M_2$ is pure in M, from which $n+1 \leqslant b(M) = n$, which is the desired contradiction.

If then we choose $j \le n$ in such a way that $\pi_2: Lx_j \to M_2$ is an isomorphism, we obtain $M = Lx_j \oplus M_1$. This concludes the proof.

THEOREM 2. Let M be a homogeneous torsion-free module of finite rank, with co-rank 1; let $(u_1, ..., u_n)$ be an n-tuple associated to M, and let I be the ideal of $(u_1, ..., u_n)$. If $u_1, ..., u_n$ are u-independent over I, then M is indecomposable.

PROOF. Let us write M in the form

$$M = \left\langle igoplus_{i=1}^n Lx_i = B, \, x_r = r^{-1} \left(x_0 + \sum_{i=1}^n u_i^r x_i \right) \colon r^{-1} \in H \setminus L \right
angle \; ;$$

by contradiction, let us suppose that M is decomposable. In view of Prop. 1, we can assume, without loss of generality, that Lx_n is a direct summand of M, i.e. $M = Lx_n \oplus N$. Then we have

$$x_i = b_i x_n + m_i$$
 for $i = 0, 1, ..., n-1$, $x_r = b_r x_n + m_r$ for all $r^{-1} \in H \setminus L$,

where $b_i, b_r \in L$, $m_i, m_r \in N$, for all i and r. We obtain, for all $r^{-1} \in H \setminus L$

(8)
$$rx_r = rb_r x_n + rm_r = x_0 + \sum_{i=1}^n u_i^r x_i =$$

$$= \left(b_0 + \sum_{i=1}^{n-1} b_i u_i^r + u_n^r \right) x_n + \left(m_0 + \sum_{i=1}^{n-1} u_i^r m_i \right).$$

By the uniqueness of the decomposition we get

(9)
$$b_0 + \sum_{i=1}^{n-1} b_i u_i^r + u_n^r = r b_r \in rL$$
 for all $r^{-1} \in H \setminus L$;

multiplying, if necessary, (9) for a suitable element of R, we can get a relation

$$(10) c_0 + \sum_{i=1}^n c_i u_i^r \in rL,$$

where $c_0, c_1, ..., c_n \in R$, and some c_i is a unit. By (10), using (7), we obtain

$$c_0 + \sum_{i=1}^n c_i u_i \in \bigcap_{r^{-1} \in H \setminus L} rLS = IS;$$

since $u_1, ..., u_n$ are u-independent over I, (11) would imply $c_0, c_1, ...$..., $c_n \in P$, contrary to our choice of the c_i 's. The desired conclusion follows.

Suppose now to have chosen $u_1, \ldots, u_n \in U(S)$, and an ideal I of R such that:

- a) $B(u_i) \leq I$ for i = 1, ..., n,
- b) $u_1, ..., u_n$ are u-independent over I.

As already observed, from a) and b) it follows $B(u_i) = I$ for all $i \le n$. In this situation, we ask if there exists an indecomposable finite rank torsion-free module M, which is homogeneous, of co-rank 1, and such that (u_1, \ldots, u_n) is associated to it.

For this purpose, we choose two submodules L, H of Q, with $Q \geqslant H > L \geqslant R$, such that

i)
$$I = \bigcap_{r^{-1} \in H \setminus L} rL;$$

ii)
$$I < rL$$
 for all $r^{-1} \in H \setminus L$.

Such a choice is possible in view of the results given in [10, 6, 8]; as a matter of fact, it is enough to take L = R, $H = \{r^{-1} \in Q : rL > I\}$; the triple (L, H, I) is said to be *compatible* (see [8, 6]). Since rL > I

for all $r^{-1} \in H \setminus L$, and $B(u_i) = I$ for all i, there exists a family $\{u_i^r : i = 1, ..., n, r^{-1} \in H \setminus L\}$ of units of R, such that, for all i and r,

$$(7) u_i - u_i^r \in rLS.$$

We define by generators an R-submodule of the vector space

$$V = \bigoplus_{i=1}^{n} Qx_i,$$

in the following way:

$$M = \left\langle \bigoplus_{i=1}^n Lx_i = B, x_r = r^{-1} \left(x_0 + \sum_{i=1}^n u_i^r x_i \right) \colon r^{-1} \in H \setminus L \right\rangle.$$

PROPOSITION 3. In the above notation, M is indecomposable, homogeneous, with co-rank 1, and $(u_1, ..., u_n)$ is an associated n-tuple of M.

PROOF. If we prove that B is basic in M, we are done; in fact, in that case, by the definitions, M has co-rank 1, $(u_1, ..., u_n)$ is associated to M, and I is the ideal of $(u_1, ..., u_n)$, so that we can apply Theorem 2, to obtain M indecomposable.

First of all, let us prove that B is pure in M; actually, we will check that M/B is uniserial and torsion-free. Note that $M/B = \langle x_r + B : r^{-1} \in H \setminus L \rangle$. To prove that M/B is uniserial, it is enough to prove that the cyclic submodules $R(x_r + B)$, $r^{-1} \in H \setminus L$, form a chain with respect to inclusion. Let us choose r, s such that $H \geqslant s^{-1}R \geqslant r^{-1}R \geqslant L$; then (7) and $rL \geqslant sL$ imply that, for i = 1, ..., n

$$(12) u_i^r - u_i^s \in rL.$$

From (12) it follows

(13)
$$sr^{-1}x_s - x_r = r^{-1} \sum_{i=1}^n (u_i^s - u_i^r) x_i \in B ;$$

from (13) we reach at once the desired conclusion. Since M/B is uniserial, to prove that it is torsion-free, it is enough to exhibit an element of M/B with zero annihilator. For instance, $x_0 + B \in M/B$, and $Rx_0 \cap B = 0$ implies that $Ann_{M/B}(x_0 + B) = 0$.

Since $\operatorname{rk}(M) = \operatorname{rk}(B) + 1$, to conclude that B is basic, it is enough

to prove that M is not a direct sum of uniserial modules. Actually, if $M = \bigoplus_{i=1}^{n} U_i$, U_i uniserial, since Lx_n is pure in M, by Th. 5.6, p. 192 of [3], we get that Lx_n is a direct summand of M; using the same argument as in the proof of Theorem 2, we contradict the u-independence of the u_i 's. This completes the proof.

§ 3. The purpose of this section is to show in which way u-dependence and decomposition of modules are related.

Let $(u_1, ..., u_n) \in U(S)^n$ be an *n*-tuple associated to a homogeneous torsion-free module M, with co-rank 1; let I be the ideal of $(u_1, ..., u_n)$. We shall say that u_i u-depends by u_i over I, where $i \in F \subseteq \{1, ..., n\}$ if

$$u_j \equiv c_0 + \sum_{i \in F} c_i u_i \pmod{IS}$$

with $c_0, c_i \in R$, for all $i \in F$.

If $u_1, ..., u_n$ are not *u*-independent over *I*, using an easy induction, one proves that there exists a proper subset F of $\{1, ..., n\}$, such that the u_i 's, $i \in F$, are *u*-independent over *I*, and u_j *u*-depends by u_i over *I*, for all $j \in \{1, ..., n\} \setminus F$. If, possibly, $F = \emptyset$, this simply means that $u_j \in R + IS$, for $1 \le j \le n$. Let us suppose that such an F is nonempty; let k < n be the cardinality of F. Without loss of generality we can assume that $F = \{1, ..., k\}$; for j = k + 1, ..., n, we have

(14)
$$u_j \equiv c_{0j} + \sum_{i=1}^k c_{ij} u_i \pmod{IS},$$

for suitable c_{0j} , c_{ij} in R.

The following theorem shows that from the relations (14) we can deduce a canonical decomposition into indecomposable summands of the module M, which has $(u_1, ..., u_n)$ as associated n-tuple.

THEOREM 4. Let M be a torsion-free homogeneous module of finite rank n+1, with co-rank 1; let $(u_1, ..., u_n)$ be an associated n-tuple of M, and let I be the ideal of $(u_1, ..., u_n)$. Let us write $M \subseteq V = \bigoplus_{i=0}^n Qx_i$, by generators, in the form

$$M = \left\langle igoplus_{i=1}^n Lx_i, \, x_r = r^{-1} \! \left(x_0 + \sum_{i=1}^n u_i^r x_i
ight) \colon r^{-1} \! \in \! H igsep \! L
ight
angle \, .$$

If the relations (14) hold for a suitable k < n, where $u_1, ..., u_k$ are u-independent over I, set $y_i = x_i + \sum_{j=k+1}^n c_{ij} x_j$, for i = 0, 1, ..., k, and $y_j = x_j$ for j > k. Then M decomposes in the following way:

$$M = N \oplus Ly_{k+1} \oplus ... \oplus Ly_n$$

where

$$N = \Big\langle igoplus_{i=1}^k L y_i, \, y_r = r^{-1} \Big(y_0 + \sum_{i=1}^k u_i^r y_i \Big) \colon r^{-1} \! \in \! H igsep \! L \Big
angle$$

is indecomposable.

PROOF. Let us note that $\bigoplus_{i=1}^n Lx_i = \bigoplus_{i=1}^n Ly_i$, as it is immediate to check. From (14) and (7) we get, for all $r^{-1} \in H \setminus L$, and for j = k + 1, ..., n

(15)
$$u_{j}^{r} \equiv c_{0j} + \sum_{i=1}^{k} c_{ij} u_{i}^{r} \pmod{rL}$$
.

For all $r^{-1} \in H \setminus L$, by the definitions of $y_0, ..., y_n$ and of y_r , using (15) we obtain:

$$egin{aligned} x_r - y_r &= r^{-1} \Big(\sum_{i=1}^n u_i^r x_i - \sum_{j=k+1}^n c_{0j} x_j - \sum_{i=1}^k u_i^r \Big(x_i + \sum_{j=k+1}^n c_{ij} x_j \Big) \Big) = \ &= r^{-1} \sum_{j=k+1}^n \Big(u_j^r - c_{0j} - \sum_{i=1}^k c_{ij} u_i^r \Big) x_j \in \bigoplus_{j=k+1}^n L y_j \;. \end{aligned}$$

This shows, first of all, that $y_r \in M$ for all r, hence $N \subseteq M$; moreover $x_r - y_r \in \bigoplus_{j=k+1}^n Ly_j$, for all r, implies that $M \subseteq N + \bigoplus_{j=k+1}^n Ly_j$, so that $M = N + \bigoplus_{j=k+1}^n Ly_j$: Since $N \subseteq \bigoplus_{i=0}^k Qy_i$, it is also clear that $N \cap \left(\bigoplus_{j=k+1}^n Ly_j\right) \stackrel{j=k+1}{=} 0$.

It remains to prove that N is indecomposable. Since $\bigoplus_{i=1}^k Ly_i$ is basic in N, and $\operatorname{rk}(N) = k+1$, N is homogeneous with co-rank 1; by the definitions, (u_1, \ldots, u_k) is a k-tuple associated to N, and I is the ideal of (u_1, \ldots, u_k) . It is then enough to invoke Theorem 2.

It is easy to verify that the number of uniserial summands in any indecomposable decomposition of a torsion-free module M of finite rank, is an invariant of M (for example we can use the fact that the endomorphism ring of a uniserial module U is local, so that U has the exchange property).

In view of Theorem 4, we deduce that the positive integer k = |F|, where F is as in the discussion before Th. 4, does not depend neither by the choice of F, nor by the n-tuple (u_1, \ldots, u_n) .

It is interesting to prove the analog of Theorem 4 for finitely generated modules. The next Theorem 5 will be an improvement of Prop. 7 of [10] (hence of Theorem 0, too).

Let X be a finitely generated homogeneous module such that l(X) = b(X) + 1 = n + 1, and let $(u_1, ..., u_n) \in U(S)^n$ be associated to X. Let A < J be the ideals in the annihilator sequence of X, and let $I = \bigcap_{r \in J^*} r^{-1}A$. As in the above discussion, we can assume that

 $u_1, ..., u_k$ are *u*-independent over *I*, while $u_{k+1}, ..., u_n$ *u*-depend by $u_1, ..., u_k$, according to the relations (14).

Such relations of u-dependence give a canonical decomposition of X; we have the following

THEOREM 5. Let X be a finitely generated homogeneous module such that l(X) = b(X) + 1 = n + 1; let A < J be the ideals in the annihilator sequence of X, let $I = \bigcap_{r \in J^*} r^{-1}A$, and let $(u_1, ..., u_n)$ be an associated n-tuple of X. Let $x = \{x_0, x_1, ..., x_n\}$ be a system of generators of X which produces $(u_1, ..., u_n)$. If the relations (14) hold for a suitable k < n, and $u_1, ..., u_k$ are u-independent over I, set

$$y_0 = x_0 - \sum_{j=k+1}^n c_{0j} x_j$$
, $y_i = x_i + \sum_{j=k+1}^n c_{ij} x_j$

for i = 1, ..., k, and $y_i = x_i$, for j = k + 1, ..., n. Then X decomposes in the following way

$$X = Y \oplus Ry_{k+1} \oplus ... \oplus Ry_n$$

where $Y = \langle y_0, y_1, ..., y_k \rangle$ is indecomposable, and $(u_1, ..., u_k)$ is associated to Y.

PROOF. First of all, note that $y = \{y_0, y_1, ..., y_n\}$ is a minimal system of generators of X, since the matrix T such that Tx = y is

invertible in R. Moreover, $\bigoplus_{i=1}^n Rx_i = \langle y_1, ..., y_n \rangle$, and it is an easy exercise to verify that $y_1, ..., y_n$ are linearly independent, so that $\bigoplus_{i=1}^n Ry_i$ is basic in X. Hence to prove that $X = Y \oplus Ry_{k+1} \oplus ... \oplus Ry_n$, it is enough to verify that $Y \cap \left(\bigoplus_{i=k+1}^n Ry_i\right) = 0$.

By contradiction, let us suppose that

(16)
$$ry_0 + \sum_{i=1}^k a_i y_i + \sum_{j=k+1}^n a_j y_j = 0$$

with $\sum_{j=k+1}^{n} a_j y_j \neq 0$. From (16) and the definition of y, it follows that $rx_0 \in \langle x_1, ..., x_n \rangle$, so that $r \in J = \text{Ann}(x_0 + \langle x_1, ..., x_n \rangle)$. If now r = 0, we have an immediate contradiction, since $y_1, ..., y_n$ are linearly independent. We can thus assume that $r \in J^*$, and, since $\bigoplus_{i=1}^{n} Ry_i$ is pure we can write $a_i = rb_i$, for suitable $b_i \in R$, for i = 1, ..., k, k+1, ..., n. Then (16) is equivalent to

(17)
$$r\left(x_0 - \sum_{j=k+1}^n c_{0j}x_j + \sum_{i=1}^k b_ix_i + \sum_{j=1}^k b_i\left(\sum_{j=k+1}^n c_{ij}x_j\right) + \sum_{j=k+1}^n b_jx_j\right) = 0.$$

Now, since $r \in J^*$, we have $rx_0 = r \sum_{i=1}^n u_i^r x_i$, where $u_i^r \in U(R)$ are such that $u_i - u_i^r \in r^{-1}AS$, for all i. Thus, substituting, in (17), rx_0 by $r \sum_{i=1}^n u_i^r x_i$, we obtain

(18)
$$r \sum_{i=1}^{k} (u_i^r + b_i) x_i + r \sum_{j=k+1}^{n} \left(u_j^r - c_{0j} + \sum_{i=1}^{k} b_i c_{ij} + b_j \right) x_j = 0 ,$$

from which

(19)
$$u_i^r + b_i \equiv 0 \pmod{r^{-1}A}$$
 for $i = 1, ..., k$

and

(20)
$$u_{j}^{r} - c_{0j} + \sum_{i=1}^{k} b_{i} c_{ij} + b_{j} \equiv 0 \pmod{r-1}A$$
 $j = k+1, ..., n$.

From the relations (14), using the fact that $u_i - u_i^r \in r^{-1}AS$, for i = 1, ..., n, we get

(21)
$$u_i^r \equiv c_{0j} + \sum_{i=1}^k u_i^r c_{ij} \pmod{r^{-1}A}$$
.

Substituting (19) and (21) in (20), we get

$$b_j \equiv 0 \pmod{r^{-1}A}$$
 for $j = k+1, ..., n$.

This implies that

$$\sum_{j=k+1}^{n} a_{j} y_{j} = \sum_{j=k+1}^{n} r b_{j} y_{j} = 0,$$

which is the required contradiction.

It remains to prove that Y is indecomposable, Since $\bigoplus_{i=1}^{k} Ry_i$ is basic in Y, we have, for all $r \in J^*$

(22)
$$ry_0 = r \sum_{i=1}^k v_i^r y_i \quad \text{for suitable } v_i^r \in R.$$

From (22) we get

(23)
$$r\left(x_0 - \sum_{i=k+1}^n c_{0i} x_i\right) = r \sum_{i=1}^k v_i^r \left(x_i + \sum_{j=k+1}^n c_{ij} x_i\right).$$

From (23), since $rx_0 = r \sum_{i=1}^n u_i^r x_i$, we obtain, for all $r \in J^*$

$$u_i^r - v_i^r \in r^{-1}A$$
 for $i = 1, ..., k$

and also

$$u_i - v_i^r \in r^{-1}AS$$
 for $i = 1, ..., k$ and for all $r \in J^*$.

This implies that $(u_1, ..., u_k)$ is associated to Y. Since $u_1, ..., u_k$ are u-independent over $I = \bigcap_{r \in J^*} r^{-1}A$, where A < J are the ideals in the annihilator sequence of Y, we can apply Theorem 0 to Y, obtaining that Y is indecomposable, as desired.

REMARK. Let us consider a torsion-free module M, with rank n+1, containing a submodule $B = \bigoplus_{i=1}^{n} Lx_i$, which is pure in M but not necessarily basic (in other words: it can happen that $M = B \oplus U$, with U uniserial). Again M can be written by generators in the form

$$M = \left\langle B, x_r = r^{-1} \left(x_0 + \sum_{i=1}^n u_i^r x_i \right) \colon r^{-1} \in H \setminus L \right
angle$$

(in the discussion of § 2 we only use the fact that B is pure and M/B is uniserial). We can also associate to M an n-tuple $(u_1, ..., u_n)$ and consider the ideal I of the n-tuple. It is easy to adapt Theorem 4 to this slightly more general situation, obtaining that such M is a direct sum of uniserial modules if and only if there exist $c_1, ..., c_n \in R$ such that $c_i \equiv u_i \pmod{IS}$ for i = 1, ..., n. Analogous considerations hold for the case of finitely generated modules.

REFERENCES

- [1] D. M. Arnold, A duality for torsion-free modules of finite rank over a discrete valuation ring, Proc. London Math. Soc., (3) 24 (1972), pp. 204-216.
- [2] A. FACCHINI P. ZANARDO, Discrete valuation domains and ranks of their maximal extensions, Rend. Sem. Mat. Univ. Padova, 75 (1986), pp. 143-156.
- [3] L. Fuchs L. Salce, Modules over Valuation Domains, Lecture Notes in Pure Appl. Math., no. 97, Marcel Dekker, New York, 1985.
- [4] I. KAPLANSKY, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
- [5] L. SALCE P. ZANARDO, Some cardinal invariants for valuation domains, Rend. Sem. Mat. Univ. Padova, 74 (1985), pp. 205-217.
- [6] L. SALCE P. ZANARDO, On two-generated modules over valuation domains, Archiv der Math., 46 (1986), pp. 408-418.
- [7] L. SALCE P. ZANARDO, A duality for finitely generated modules over valuation domains, on «Abelian Group Theory, Proceedings Oberwolfach Conf. 1985 », Gordon and Breach, New York, 1987, pp. 433-451.
- [8] L. SALCE P. ZANARDO, Rank-two torsion-free modules over valuation domains, to appear on Rend. Sem. Mat. Univ. Padova.
- [9] G. VILJOEN, On torsion-free modules of rank two over almost maximal valuation domains, Lecture Notes n. 1006, Springer-Verlag, 1983, pp. 607-616.

- [10] P. Zanardo, Indecomposable finitely generated modules over valuation domains, Annali Univ. Ferrara - Sc. Mat., 31 (1985), pp. 71-89.
- [11] P. Zanardo, On the classification of indecomposable finitely generated modules over valuation domains, Comm. in Algebra, 13 (11) (1985), pp. 2473-2491.

Manoscritto pervenuto in redazione il 27 settembre 1988.