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Homomorphisms between Complete Chains
and the Independence of the Axioms of Limitoid.

ROBERTO PEIRONE (*)

G. Greco introduced in [3] the notion of limitoid, which is a gen-
eralization of the notions of lim inf and lim sup, and more generally
of T-limit (see also [4]).

Namely, if X is a set and L is a complete lattice, then an L-limi-
toid in X is defined to be a map T from Lx into L satisfying the fol-
lowing conditions:

2) = 1p(T(f)) f E LX and L - L is a com-

plete homomorphism.

3 ) 1 f L’ is a closed sublattice of Z and f E Lx and Im f C L’,
then T ( f ) E .L’ .

Greco also considered the question whether property 3 ) follows

from 1) and 2). In this paper we give a necessary and sufficient con-
dition for the existence of a map from L" into L satisfying 1 ) and 2 ),
but not satisfying 3), in case X has at least two elements and L is
completely distributive. When L is a complete chain this condition
is equivalent to the following one :

a) There exists a E 1 L~ such that every complete homomor-
phism f rom [OL, a] into is constant and every complete
homomorphism f rom [a, into [OL, a] is constant.

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7,
56100 Pisa, Italy.
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We construct a chain satisfying property a), and so in general 3)
does not follow from 1) and 2). More generally, y for any natural
number we find n complete chains Ll , ... , Ln having the fol-
lowing equivalent properties b ), c):

b) I f i every complete homomorphism from Li into Lj is con-
stant.

c) If i =1= j every (non-trivial) closed interval of Li is not embed-
dable in Lj.

We also prove that 1) follows from 2), provided that L is a com-
plete chain having at least three elements.

1. Notation and definitions.

We now recall some definitions and notation concerning lattices.
For other basic notions we refer to [1]. In particular, we require,
in contrast to the definitions of [5], that a complete lattice L has a
maximum (denoted by 1L) and a minimum (denoted by 0,).

A subset M of a complete lattice L is said to be a closed sublattice
of L if sup A E M and inf A E M for every non-empty subset A of M.

If L and L’ are complete lattices, then we denote by Hom, (L, L’)
the set of all complete homomorphisnls from L into L’. We recall that

y: L -+ L’ is a complete homomorphism if sup y(c) = 1p(sup c andcEA /
inf y(c) = 1jJ( inf c for every non-empty subset A of L. We remark
cEA cEA

that, if L is a completely distributive complete lattice, then, for all
a, b E L, the map (fJa,b defined by (fJa,b(C) = is a complete
homomorphism. We denote by Cons (L, L’ ) the set of all constant

maps from .L into L’. Clearly, Cons (L, Home (L, L’ ). The expres-
sion Hom~ (L, L’ ) == Cons (L, L’ ) will be shortened to Hom, (L, L’ ) =
- Cons and similarly for similar expressions.

Let Z and L’ be chains. We say that L is embeddable in L’ (and
write L  L’ ) if there exists an order-preserving map y from L into L’
(i.e. a  b implies 1jJ(a)  1p(b)). We say that L and L’ are order-
isomorphic (and write E - L’ ) if there exists an order-preserving
map from .L onto L’ (see [5], chap. 1, § 2).
A chain .L is said to be dense if, for any c~, b E L with ac  b, there

exists c E L such that a  c  b.
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If Ziy ... , .Ln are chains, we define the sun according to [5],

Definition 1.38. We remark that is not dense (for n &#x3E; 1) even

if .Li is dense for every If Li (i = 1, ..., n) are dense chains
then we define by identifying 1L; and (for ~=ly...~20131)

in Thus is dense. It is also complete provided that LZ

is complete for i = 1, ... , n.
If L is a chain, then (J) L denotes the set of all maps from N into L

ordered lexicographically, i.e., a  b if and only if there exists 
such that ai = bi for all i  n and bn .

C(L) denotes the completion of the chain .L (see [5], Definition 2.31).
2 denotes the chain having two elements (denoted by 0,1). If L is a

chain, then L* is the chain having the same elements as L such that
ab in L* if and only if a ~ b in L.

For every n E N we denote by mn the smallest ordinal of cardi-
nality Nn.

Let X be a set and L a complete lattice; then, for every A C X,
we denote by XA the map from X into L defined by

Char (X, .L) denotes the set {x~ : A ~ X~. For further information on
chains see [5].

2. General considerations.

Following [3] we denote by LIM(X, L) the set of all L-limitoids
in X. We also consider the following weakening of condition 3) of
the definition of limitoid:

3’ ) I f f E Char (X, .L), then

If .L is a completely distributive complete lattice, then T is an
L-limitoid in X if and only if it satisfies 1), 2), 3’) (see [3], pp. 157-158).

We shall study the question, previously considered in [3], whether
3) follows from 1) and 2). First, however, we are concerned with the
independence of 1) and 2).
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2.1. REMARK. Conditions 1) and 3) do not imply 2) even for
.L = R (= R u {+ 00, - -}) - It suffices to consider a set X having
at least two elements and the map T : defined by

2.2. REMARK. Conditions 2) and 3) do not imply 1) for .L = 2.

It suffices to consider a set X having at least three elements and the
map T : 2X - 2 defined by

However the following theorem holds:

2.3. THEOREM. If L is a complete chain having at least three ele-

ments, then f or every T : Lx --~ L condition 2) implies 1).

PROOF. We suppose that there exist T : .Lg -* L which satisfies 2)
and such that and T ( f ) &#x3E; T (g), and derive a contra-
diction. We distinguish two cases.

Case A) There exists a E L with T(g)  a  T(f). We put

Since the maps defined by = and _

- are complete homomorphisms, and qJloh = and =

= we have:

and

and so T(f) = T(h) = T(g), a contradiction.
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Ca,ge B) ]T(g), T(f)[ = 0. By the hypothesis either OL or

T (t) ~ l L . We suppose (If the argument is

analogous.) We consider E Home (L, L) defined by

and put ~r = and gl Then

Thus, since and we may proceed as in
Case A).

We now return to the independence of 2).

2.4. DEFINITION. A map T : Lx -+L is an L-qu,asi-limitoid in X
i f it satis f ies 1) and 2) of the definition of limitoid. We denote by
QLIM(X, L) the set of all L-quaGSi-limitoids in X.

In the sequel the word « lattice» will mean « completely distribu-
tive complete lattice ~&#x3E; and the word « chain » will mean « complete
chain ».

2.5. THEOREM. I f L is a a~ e L and X is a set having at
least two elements, then the following conditions i) and ii) are equivalent :

i) There exist f c- Char (X, L) and T E QLIM(X, L) such that

ii) For every y~ E Home (L, L) we have

PROOF. i) =&#x3E;ii). Let 1p E Home (L, L) and put

Then w’ E Homc (L, L) and = 1p(OL) and == Hence

2) yields:
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ii) ~ i). We put T ( f ) == for every Then

T satisfies 1). It also satisfies 2). In fact for every V E Homc (L, .L)
we have:

E Home (L, L)

by ii)

because L is distributive

because L is distributive

So Since . for every i) holds. *

2.6. REMARK. If L is a chain, then condition ii) is equivalent to
the following one: for every 1p E Home (L, L) we have y(a) = 1p(OL) if
1p(a) &#x3E; a and 1p(a) = if  a. *

2.7. DEFINITION. Let L be a chain. An element a E L is a distor-
tion p oint of L if a satisfies i ) (or i i )) of T heorem 2 . 5 . We denote by
D(L) the set of all distortion points of L.

Obviously, Moreover, the following corollary holds.

2.8. COROLLARY..Let X have at least two elements and let L be a

chain. T hen

2.9. REMARK. D(L) is a closed sublattice of L. In fact, if ai E D(L)
for every i E I and y E Hom, (L, L), then

So sup aci E D(L), and we can prove similarly that inf ai E D(L). +
iEI
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In order to prove that condition 3) does not follow from 1) and 2,
it is enough to find a chain L and a set X such that QLIM(X, L) =1=
~ LIM(X, L) or, equivalently, In the sequel of this
section we shall give some characterizations of distortion points in
terms of homomorphisms between chains, and in the next section
we shall use those characterizations to solve a slightly more general
problem; namely for every natural number n (&#x3E;3) we shall find a
(complete) chain having exactly n distortion points.
We remark that it is easy to show that the most usual lattices

satisfy D(L) _ (0~ , (cf. [3]). For istance

as, if we put y(a) = a + 1, then y E Hom, R) and

Another example is any chain L which is not dense. In fact, if

a &#x3E; sup {b E L : b  al, then we can define w E Hom, (L, L) by

So we have that

2.10. REMARK. In the same way we can prove that, if L is a
chain which is not dense and L’ has at least two elements, then
Home (L, L’) =1= Cons. +

2.11. LEMMA. Let L and L’ be chains and let L be dense. If
1p E Home (L, L’) and a, b E L are such that a  b and 1p(a)  u  1p(b),
then there E L with a  $  b and y~(~) = u.

PROOF. Let and ~ = sup A. Then y~(~) ==
= y(sup A) = sup (so E  b). On the other hand, w(E)&#x3E;u

cEA

for, in the contrary case, inf &#x3E; $1 = w(E)u and so there
would exist d &#x3E; ~ such that y(d)  u, in contrast to the definition
of ~. Thus 1jJ(~) == u, and, since is non-decreasing, a  $  b.

2.12. REMARK. If L and L’ are chains, a, b E L and a  b, then
for every E Hom, ([a, b] , L’) there exists 1pl E Hom, (L, L’ ) such that
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y(c) = for all c E [a, b]. In fact, it suffices to put = y(a)
if ca and = 1p(b) if c ~ b.

2.13. LEMMA. Let L be a chain and a c E. Then a c D(L) if and
only if

Hom, ([0£, a] , [a, 1 L]) = Cons and Hom, ([a,1 L] , [OL, a]) = Cons .

PROOF. If L is not dense then the assertion is obvious by Re-
mark 2.10 and because for every a ~ {OL, 1 L~. So we may

suppose that L is dense. If 1p E Home a], [a, then

 y~(a). In view of Remarks 2.12 and 2.6 this yields a 0 D(L).
If 1pEHome ([a,1 L] , [OL, a])BCons we proceed in a similar way and
obtain D(L). Conversely, if a 0 D(L), then, in view of Re-
mark 2.6, there exists y e Home (L, L) which satisfies one of the fol-
lowing conditions:

If i) holds, then, by Lemma 2.11 there exists b E [OL, a[ such that
and, by Re-

mark 2.12, there exists 
If ii) holds, then we can prove, by proceeding in a similar way,

that there exists VI E Hom, ([a, [0 , a])BCons. *

2.14. PROPOSITION. Zet Z and L’ be dense chasins. Then

PROOF. If g~ E Home (.L, L’)BCons, then, by Lemma 2.11 we have
Im q = [a’, b’], where a’= and b’= q;(lL). Clearly, 1p: [a’, b’] -* L
defined by y(c’) = inf is an order-preserving map. Conversely,
if y is an order-preserving map from [a’, b’] into L, where a’, b’ E L’
and a’ b’, then we put

and define
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Since 4p is non-decreasing we have Moreover,

]sup because for every

Thus, since L’is dense, we have that

and we can prove similarly that So, by Re-

mark 2.12, Homc (L, L’) # Cons. *

In the sequel Proposition 2.14 will be often understood.

2.15. COROLLARY. Let L be ac chain and a E L. Then a E D(L) if
and only if, for all al, a2, aa and a4 in L with al  a~ ~ a ~ a~  a4 , we
have :

PROOF. If .L is dense this follows immediately from Lemma 2.13
and Proposition 2.14. If L is not dense, oL ~ a ~ 1L, then a ~ D(L)
and suppose, for example, a1 C a2[ _ ~ ; then [al , az] is em-
beddable in [a, 1L].

2.16. COROLLARY. I f Ln ~ = 1, ... , r~ and L~ , ~ = 1, ... , ~n are
dense chains, then

if and only if

PROOF. Let with and g~ be an order-pre-

serving map from [a’, b’] into Then there and

with moreover, 7 there exist i  n and a2, b~
with such that an order-preserving map from
[c~2, b~] into .Li. The converse follows from Remark 2.12.

2.17. COROLLARY. I f Li , i = 1~ ... , n, are dense chains such that

D(L~) _ 1LJ for i = 1~ ..., n and Horn, (L, , Li,) = Cons i’,
then

PROOF. The inclusion c &#x3E; &#x3E;&#x3E; follows from Lemma 2.13 and Corol-

lary 2.16. To prove the other inclusion, observe that, if c E 
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then either

or

(Lemma 2.13). It follows from Remark 2.12 that either

or

This shows, in view of Lemma 2.13, that

3. Chains with non-trivial distortion points.

We now want to find, for any natural number n &#x3E; 3, a chain
with n distortion points. By Corollary 2.17, it suffices to find 
chains Li (i = 1, ... , n - 1) without non-trivial distortion points such
that Homc (Li, Ej) - Cons for i =1= j. We shall solve this problem by
studying the sup of the cardinality of well-ordered and well-ordered*
subsets of a chain.

3.1. DEFINITION. For any chain L we put:

3.2. REMARK. We have wo* L = wo+ L* and wo* L = wo_ L*.
In the sequel we shall often give results concerning wo and omit
the dual ones concerning wo*.
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The following proposition is an immediate consequence of Pro-

position 2.14.

3.3. PROPOSITION. I f Land L’ are dense chains and wo+ .L 
 wo_ L’, then Hom, (L, L’ ) = Cons. *

3.4. THEOREM. I f a and ~ acre infinite cardinals, then the chain
) satis f ies :

i) wo (Ca,(J) = a and wo* is dense),

PROOF, i) We iix and put

We first prove that, if A is well-ordered and contained in E~, then
If n - 07 this is obvious. Assume that the assertion

holds for n - 1, and define p : by

Then p (A ) is well-ordered and contained in En-l, whence card p (A ) c a.
For every b E p (A ) the set p-’(b) is well-ordered and
It follows that Since we get that

We now remark that, if A is well-ordered and contained
in then card A  oc. Indeed,

Finally, we suppose that A is well-ordered and contained in C,,,6.
Then, for every a E A, we can choose s(a) E U En such that a  s(a)  a’

nEN

whenever a’ E A and a’ &#x3E; a. Hence s is order-preserving. Therefore,
A  U and so card Thus we have proved that wo+  a

neN

and one can easily show that wo_ Hence wo = a and

dually wo* (ecx,p) - fl.
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ii) In view of Corollary 2.15, it is enough to show that 
~ [a, 1c0153,ø] whenever a E elX,fJ and a  1c0153,,,’ We may and do assume
that a E W(P* + a). Take ac E P* + a with d &#x3E; al and put

Clearly, P c [a, and P ^, a). An application of [5], Ex-
ercise 2.33(1) completes the proof. *

3.5. COROLLARY. For every n&#x3E;3 there exists a chain L with n
distortion points.

PROOF. By Corollary 2.17, Proposition 3.3 (and its dual) and
Theorem 3.4, card

3.6. COROLLARY. There exists a chain L such that QLIM(X, L) ~
~ LIM(X, L) provided that X has at least two elements.

PROOF. This follows from Corollaries 2.8 and 3.5. *

3.7. REMARK. By Corollary 2.15, we may easily show that, under
the assumption that 2No is a regular cardinal, the chain 9t considered
by L. Gillman in [2] satisfies ill. *
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