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A Block-Theory-Free Characterization of M24.

D. HELD - J. HRAB~ DE ANGELIS (*)

In [5, § 5] a characterization of the Mathieu-group M24 as a simple
group G having a central involution z such that the centralizer H
of z in G is isomorphio to the centralizer of a central involution of
~24 had been given. To distinguish M24 from the simple groups L5(2 )
and ,He, it was assumed that the normalizers in G of the two elemen-
tary abelian normal subgroups of order 16 of ~ are not isomorphic.
The information about the local structure obtained had been enough
to apply the order-formula of J. G. Thompson [3] to get the uniquely
determined order of G which then is the order of ~24’ Then, by a
result of R. Stanton [8], who characterized ~24 as a simple group
having the same order as M24’ the group G could be identified
with ~24’

Unfortunately, the Ph. D-thesis of R. Stanton, written under the
supervision of Richard Brauer, had not been published, there is only
the short summary [8] available in which he describes his methods
which are heavily block theoretical and computational.

This was the reason that we tried to make § 5 of [5] free of Stan-
ton’s result. In [11], J. A. Todd gives generators and relations for the
group M,,, and we succeeded in showing that the group G can be
generated by elements satisfying the Todd-relations. Thus, without
using Stanton’s result, we are able to identify G with It is in

this sense that our title should be understood.
Similar procedures allow to throw out character theory from

Z. Janko’s characterizations of .1~22 and .~23 in [7]. Also, it seems

(*) Indirizzo degli A.A.: Fachbereich Mathematik (17) der Universitat,
D-6500 Mainz, R.F.T.
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possible to eliminate character theory from characterizations of M11
and If 12. Moreover, theorems of B. Beisiegel [1] and V. Stingl [9]
permit to prove Stanton’s result without block theory.

1. Notations.

In the whole paper, G denotes a finite simple group having all
the properties of the group G of [5; §5]. We shall use the notation
introduced in [5] with one exception: We do not use the letter H to
denote the centralizer of z, in G. In addition, we ~, r, ~C, ~,~
and 1~’ _ Zl’ Z3, p, ~,~ . The centralizer of the non-2 -central involu-
tion in G is described in [5; § 5]. There, one finds also the struc-
tures of the normalizers of the elementary abelian groups 1~1 and .R2
both of order 64 and of E of order 16 which - essentially - determined
the fusion of the involutions of G. The multiplication table of 
is completely given in [5, §1]; the relations of [6; § 1, p. 218] are

satisfied inside C(z,).
Put H~1 = ~ (z1 ) . Then, E = (zi , 9 Z2 Z3’ z4 ~ is an elementary abelian

normal selfcentralizing subgroup of order 16 of H1. The 2-group
T = i, if) (p, ,u’, Â) is a Sylow 2-subgroup of G. The two ele-

mentary abelian normal subgroups of order 64 of T are Ri = 7

z4, n, I-l’if) and R2 = Z3, n, I-l, i, ~)’ One has r1 

== T, o&#x3E; and gl = T, u). The element u of order 3 cen-
tralizes Z3) and operates on 8 fixed-point -free in the following
way : n -+ t -+ nt, 03BC -+ X -+ 03BCX. Further, [u, r’] = 1. There is another
elementary abelian normal subgroup El = n, 7:, if) of We

have to treat here the situation in which Hl and 

2. Some facts about the subgroup structure of G.

In this paragraph we shall derive some results about the 3-struc-
ture of G and shall exhibit certain subgroups of and N(F) with
which we are able to construct a subgroup of G isomorphic to L3(4).

(2.1) LEMMA. The group G has the following properties:

(a) A Sylow 3-subgroup of G is non-abelian of exponent 3.
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(b) If k is an element of order 3 of 02,a(N(R2)) then k is con-
jugate to e in G and Moreover,
the element k acts fixed-point-free on ~2.

(c) If K is a Sylow 3-subgroup of N(~2) and x is an element
of .g not in K’ then IC(x) r1 R21 = 4.

(d) In G there are precisely two classes of elements of order 3.

(e) If v is an element of order 3 not conjugate to ~O in G then

C(v) = (V) X L2(7).

( f ) If x is an element of order 3 of G then all involutions of

C(x) are conjugate in 

PROOF. The structure of N(~2) is described in lemmas (2.17)
and (5.3) of [5]. From [5; §5] we know that C(zn) is contained
in ~T(I~2).

Let .g be a Sylow 3-subgroup of ~T(R2) containing the element u
of order 3. If K was abelian then a subgroup of order 9 of .g would
centralize C(u) r1 .R2 = This, however, is not possible as the
order of the centralizer of an involution of G is not divisible by 9.
It follows that a Sylow 3-subgroup of G is nonabelian.

We have T = R2 ( ~z~’~ X (z3 z4, z2~~ and the commutator group
of z’~ X z2~ is Thus, if k is an element of or-
der 3 in 02,a(N(R2)), we get [k, z4] E R2: It follows that k operates
on the set za, n, z4 of all involutions of R2 Z4’ But there are

only four 2-central involutions of G in It follows that k - e,
since Frattini’s argument yields ~(1~2) _ (~T (1~~ ) r1. ~T (R2)) 1~2 .
Since the order of 1~(k~) is divisible by 33, application of [5; Lem-
ma (2.10)] gives ~T(k~) /~k~ In particular, we see that k acts
fixes -point-free on 1~2.

Let IT == k&#x3E; and let x be an element of K not in K’. Then,
Ki = k, x) is elementary abelian of order 9 and normalizes R2.
We apply [2; 5.3.16] and get R2 == where y runs through all
elements of .Ki . Assume that for such a y we had n R21 = 16.
Then y cannot centralize a conjugate of z, by the structure of C(e).
However, F = p, Â) has only 2-central involutions and IF r1
n C(y) n R21 &#x3E; 4; this yields a contradiction. It follows that for all y
in Kf we have I C(y) r1 R2~ c 4, and so, if y in k, x~B1~~, we must

r1 R2B == 4. We have shown that every element of order 3
of G is centralized by an involution and this implies that G has pre-
cisely two classes of elements of order 3.
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Put H2 == We know that .H2 lies in 1~T(R2). From [5; Lem-
ma (5.4)] we get that V= Zl/-lT) is normal in H2 . Note that

and that C(V)jR2 As. Denote by v an element of or-
der 3 in H2 . We get that C(v) n H2 has order 2a.3 and that a Sylow
2-subgroup of C(v) is dihedral of order 8. From [5; Lemmas (2.19)
and (5.2)] we get that v is centralized by a subgroup isomorphic to
.L3(2) of G. Hence, C(v) has no subgroup of index 2, and since v is
not 3 -central, we see that IC(v)1 is not divisible by 3 3. Application
of the result of [4] yields that C(v) = ~x 1/3(2). All assertions of
the lemma are proved.

(2.2) LEMMA. The group G contains a subgroup isomorphic
to Z3(4).

PROOF. Application of [5; Lemma (2.9)] yields that za»)1 ( _
- 21~ ~ 32. We know that N«Zl’ lies in 1N’(1~2) and in ~T(E). We

== Denote by H a Sylow 3-subgroup of
such that u E H. Then, H = u, v), where v is an element

of order 3. The element u of order 3 acts fixed-point -free on
S - ~c, z, p, Â) and [u, I~2] = S. Therefore, we get that H normal-
izes ~’. The normalizer of an elementary abelian group of order 16
of A8 does not contain the centralizer of a 2-central involution of As.
Thus, under the action of H, the involution n has precisely 9 con-
jugates in S. It is easy to see that the conjugates of n in S under
the action of H centralize subgroups of order 8 in E. The six ele-
ments ,u, ~,, T Â, nrpl centralize only subgroups of order 4
in E. Clearly, n = 3, and we may and shall assume
that [v, p] = 1. Since u acts on Cs(v), we get Cs(v) == (p, A&#x3E;. With

respect to E we may call the 9 conjugates of 7t long and the 6 con-
jugates of It short involutions. Then, u is a long and v is a short
element of order 3 with respect to E.

Clearly, H acts on E. But H acts also on F = (zi , 7 /Z7 A&#x3E;, since
[u, v] = 1. We know that v acts fixed-point-free on E, and so,
we get "’-’A4 as = and [~c, .E] =
= Z2, Z3 Z4)’ It follows that z2, lies in note that

~z2 , normalizes F.

Now, ~~c, Â) ~u~ X w~ normalizes E. From the structure of N(E)
follows that acts faithfully on E as v is short and that 

Clearly, vu or v-1 u acts fixed-point-free on E. So, inter-
changing v and v-1 if necessary, we may and shall assume that uv
acts fixed-point-free on E. It follows that (p, Â) (uv) is contained in
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a subgroups As isomorphic to As of CN(E)(V), Note that Â) is

a Sylow 2-subgroup of 
We shall now study the normalizer of .~’ in G. = 

and so, N(F) c We have ~2 = where V = z3 ~, 
all involutions of F are 2-central but no involution of V is 2-central

in G. There are precisely the following six subgroups of .R2 with the
property that they have order 16 and possess only 2-central involu-
tions :

Each of these six subgroups is a complement of V in The first
two subgroups are conjugate via r’, and the last four subgroups are
conjugate under the action of ~z2, Z4)’ Since n holds in ~T(R2),
we see that under the action of ~(R2) all six subgroups are conjugate
to F.

It follows that = 6, and so, N(F) has order 29 ~ 32 ~ ~.
Since Z2) ~C’~ is a Sylow 2-subgroup of ~(1~’), we get that

splits over .R2. We know that uv and uv-1 act fixed-point-freely
on F as = (Zl, and = ,u, A&#x3E;. From our above choice
we get that (Z2’ (up) A4 and that (Z2’ is centralized by
uvw. We have Z2, ç If uv-1 was not fixed-point-
free on then uv-1 centralizes z2, ZaZ4) and would in addition cen-
tralize a four-subgroup of .R2; but no element of order 3 in G central-
izes a group of order 16. Thus, uv-1 operates fixed-point -free on 1’~2
and on 1~. It follows that (Z2’ (up) lies in a subgroup Ap iso-
morphic to As of n N(F).

We have obtained and Ap X C N(F) .
There is an involution rl in AE which inverts uv, and there is an

involution r2 in Ap which also inverts uv. We have therefore
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and

For the action of r2~ on H = ~c, v&#x3E; we get:

It follows that E C(H). But C(H) = H by the structure of C(u).
Clearly, r1 r2 ft H. It follows o(rl r2) = 3, since there are no elements
of order 9 in G. Thus, r2) Put N = r2) and
B v~. Then, E3 and 26.32. Moreover, B n N = H
as B is 2-closed, and no involution centralizes .H. Put N/g = W.

We shall show that the following conditions of [10] are satisfied:

(i’ ) B u BriB is a subgroup of G for i = 1, 2 ;

(iv) if for some WEW in the generators rl, r2 then
Bw c BriwB for i = 1, 2.

We have that note that .g acts transitively on
EFIE and that rl ft N(B) as rl ft N(EF). Similarly, one gets Br2 n B =
= FH. It follows that the number of left cosets of B in BriB is equal
to n B] = 2 2. Thus, B u Bri B = E(v~ X AE) and B u Br2 B =

are subgroups of G. We have shown that (i’) holds.
Put Z = E n F = Zl’ If rl would normalize Z then rl would

normalize EI’ and also EI’.g = B which is not the case; use here
the structure of E(v~ XÅE). Similarly, we see that r2 ft ~T(Z). Thus,

for i = 1, 2. Since g acts nontrivially on Zrs and on Z, we
get Zrt n Z = 1&#x3E;. Clearly, E and Zr2 C F. It follows E = ZZrI
and F = ZZr2; hence EF = Zr2 .
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It is easy to see that E {r2 , r2r1} if i = 1, and that w E { r1 r2}
if i - 2.

Case 1. Here, i = 1 and w = r2 . Compute:

It follows Br2 C Brlr2B .

Case 2. Here, i = 1 and w = r2r1. Compute:

It follows Br2rl ç: 

Case 3. Here, i = 2 and w = rl Compute:

It follows Bri C Br2rlB .

Case 4. Here, i = 2 and w = rl r2 . Compute:

It follows Brira C 

Application of [10] yields that U = BNB is a subgroup of G.

Another application of [10] gives Bw n B c B for all w E W#. Also,
since If acts on E.F’ n (E.F)w without fixed-points, we get that

n B) = 2 i, where i is even and greater than 1 1. Put
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and denote the bracket by n. Then, 5 divides n, and n is a divisor
of 3.5.7.11.23. One gets i4 = i, = 4, and i6 = 6. Thus,

Put H* = uv~, B* = EFH*, and N* = r2). Then, N* n B* = H*
as uv acts figed-point-freely on E and on F and any involution
of EF lies in .E or in F; clearly, H* is normal in N*. Moreover,
B* U B* rl B* = EAE and B* u = FAF . Put = W*.
Since r1 BI = r1 if ~,u in W and v in W* correspond
to each other, we obtain in a similar way as before that in U there
is a subgroup -L = B*N*B* of order 

We show that L is a simple group. Note that E.F is a Sylow
2-subgroup of L and that EF has order 26. We know that AE acts
transitively on E and that AF acts transitively on F. Thus, L has
precisely one class of involutions. Let g be a minimal normal sub-

group of L. Then, by Frattini’s argument, K cannot have odd order.
It follows that E~’ lies in K. Since L = we get from the
structure of C(zi) that 5-7 divides It follows that PAF)
lies in .g and this implies L = We have shown that L is a simple
group. Since L has only one class of involutions, we get L ~ L3(4).

3. Adaption of Todd’s presentation of M24 to the group G.

According to [11], the Mathieu-group .1~24 can be presented by the
set { x, b, c, d, t, g, h, i, jg kl together with the following relations:
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The set ~a, b, c, d} together with (i) defines the elementary abelian
group of order 16. The set 141 b, c, d, tj together with (i) and (ii)
defines a group of order 48. The set tag b, c, 91 together with

(i) to (iii) defines a group of order 2g ~ 3 ~ 5 which is isomorphic to a
parabolic subgroup of L3 (4 ) . The set fai b, c, d, t, g, hl together with
(i) to (iv) defines L3 ( 4 ) . The set ~a, b, c, d, t, g, h, I) together with (i)
to (v) defines Finally, the set fa9 b, c, d, t, g, h, i, jl together with
(i) to (vi) defines ~23’

In § 2 we had constructed a subgroup L of G which is isomorphic
to L3 ( 4 ) . Therefore, we are able to find elements a, b, c, d, t, g, and h
in L such that L = a7 b, c, d, t, g, h) and such that the relations (i)
to (iv) are satisfied.

From the representation of M24 as a subgroup of A24 given in [11],
we get that the element gd has order 5. The subgroup L has only one
class of involutions and only one class of elements of order 3. By
construction, the involutions of L are all 2-central in G, and from
the order of L follows that the elements of order 3 are all 3-central
in G.

The element t of order 3 of L acts fixed-point-freely on the elemen-
tary abelian group a, b, c, d) of order 16, and we know that

and holds; remember that C(t) does not
split over ~.

Put X = a, b, c, d) and P = ~, t, g). We have that P has or-
der 2 g ~ 3 ~ 5 and is isomorphic to a parabolic subgroup of L. Denote

by Y the largest normal 2-subgroup of P. Then, Y is elementary
abelian of order 16 and P is a transitive splitting extension of Y

by As . Since we see that Y.

(3.1) LEMMA. The 2-group ~ Y is a Sylow 2-subgroup of L, and
Y = ab, ac, (ab)g, (ac)g &#x3E;.

PROOF. We know that t acts fixed-point-freely on X and rormal-
izes Y. Thus, t has no nontrivial fixed-points in X r1 Y. Therefore,

Yi = 4 and = 2 6. It follows that From the

embedding of L in G, we see that X and Y are not conjugate in G.
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The relations inside L describe the action of t on X in the following
way:

Now, Yg? is a group of order 25, since t, g~ ~ ~3 . Since ga, gb,
and go have order 3, and gd has order 5, we get that neither a, b, c,
nor d is contained in Y. It follows Y = ab, ~c~.

We want to show that C(g) n ~ab, ac~ _ ~1~. Assume that

[g, ab] = 1. Then,

which is impossible as a is different from b ; here, we have used the
fact that both ga and gb have order 3. Similarly, one shows that g
does not centralize ac and bc. It follows C(g) r1 ab, ac~ _ 1&#x3E;.
Since g is an involution, we get that ab, ac) r1 ab, = (1~.
But 9 lies in N(Y), and so, Y = ~ab, ac, (ab)g, (ac)g~. The lemma is

proved.

(3.2) LEMMA. The element t of order 3 acts fixed-point -free
on Y in the following way:

PROOF. The assertion follows from the relations (i), (ii), and (iii)
which hold in L.

(3.3) LEMMA. We have

PROOF. Since t acts fixed-point-freely on Y, we have A4.
If N is the full normalizer of X in L then As. Therefore,
XY, is a maximal subgroup of Since (XY, t) normalizes
Y but h does not, the assertion follows.
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From the structure of G and the embedding of L in G, we know
that one of the two elementary abelian subgroups X and Y is self-

centralizing in G whereas the centralizer of the other in G is elemen-
tary abelian of order 64. Now, L possesses an automorphism of
order 2 which interchanges .~ and Y. Therefore, we may and shall
assume that X = and C(Y) DY.

In what follows we change notation and put E = X and .F = Y
to be in conformity with §2. Thus, is a splitting extension of E
by As, and is a splitting extension of by a group of type
(Za X As) Z2 such that and 

Denote by C a complement of E in N(E) such that t lies in C.

Clearly, as t is fixed-point -freely on .E, we have that t corresponds to
a short element of order 3 of C. Also, NC(t~) - I~T(t~) r1 N(E) and
this group is isomorphic to N«(123)) n As. Obviously, modulo ~),
the element h corresponds to a transposition of Es.
We can find now involutions i, j, and k in which satisfy all
the relations (v), (vi), and (vii) with the possible exception of igi = tg,
jgj = g, or tg.

The following easy lemma is helpful. We shall state it without

proof.

(3.4) LEMMA. Let X be a group of type (Za X As) Z2 such that
Z~ Z2 ~ ~3 and A5 Z2 ~ ~5 . Then, X possesses precisely one subgroup
A isomorphic to A,. If i is an involution of XBA, then 
~ ~5

(3.5) LEMMA. We have : 1

PROOF. Note that EF, t, h)jE r"’J A, and that E, t, h, i, ~, 
has the structure of the group X of lemma (3.4). Clearly, y

Thus, these two subgroups of generate a subgroup of order
at least (2 2 ~ 3 ~ ~ ) ~ (2 3 ~ 3 2 ~ ~ ) /6. But As has no proper subgroup of index
smaller or equal to 5. The lemma is proved.

In what follows, a matrix indexed by the letter E stands for the
action of an element from on E with respect to the basis ~a, b,
c, d} over G.~’(2 ). Analogously, y a matrix indexed by .F is used to
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describe the action of an element on .F’ with respect to the basis

~ab, ac, gabg, gacg} over GF(2).
In the next lemma we shall derive more information about the

multiplication table of N(E).

(3.6) LEMMA. With respect to the « basis » ~a, b, c, d~ of the
« vector space &#x3E;&#x3E; .E over GF(2), the action on E of gabg and gacg is
described by the following correspondences:

(For example, the first matrix shows that agabg = b, bgabg = a, Cgabg =
= abc, daaba = acd.)

PROOF. We know that .F’ normalizes E. Using the relations (i)
and (iii), we get

It follows

Hence,
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Similarly, y one computes

Finally, using lemma (3.2), we get

and similarly, we get

The lemma is proved.

4. A subgroup isomorphic to M22’ ·

(4.1) LEMMA. . The involution i normalizes ~’, and its action
on F is described by the following correspondence

PROOF. Put x = (ab)g and y = (ac)’. Consider the group
x, y, The action of the involutions x, y, and i on E are known.
Modulo E one gets (xi)4 = (yi)2 = x2 = y2 = i2 = 1, and (Xi)2 = y.
Note that C(E) = E. It follows that x, y, i)EjE == x, is a
dihedral group of order 8 with center (yE). Thus, modulo E we have
ixi = xy and iyi = y. This implies (EF)i = EF. Since i E we

get i E as E and F are the only elementary abelian subgroups
of order 16 of E.F’.

Clearly, i (ab ) i = i (ac ) i = ab, and i (gabg ) i = ixi = xyel , and

i(gacg) i = iyi = ye2 with elements F. In this way we
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have found the correspondence

with a, ~8, y, 6 E GF(2).
The relations i2 = 1 and (it)2 = 1 force that we get only the fol-

lowing two possiblities:

By way of contradiction, we assume that we are in the first case.
We get

I - - - ~ I

and (gi)3 centralizes .F’. It is easy to see that there is no element in

t&#x3E; which acts on .F’ in the same way as gi does. But gi centralizes t.

It follows that gi, t) C(F)jC(F) is a Sylow 3-subgroup of 
In particular, t, g, i) C(F)IC(F) I is divisible by 32. We know
that (EF, t, g) As, and therefore, by lemma (3.4), we see
that (EF, t, g, is isomorphic to As or Is. But 32 does
not divide 120. We have ruled out case 1. The lemma is proved.

(4.2) THEOREM. We have (ig)2 = t and .~, t, g, h, I) is isomor-

phic to M22.

PROOF. For the action of ig on .h’ we get the correspondence



147

It follows that (ig)2 acts in the same way as t on .F, and the order
of ig is either 6 or 12; remember that is elementary abelian of
order 26. Put N = and C = Assume by way of
contradiction that the order of ig was 12. Then, ig~t~ is an element
of order 4 of C, since both i and g invert t and A6 does not contain
elements of order divisible by 6. The involutions it) and g~t~ lie

in NBC. Thus, it is not possible that it~ and gt&#x3E; would be conju-
gate in N. We know that (gh)3 = (hi)3 = 1 holds. Hence, g, h, and i
are conjugate to each other in N(t&#x3E;). This is a contradiction. We
have proved that the order of ig is equal to 6.

Since is elementary abelian, we have

and therefore,

Application of the result of [11] proves the theorem.

5. A subgroup isomorphic to M 23 . ·

(5.1) LEMMA. The involution j normalizes F. We have the cor-
respondence

PROOF. The action of j, gabg, and gacg on E is known. Thus,
we get that j(gabg) j = gacg holds modulo E. Hence, j normalizes EF
which implies that j E N(F).

We have that j(ab) j = c~c and j(ac) j = ab. Further, there are ele-
ments e1, e2 E E r1 I’ such that
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Therefore, we obtain the correspondence

with 

The equations j2 = 1 and (jt)2 = 1 give precisely two possibilities:

Suppose that we are in case 1. Then, we get

Thus, (jg)3 centralizes F. Since no element of t~ acts on F in the
same way as jg, we see that jg, t) C(F)fC(F) is a Sylow 3-subgroup
of Now, the same argument as in the proof of (4.1) yields
a contradiction. The lemma is proved.

(5.2) THEOREM. We have (jg)2 = 1 and E, t, g, h, i, j ~ is iso-

morphic to 

PROOF. The previous result implies that the order of jg is either 2
or 4.

Assume by way of contradiction that the order of jg was 4. As
in the proof of (4.2) we put N = and C = Then,
jg t~ is an element of order 4 in C. The involutions j ~ t~ and g t)
of N lie in NEC. Hence, j ~t~ and g t~ are not conjugate in N. We
know that (gh)3 = (hi)3 = (ij)3 = 1 holds, and therefore, the involu-
tions g, h, i, and j are all conjugate in ~T ( t~ ) . This is a contradiction.
We have shown that the order of jg is equal to 2. Now, application
of the result of [11] proves the assertion of the theorem.
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6. The identification of G with the Mathieu.group if 24

(6.1) LEMMA. The involution k normalizes F. We have the cor-

respondence

PROOF. As in the proof of (5.1) we get k(gabg) k = gbeg modulo E.
Hence, k normalizes EF and F. Thus,

with a, (3, V, 6 E GF ( 2 ) .
The equations k2 = 1 and (kt)2 = 1 give precisely two possibili-

ties :

In case 1, we obtain that kg, t) C(F)jC(F) is a Sylow 3-subgroup
of N(F)IC(F). This produces a contradiction just as in the proof
of (4.1). The lemma is proved.

(6.2) THEOREM. We have (kg)2 = t, and the group G is isomor-
phic to M24’

PROOF. From (6.1) we get that the order of kg is either 6 or 12.
Assume by way of contradiction that the order of kg was 12. As
in (4.2) we denote by N the factor group and put
C = Then, kg ~t~ is an element of order 4 of C, since both k
and g invert t. The involutions k ~t~ and g t~ of N lie in NBC.
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Hence, k ~t~ and g ~t~ are not conjugate in N. We know that (gh)3 =
== (hi)3 = (ij)3 = (jk)3 = 1 holds. Hence, g, h, i, ~, and k are all con-
jugate to each other in N(t&#x3E;). This is a contradiction which proves
that o(kg) = 6.

It is now easy to compute that (kg)2 and t act in the same way
on .F’. Using a similar argument as that in the proof of (4.2), we get
that = t.

We apply now the result of [11] and get that

As IGI = y the theorem is proved.
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