RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

D. HELD

J. Hrabě de Angelis

A block-theory-free characterization of M_{24}

Rendiconti del Seminario Matematico della Università di Padova, tome 82 (1989), p. 133-150

http://www.numdam.org/item?id=RSMUP 1989 82 133 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Block-Theory-Free Characterization of M_{24} .

D. Held - J. Hrabě de Angelis (*)

In [5, § 5] a characterization of the Mathieu-group M_{24} as a simple group G having a central involution z such that the centralizer H of z in G is isomorphic to the centralizer of a central involution of M_{24} had been given. To distinguish M_{24} from the simple groups $L_5(2)$ and He, it was assumed that the normalizers in G of the two elementary abelian normal subgroups of order 16 of H are not isomorphic. The information about the local structure obtained had been enough to apply the order-formula of J. G. Thompson [3] to get the uniquely determined order of G which then is the order of M_{24} . Then, by a result of G. Stanton [8], who characterized G0 as a simple group having the same order as G1, the group G2 could be identified with G1.

Unfortunately, the Ph. D-thesis of R. Stanton, written under the supervision of Richard Brauer, had not been published, there is only the short summary [8] available in which he describes his methods which are heavily block theoretical and computational.

This was the reason that we tried to make § 5 of [5] free of Stanton's result. In [11], J. A. Todd gives generators and relations for the group M_{24} , and we succeeded in showing that the group G can be generated by elements satisfying the Todd-relations. Thus, without using Stanton's result, we are able to identify G with M_{24} . It is in this sense that our title should be understood.

Similar procedures allow to throw out character theory from Z. Janko's characterizations of M_{22} and M_{23} in [7]. Also, it seems

^(*) Indirizzo degli A.A.: Fachbereich Mathematik (17) der Universität, D-6500 Mainz, R.F.T.

possible to eliminate character theory from characterizations of M_{11} and M_{12} . Moreover, theorems of B. Beisiegel [1] and V. Stingl [9] permit to prove Stanton's result without block theory.

1. Notations.

In the whole paper, G denotes a finite simple group having all the properties of the group G of $[5; \S 5]$. We shall use the notation introduced in [5] with one exception: We do not use the letter H to denote the centralizer of z_1 in G. In addition, we put $S = \langle \pi, \tau, \mu, \lambda \rangle$ and $F = \langle z_1, z_3, \mu, \lambda \rangle$. The centralizer of the non-2-central involution $z_3\pi$ in G is described in $[5; \S 5]$. There, one finds also the structures of the normalizers of the elementary abelian groups R_1 and R_2 both of order 64 and of E of order 16 which — essentially — determined the fusion of the involutions of G. The multiplication table of $C(z_1)$ is completely given in $[5, \S 1]$; the relations of $[6; \S 1, p. 218]$ are satisfied inside $C(z_1)$.

Put $H_1=\mathbb{C}(z_1)$. Then, $E=\langle z_1,z_2,z_3,z_4\rangle$ is an elementary abelian normal selfcentralizing subgroup of order 16 of H_1 . The 2-group $T=E\langle \pi,\tau,\tau'\rangle\langle \mu,\mu',\lambda\rangle$ is a Sylow 2-subgroup of G. The two elementary abelian normal subgroups of order 64 of T are $R_1=\langle z_1,z_3,z_4,\pi,\mu\tau,\mu'\tau'\rangle$ and $R_2=\langle z_1,z_3,\pi,\mu,\tau,\lambda\rangle$. One has $\mathbb{N}(R_1)\cap H_1=\langle T,\varrho\rangle$ and $\mathbb{N}(R_2)\cap H_1=\langle T,u\rangle$. The element u of order 3 centralizes $\langle z_1,z_3\rangle$ and operates on S fixed-point-free in the following way: $\pi\to\tau\to\pi\tau, \mu\to\lambda\to\mu\lambda$. Further, $[u,\tau']=1$. There is another elementary abelian normal subgroup $E_1=\langle z_1,\pi,\tau,\tau,\tau'\rangle$ of H_1 . We have to treat here the situation in which $\mathbb{N}(E_1)=H_1$ and $\mathbb{N}(E)/E\cong A_8$.

2. Some facts about the subgroup structure of G.

In this paragraph we shall derive some results about the 3-structure of G and shall exhibit certain subgroups of $\mathbb{N}(E)$ and $\mathbb{N}(F)$ with which we are able to construct a subgroup of G isomorphic to $L_3(4)$.

- (2.1) Lemma. The group G has the following properties:
 - (a) A Sylow 3-subgroup of G is non-abelian of exponent 3.

- (b) If k is an element of order 3 of $O_{2,3}(N(R_2))$ then k is conjugate to ϱ in G and $C(\langle \varrho \rangle)/\langle \varrho \rangle \cong A_6$, $N(\langle \varrho \rangle)/\langle \varrho \rangle \cong \Sigma_6$. Moreover, the element k acts fixed-point-free on R_2 .
- (c) If K is a Sylow 3-subgroup of $N(R_2)$ and x is an element of K not in K' then $|C(x) \cap R_2| = 4$.
 - (d) In G there are precisely two classes of elements of order 3.
- (e) If v is an element of order 3 not conjugate to ϱ in G then $\mathbb{C}(v) = \langle v \rangle \times L_2(7)$.
- (f) If x is an element of order 3 of G then all involutions of $\mathbb{C}(x)$ are conjugate in $\mathbb{C}(x)$.

PROOF. The structure of $N(R_2)$ is described in lemmas (2.17) and (5.3) of [5]. From [5; § 5] we know that $C(z_3\pi)$ is contained in $N(R_2)$.

Let K be a Sylow 3-subgroup of $N(R_2)$ containing the element u of order 3. If K was abelian then a subgroup of order 9 of K would centralize $\mathbb{C}(u) \cap R_2 = \langle z_1, z_3 \rangle$. This, however, is not possible as the order of the centralizer of an involution of G is not divisible by 9. It follows that a Sylow 3-subgroup of G is nonabelian.

We have $T=R_2(\langle \tau' \rangle \times \langle z_3 z_4, \pi \mu' \tau' \rangle \langle z_2 \rangle)$ and the commutator group of $\langle \tau' \rangle \times \langle z_3 z_4, \pi \mu' \tau' \rangle \langle z_2 \rangle$ is $\langle z_3 z_4 \rangle$. Thus, if k is an element of order 3 in $O_{2,3}(\mathbb{N}(R_2))$, we get $[k,z_4] \in R_2$: It follows that k operates on the set $\langle z_1, z_3, \pi, \mu \tau \rangle z_4$ of all involutions of $R_2 z_4$. But there are only four 2-central involutions of G in $R_2 z_4$. It follows that $k \sim \varrho$, since $z_1 \sim z_4$. Frattini's argument yields $\mathbb{N}(R_2) = (\mathbb{N}(\langle k \rangle) \cap \mathbb{N}(R_2)) R_2$. Since the order of $\mathbb{N}(\langle k \rangle)$ is divisible by 3³, application of [5; Lemma (2.10)] gives $\mathbb{N}(\langle k \rangle)/\langle k \rangle \cong \Sigma_6$. In particular, we see that k acts fixes-point-free on R_2 .

Let $K'=\langle k \rangle$ and let x be an element of K not in K'. Then, $K_1=\langle k,x \rangle$ is elementary abelian of order 9 and normalizes R_2 . We apply [2; 5.3.16] and get $R_2=\mathbf{\Pi}\mathbf{C}(y)$, where y runs through all elements of $K_1^{\#}$. Assume that for such a y we had $|\mathbf{C}(y) \cap R_2| = 16$. Then y cannot centralize a conjugate of z_1 by the structure of $\mathbf{C}(\varrho)$. However, $F=\langle z_1,z_3,\mu,\lambda \rangle$ has only 2-central involutions and $|F\cap \mathbf{C}(y)\cap R_2|\geqslant 4$; this yields a contradiction. It follows that for all y in $K_1^{\#}$ we have $|\mathbf{C}(y)\cap R_2| \leqslant 4$, and so, if y in $\langle k,x\rangle \setminus \langle k\rangle$, we must have $|\mathbf{C}(y)\cap R_2|=4$. We have shown that every element of order 3 of G is centralized by an involution and this implies that G has precisely two classes of elements of order 3.

Put $H_2=\mathbb{C}(z_3\pi)$. We know that H_2 lies in $\mathbb{N}(R_2)$. From [5; Lemma (5.4)] we get that $V=\langle z_3\pi,z_1\mu\tau\rangle$ is normal in H_2 . Note that $H_2/R_2\cong \Sigma_5$ and that $\mathbb{C}(V)/R_2\cong A_5$. Denote by v an element of order 3 in H_2 . We get that $\mathbb{C}(v)\cap H_2$ has order $2^3\cdot 3$ and that a Sylow 2-subgroup of $\mathbb{C}(v)$ is dihedral of order 8. From [5; Lemmas (2.19) and (5.2)] we get that v is centralized by a subgroup isomorphic to $L_3(2)$ of G. Hence, $\mathbb{C}(v)$ has no subgroup of index 2, and since v is not 3-central, we see that $|\mathbb{C}(v)|$ is not divisible by 3^3 . Application of the result of [4] yields that $\mathbb{C}(v)=\langle v\rangle\times L_3(2)$. All assertions of the lemma are proved.

(2.2) Lemma. The group G contains a subgroup isomorphic to $L_3(4)$.

PROOF. Application of [5; Lemma (2.9)] yields that $|\mathbb{N}(\langle z_1, z_3 \rangle)| =$ $=2^{10}\cdot 3^2$. We know that $N(\langle z_1,z_3\rangle)$ lies in $N(R_2)$ and in N(E). We have $\mathbb{C}(\langle z_1, z_3 \rangle) = ER_2\langle u, \mu'\tau' \rangle$. Denote by H a Sylow 3-subgroup of $N(\langle z_1, z_3 \rangle)$ such that $u \in H$. Then, $H = \langle u, v \rangle$, where v is an element of order 3. The element u of order 3 acts fixed-point-free on $S = \langle \pi, \tau, \mu, \lambda \rangle$ and $[u, R_2] = S$. Therefore, we get that H normalizes S. The normalizer of an elementary abelian group of order 16 of A_8 does not contain the centralizer of a 2-central involution of A_8 . Thus, under the action of H, the involution π has precisely 9 conjugates in S. It is easy to see that the conjugates of π in S under the action of H centralize subgroups of order 8 in E. The six elements μ , λ , $\mu\lambda$, $\pi\mu$, $\tau\lambda$, $\pi\tau\mu\lambda$ centralize only subgroups of order 4 in E. Clearly, $|H:H\cap C(\mu)|=3$, and we may and shall assume that $[\nu, \mu] = 1$. Since u acts on $\mathbb{C}_{s}(\nu)$, we get $\mathbb{C}_{s}(\nu) = \langle \mu, \lambda \rangle$. With respect to E we may call the 9 conjugates of π long and the 6 conjugates of μ short involutions. Then, u is a long and ν is a short element of order 3 with respect to E.

Clearly, H acts on E. But H acts also on $F = \langle z_1, z_3, \mu, \lambda \rangle$, since [u, v] = 1. We know that v acts fixed-point-free on E, and so, we get $\langle z_1, z_3 \rangle \langle v \rangle \cong \langle z_2, z_3 z_4 \rangle \langle v \rangle \cong A_4$ as $\mathbb{C}_E(u) = \langle z_1, z_3 \rangle$ and $[u, E] = \langle z_2, z_3 z_4 \rangle$. It follows that $\langle z_2, z_3 z_4 \rangle \langle v \rangle$ lies in $\mathbb{N}(R_2)'$; note that $\langle z_2, z_3 z_4 \rangle \langle v \rangle$ normalizes F.

Now, $\langle \mu, \lambda \rangle \langle u \rangle \times \langle \nu \rangle$ normalizes E. From the structure of N(E) follows that $C_{N(E)}(\nu)$ acts faithfully on E as ν is short and that $C_{N(E)}(\nu) \cong Z_3 \times A_5$. Clearly, νu or $\nu^{-1}u$ acts fixed-point-free on E. So, interchanging ν and ν^{-1} if necessary, we may and shall assume that $u\nu$ acts fixed-point-free on E. It follows that $\langle \mu, \lambda \rangle \langle u\nu \rangle$ is contained in

a subgroups A_E isomorphic to A_5 of $C_{N(E)}(\nu)$. Note that $E\langle \mu, \lambda \rangle$ is a Sylow 2-subgroup of $EC_{N(E)}(\nu)$.

We shall now study the normalizer of F in G. Clearly, $\mathbb{C}(F) = R_2$, and so, $\mathbb{N}(F) \subseteq \mathbb{N}(R_2)$. We have $R_2 = V \times F$, where $V = \langle z_3 \pi, z_1 \mu \tau \rangle$; all involutions of F are 2-central but no involution of V is 2-central in G. There are precisely the following six subgroups of R_2 with the property that they have order 16 and possess only 2-central involutions:

- 1) $F = \langle z_1, z_3, \mu, \lambda \rangle$,
- 2) $\langle z_1, z_3, \pi\mu, \tau\lambda \rangle$,
- 3) $\langle \pi, \tau, \mu, \lambda \rangle$,
- 4) $\langle \pi, z_1 \tau, z_1 \mu, z_3 \lambda \rangle$,
- 5) $\langle z_1 \pi, \tau, z_1 z_3 \mu, z_1 \lambda \rangle$,
- 6) $\langle z_1 \pi, z_1 \tau, z_3 \mu, z_1 z_3 \lambda \rangle$.

Each of these six subgroups is a complement of V in R_2 . The first two subgroups are conjugate via τ' , and the last four subgroups are conjugate under the action of $\langle z_2, z_4 \rangle$. Since $z_1 \sim \pi$ holds in $N(R_2)$, we see that under the action of $N(R_2)$ all six subgroups are conjugate to F.

It follows that $|N(R_2):N(F)|=6$, and so, N(F) has order $2^9 \cdot 3^2 \cdot 5$. Since $R_2\langle z_1z_3z_4, z_2\rangle \langle \mu'\rangle$ is a Sylow 2-subgroup of N(F), we get that N(F) splits over R_2 . We know that uv and uv^{-1} act fixed-point-freely on F as $\mathbf{C}_F(u)=\langle z_1,z_3\rangle$ and $\mathbf{C}_F(v)=\langle \mu,\lambda\rangle$. From our above choice we get that $\langle z_2,z_3z_4\rangle \langle uv\rangle\cong A_4$ and that $\langle z_2,z_3z_4\rangle$ is centralized by uv^{-1} . We have $\langle z_2,z_3z_4\rangle \langle uv\rangle\subseteq \mathbf{C}(uv^{-1})$. If uv^{-1} was not fixed-point-free on R_2 , then uv^{-1} centralizes $\langle z_2,z_3z_4\rangle$ and would in addition centralize a four-subgroup of R_2 ; but no element of order 3 in G centralizes a group of order 16. Thus, uv^{-1} operates fixed-point-free on R_2 and on F. It follows that $\langle z_2,z_3z_4\rangle \langle uv\rangle$ lies in a subgroup A_F isomorphic to A_5 of $\mathbf{C}(uv^{-1})\cap N(F)$.

We have obtained $A_E \times \langle v \rangle \subseteq \mathbb{N}(E)$ and $A_F \times \langle uv^{-1} \rangle \subseteq \mathbb{N}(F)$.

There is an involution r_1 in A_E which inverts uv, and there is an involution r_2 in A_E which also inverts uv. We have therefore

$$[r_1, v] = 1$$
, $\langle uv, r_1 \rangle \cong \Sigma_3$, $r_1 \in A_E \subseteq \mathbb{N}(E)$

and

$$[r_2, uv^{-1}] = 1$$
, $\langle uv, r_2 \rangle \cong \Sigma_3$, $r_2 \in A_F \subseteq \mathbb{N}(F)$, and $[r_1r_2, uv] = 1$.

For the action of $\langle r_1, r_2 \rangle$ on $H = \langle u, v \rangle$ we get:

It follows that $(r_1r_2)^3 \in \mathbb{C}(H)$. But $\mathbb{C}(H) = H$ by the structure of $\mathbb{C}(u)$. Clearly, $r_1r_2 \notin H$. It follows $o(r_1r_2) = 3$, since there are no elements of order 9 in G. Thus, $\langle r_1, r_2 \rangle \cong \Sigma_3$. Put $N = H \langle r_1, r_2 \rangle$ and $B = EF \langle u, v \rangle$. Then, $N/H \cong \Sigma_3$ and $|B| = 2^6 \cdot 3^2$. Moreover, $B \cap N = H$ as B is 2-closed, and no involution centralizes H. Put N/H = W.

We shall show that the following conditions of [10] are satisfied:

- (i') $B \cup Br_i B$ is a subgroup of G for i = 1, 2;
- (iv) if $l(r_1w) \geqslant l(w)$ for some $w \in W$ in the generators r_1, r_2 then $B^w \subseteq B^{r_1w}B$ for i = 1, 2.

We have that $B^{r_1} \cap B = EH$; note that H acts transitively on EF/E and that $r_1 \notin \mathbb{N}(B)$ as $r_1 \notin \mathbb{N}(EF)$. Similarly, one gets $B^{r_2} \cap B = FH$. It follows that the number of left cosets of B in Br_iB is equal to $[B:B^{r_i} \cap B] = 2^2$. Thus, $B \cup Br_1B = E(\langle v \rangle \times A_E)$ and $B \cup Br_2B = F(\langle uv^{-1} \rangle \cdot A_F)$ are subgroups of G. We have shown that (i') holds. Put $Z = E \cap F = \langle z_1, z_3 \rangle$. If r_1 would normalize Z then r_1 would normalize EF and also EFH = B which is not the case; use here the structure of $E(\langle v \rangle \times A_E)$. Similarly, we see that $r_2 \notin \mathbb{N}(Z)$. Thus, $Z^{r_1} \neq Z$ for i = 1, 2. Since H acts nontrivially on Z^{r_1} and on Z, we get $Z^{r_1} \cap Z = \langle 1 \rangle$. Clearly, $Z^{r_1} \subseteq E$ and $Z^{r_2} \subseteq F$. It follows $E = ZZ^{r_1}$ and $F = ZZ^{r_2}$; hence $EF = ZZ^{r_1}Z^{r_2}$.

It is easy to see that $w \in \{r_2, r_2r_1\}$ if i = 1, and that $w \in \{r_1, r_1r_2\}$ if i = 2.

Case 1. Here, i = 1 and $w = r_2$. Compute:

$$egin{aligned} B &= Z Z^{r_1} Z^{r_2} H \;, \ \ B^{r_2} &= Z^{r_2} Z^{r_1 r_2} Z H \;, \ \ B^{r_1 r_2} &= Z^{r_1 r_2} Z^{r_2} Z^{r_2 r_1 r_2} H \;. \end{aligned}$$

It follows $B^{r_2} \subseteq B^{r_1 r_2} B$.

Case 2. Here, i = 1 and $w = r_2 r_1$. Compute:

$$B^{r_2r_1} = Z^{r_2r_1}Z^{r_1r_2r_1}Z^{r_1}H$$
,
 $B^{r_1r_2r_1} = Z^{r_1r_2r_1}Z^{r_2r_1}Z^{r_1r_2}H$.

It follows $B^{r_2r_1} \subseteq B^{r_1r_2r_1}B$.

Case 3. Here, i=2 and $w=r_1$ Compute:

$$B^{r_1} = Z^{r_1} Z Z^{r_2 r_1} H \; ,$$
 $B^{r_2 r_1} = Z^{r_2 r_1} Z^{r_1 r_2 r_1} Z^{r_1} H \; .$

It follows $B^{r_1} \subseteq B^{r_2} \cap B$.

Case 4. Here, i=2 and $w=r_1r_2$. Compute:

$$B^{r_1r_2} = Z^{r_1r_2}Z^{r_2}Z^{r_2r_1r_2}H \ ,$$
 $B^{r_2r_1r_2} = Z^{r_2r_1r_2}Z^{r_2r_1}Z^{r_1r_2}H \ .$

It follows $B^{r_1r_2} \subseteq B^{r_2r_1r_2}B$.

Application of [10] yields that U = BNB is a subgroup of G. Another application of [10] gives $B^w \cap B \subset B$ for all $w \in W^{\sharp}$. Also, since H acts on $EF \cap (EF)^w$ without fixed-points, we get that $|B:B^w \cap B| = 2^i$, where i is even and greater than 1 for $w \neq 1$. Put

$$|U| = 2^6 \cdot 3^2 \cdot (1 + 2^2 + 2^2 + 2^{i_4} + 2^{i_5} + 2^{i_6})$$

and denote the bracket by n. Then, 5 divides n, and n is a divisor of $3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$. One gets $i_4 = i_5 = 4$, and $i_6 = 6$. Thus,

$$|U| = 3 \cdot |L_3(4)| = 2^6 \cdot 3^3 \cdot 5 \cdot 7$$
.

Put $H^*=\langle uv\rangle$, $B^*=EFH^*$, and $N^*=H^*\langle r_1, r_2\rangle$. Then, $N^*\cap B^*=H^*$ as uv acts fixed-point-freely on E and on F and any involution of EF lies in E or in F; clearly, H^* is normal in N^* . Moreover, $B^*\cup B^*r_1B^*=EA_E$ and $B^*\cup B^*r_2B^*=FA_F$. Put $N^*/H^*=W^*$. Since $|B:B^w\cap B|=|B^*:B^{*v}\cap B^*|$ if w in W and v in W^* correspond to each other, we obtain in a similar way as before that in U there is a subgroup $L=B^*N^*B^*$ of order $|L_3(4)|$.

We show that L is a simple group. Note that EF is a Sylow 2-subgroup of L and that EF has order $2^{\mathfrak{s}}$. We know that A_E acts transitively on E and that A_F acts transitively on E. Thus, E has precisely one class of involutions. Let E be a minimal normal subgroup of E. Then, by Frattini's argument, E cannot have odd order. It follows that EF lies in E. Since E in E in

3. Adaption of Todd's presentation of M_{24} to the group G.

According to [11], the Mathieu-group M_{24} can be presented by the set $\{a, b, c, d, t, g, h, i, j, k\}$ together with the following relations:

(i)
$$a^2 = b^2 = c^2 = d^2 = 1$$
, $a^b = a^c = a^d = a$, $b^c = b^d = b$, $c^d = c$,

(ii)
$$t^3 = 1$$
, $a^t = cd$, $b^t = ad$, $c^t = bd$, $d^t = abc$,

(iii)
$$g^2 = (ga)^3 = (gb)^3 = (gc)^3 = (gt)^2 = 1$$
,

$$egin{aligned} ({
m iv}) & h^2=1\,, & a^\hbar=a\,, & b^\hbar=abd\,, & c^\hbar=ac\,, & d^\hbar=d\,, \ t^\hbar=t^{-1}\,, & (gh)^3=1\,, \end{aligned}$$

$$egin{aligned} (ext{v}) & i^2 = 1, & a^i = cd, & b^i = ad, & c^i = abcd, & d^i = bcd, \ t^i = t^{-1}, & g^i = tg, & (hi)^3 = 1, \end{aligned}$$

$$egin{aligned} (ext{vi}) & j^2 = 1\,, & a^j = abc\,, & b^j = b\,, & c^j = c\,, & d^j = cd\,, \ t^j = t^{-1}\,, & g^j = g\,, & h^j = th\,, & (ij)^3 = 1\,, \end{aligned}$$

$$({
m vii}) \quad k^2=1\,, \quad a^k=ad\,, \quad b^k=cd\,, \quad c^k=bd\,, \quad d^k=d\,, \ t^k=t^{-1}\,, \quad g^k=tg\,, \quad h^k=h\,, \quad i^k=i\,, \quad (jk)^3=1\,.$$

The set $\{a, b, c, d\}$ together with (i) defines the elementary abelian group of order 16. The set $\{a, b, c, d, t\}$ together with (i) and (ii) defines a group of order 48. The set $\{a, b, c, d, t, g\}$ together with (i) to (iii) defines a group of order $2^6 \cdot 3 \cdot 5$ which is isomorphic to a parabolic subgroup of $L_3(4)$. The set $\{a, b, c, d, t, g, h\}$ together with (i) to (iv) defines $L_3(4)$. The set $\{a, b, c, d, t, g, h, i\}$ together with (i) to (v) defines M_{22} . Finally, the set $\{a, b, c, d, t, g, h, i, j\}$ together with (i) to (vi) defines M_{23} .

In § 2 we had constructed a subgroup L of G which is isomorphic to $L_3(4)$. Therefore, we are able to find elements a, b, c, d, t, g, and h in L such that $L = \langle a, b, c, d, t, g, h \rangle$ and such that the relations (i) to (iv) are satisfied.

From the representation of M_{24} as a subgroup of A_{24} given in [11], we get that the element gd has order 5. The subgroup L has only one class of involutions and only one class of elements of order 3. By construction, the involutions of L are all 2-central in G, and from the order of L follows that the elements of order 3 are all 3-central in G.

The element t of order 3 of L acts fixed-point-freely on the elementary abelian group $\langle a,b,c,d\rangle$ of order 16, and we know that $\mathbf{N}(\langle t\rangle)/\langle t\rangle \cong \Sigma_6$ and $\mathbf{C}(t)/\langle t\rangle \cong A_6$ holds; remember that $\mathbf{C}(t)$ does not split over $\langle t\rangle$.

Put $X = \langle a, b, c, d \rangle$ and $P = \langle X, t, g \rangle$. We have that P has order $2^{\mathfrak{g}} \cdot 3 \cdot 5$ and is isomorphic to a parabolic subgroup of L. Denote by Y the largest normal 2-subgroup of P. Then, Y is elementary abelian of order 16 and P is a transitive splitting extension of Y by A_5 . Since $g \notin \mathbb{N}(X)$, we see that $X \neq Y$.

(3.1) LEMMA. The 2-group XY is a Sylow 2-subgroup of L, and $Y = \langle ab, ac, (ab)^g, (ac)^g \rangle$.

PROOF. We know that t acts fixed-point-freely on X and normalizes Y. Thus, t has no nontrivial fixed-points in $X \cap Y$. Therefore, $|X \cap Y| = 4$ and $|XY| = 2^6$. It follows that $XY \in \operatorname{Syl}_2(L)$. From the embedding of L in G, we see that X and Y are not conjugate in G.

The relations inside L describe the action of t on X in the following way:

$$egin{aligned} t\colon & a o cd o acd\ ,\ & b o ad o abd\ ,\ & c o bd o bcd\ ,\ & d o abc o abcd\ ,\ & ab o ac o bc\ . \end{aligned}$$

Now, $Y\langle g\rangle$ is a group of order 2^5 , since $\langle t,g\rangle\cong\Sigma_3$. Since ga, gb, and gc have order 3, and gd has order 5, we get that neither a,b,c, nor d is contained in Y. It follows that $X\cap Y=\langle ab,ac\rangle$.

We want to show that $\mathbb{C}(g) \cap \langle ab, ac \rangle = \langle 1 \rangle$. Assume that [g, ab] = 1. Then,

$$1 = gab(ga)b = gab(agag)b = gbgagb$$
, and so, $bgbg = ga = gb$

which is impossible as a is different from b; here, we have used the fact that both ga and gb have order 3. Similarly, one shows that g does not centralize ac and bc. It follows $\mathbb{C}(g) \cap \langle ab, ac \rangle = \langle 1 \rangle$. Since g is an involution, we get that $\langle ab, ac \rangle \cap \langle ab, ac \rangle'' = \langle 1 \rangle$. But g lies in $\mathbb{N}(Y)$, and so, $Y = \langle ab, ac, (ab)^g, (ac)^g \rangle$. The lemma is proved.

(3.2) Lemma. The element t of order 3 acts fixed-point-free on Y in the following way:

$$egin{aligned} t\colon &ab
ightarrow ac
ightarrow bc \;, \ &gabg
ightarrow gbcg
ightarrow gacg \;. \end{aligned}$$

Proof. The assertion follows from the relations (i), (ii), and (iii) which hold in L.

(3.3) LEMMA. We have
$$N_L(X) = \langle XY, t, h \rangle$$
.

PROOF. Since t acts fixed-point-freely on Y, we have $\langle XY, t \rangle / X \cong A_4$. If N is the full normalizer of X in L then $N/X \cong A_5$. Therefore, $\langle XY, t \rangle / X$ is a maximal subgroup of N/X. Since $\langle XY, t \rangle$ normalizes Y but h does not, the assertion follows.

From the structure of G and the embedding of L in G, we know that one of the two elementary abelian subgroups X and Y is self-centralizing in G whereas the centralizer of the other in G is elementary abelian of order 64. Now, L possesses an automorphism of order 2 which interchanges X and Y. Therefore, we may and shall assume that $X = \mathbb{C}(X)$ and $\mathbb{C}(Y) \supset Y$.

In what follows we change notation and put E=X and F=Y to be in conformity with §2. Thus, N(E) is a splitting extension of E by A_8 , and N(F) is a splitting extension of C(F) by a group of type $(Z_3 \times A_5) Z_2$ such that $Z_3 Z_2 \cong \Sigma_3$ and $A_5 Z_2 \cong \Sigma_5$.

Denote by C a complement of E in N(E) such that t lies in C. Clearly, as t is fixed-point-freely on E, we have that t corresponds to a short element of order 3 of C. Also, $N_c(\langle t \rangle) = N(\langle t \rangle) \cap N(E)$ and this group is isomorphic to $N(\langle (123) \rangle) \cap A_s$. Obviously, modulo $\langle t \rangle$, the element h corresponds to a transposition of $N_c(\langle t \rangle)/\langle t \rangle \cong \Sigma_s$. We can find now involutions i, j, and k in $N_c(\langle t \rangle)$ which satisfy all the relations (v), (vi), and (vii) with the possible exception of igi = tg, igi = g, or igi = tg.

The following easy lemma is helpful. We shall state it without proof.

- (3.4) LEMMA. Let X be a group of type $(Z_3 \times A_5) Z_2$ such that $Z_3 Z_2 \cong \Sigma_3$ and $A_5 Z_2 \cong \Sigma_5$. Then, X possesses precisely one subgroup A isomorphic to A_5 . If i is an involution of $X \setminus A$, then $A \langle i \rangle \cong \Sigma_5$.
 - (3.5) LEMMA. We have $N(E) = \langle EF, t, h, i, j, k \rangle$.

PROOF. Note that $\langle EF, t, h \rangle / E \cong A_5$ and that $\langle E, t, h, i, j, k \rangle / E$ has the structure of the group X of lemma (3.4). Clearly,

$$\langle EF, t, h
angle / E \cap \langle E, t, h, i, j, k
angle / E \cong \Sigma_3$$
 .

Thus, these two subgroups of N(E)/E generate a subgroup of order at least $(2^2 \cdot 3 \cdot 5) \cdot (2^3 \cdot 3^2 \cdot 5)/6$. But A_8 has no proper subgroup of index smaller or equal to 5. The lemma is proved.

In what follows, a matrix indexed by the letter E stands for the action of an element from N(E) on E with respect to the basis $\{a, b, c, d\}$ over GF(2). Analogously, a matrix indexed by F is used to

describe the action of an element on F with respect to the basis $\{ab, ac, gabg, gacg\}$ over GF(2).

In the next lemma we shall derive more information about the multiplication table of N(E).

(3.6) LEMMA. With respect to the «basis» $\{a, b, c, d\}$ of the «vector space» E over GF(2), the action on E of gabg and gacg is described by the following correspondences:

$$gabg
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 \ \end{bmatrix}_{\mathcal{R}},$$

(For example, the first matrix shows that $a^{gabg} = b$, $b^{gabg} = a$, $c^{gabg} = abc$, $d^{gabg} = acd$.)

PROOF. We know that F normalizes E. Using the relations (i) and (iii), we get

$$(gabg) a(gabg) = gb(agaga) bg = gb(gaa) bg = gbgbg = bgg = b.$$

It follows

$$(gabg)b(gabg) = a$$
.

Since [gabg, ac] = 1, we get

$$(gabg) ac(gabg) = ac = b(gabg) c(gabg)$$
.

Hence,

$$(gabg)c(gabg) = abc$$
.

Similarly, one computes

$$(gacg) a(gacg) = c, (gacg) c(gacg) = a$$
 and $(gacg) b(gacg) = abc$.

Finally, using lemma (3.2), we get

$$egin{align} (gacg) & d(gacg) & = tt^{-1}(gacg) \, d(gacg) \, tt^{-1} & = t(gabg) \, t^{-1} \, dt(gabg) \, t^{-1} & = t(gabg) \, abc(gabg) \, t^{-1} & = t(baabc) \, t^{-1} & = tct^{-1} & = bcd \; , \end{gathered}$$

and similarly, we get

$$(gabg) d(gabg) = acd$$
.

The lemma is proved.

4. A subgroup isomorphic to M_{22} .

(4.1) LEMMA. The involution i normalizes F, and its action on F is described by the following correspondence

$$i
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix}_F.$$

PROOF. Put $x=(ab)^g$ and $y=(ac)^g$. Consider the group $\langle x,y,i\rangle E/E$. The action of the involutions x,y, and i on E are known. Modulo E one gets $(xi)^4=(yi)^2=x^2=y^2=i^2=1$, and $(xi)^2=y$. Note that C(E)=E. It follows that $\langle x,y,i\rangle E/E=\langle x,i\rangle E/E$ is a dihedral group of order 8 with center $\langle yE\rangle$. Thus, modulo E we have ixi=xy and iyi=y. This implies $(EF)^i=EF$. Since $i\in N(E)$, we get $i\in N(F)$ as E and F are the only elementary abelian subgroups of order 16 of EF.

Clearly, i(ab) i = ac, i(ac) i = ab, and $i(gabg) i = ixi = xye_1$, and $i(gaeg) i = iyi = ye_2$ with elements $e_1, e_2 \in E \cap F$. In this way we

have found the correspondence

$$i
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ lpha & eta & 1 & 1 \ \gamma & \delta & 0 & 1 \ \end{bmatrix}_F$$

with $\alpha, \beta, \gamma, \delta \in GF(2)$.

The relations $i^2 = 1$ and $(it)^2 = 1$ force that we get only the following two possibilities:

Case 1.
$$\alpha = 0$$
, $\beta = \gamma = \delta = 1$.

Case 2.
$$\alpha = \beta = \gamma = \delta = 0$$
.

By way of contradiction, we assume that we are in the first case. We get

$$ig
ightarrow egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 \end{bmatrix}_F,$$

and $(gi)^3$ centralizes F. It is easy to see that there is no element in $\langle t \rangle$ which acts on F in the same way as gi does. But gi centralizes t. It follows that $\langle gi, t \rangle C(F)/C(F)$ is a Sylow 3-subgroup of N(F)/C(F). In particular, $|\langle EF, t, g, i \rangle C(F)/C(F)|$ is divisible by 3^2 . We know that $\langle EF, t, g \rangle C(F)/C(F) \cong A_5$, and therefore, by lemma (3.4), we see that $\langle EF, t, g, i \rangle C(F)/C(F)$ is isomorphic to A_5 or Σ_5 . But 3^2 does not divide 120. We have ruled out case 1. The lemma is proved.

(4.2) THEOREM. We have $(ig)^2=t$ and $\langle E,t,g,h,i\rangle$ is isomorphic to M_{22} .

Proof. For the action of ig on F we get the correspondence

$$ig
ightarrow egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}_F.$$

It follows that $(ig)^2$ acts in the same way as t on F, and the order of ig is either 6 or 12; remember that $\mathbb{C}(F)$ is elementary abelian of order 2^6 . Put $N = \mathbb{N}(\langle t \rangle)/\langle t \rangle$ and $C = \mathbb{C}(t)/\langle t \rangle$. Assume by way of contradiction that the order of ig was 12. Then, $ig\langle t \rangle$ is an element of order 4 of C, since both i and g invert t and A_6 does not contain elements of order divisible by 6. The involutions $i\langle t \rangle$ and $g\langle t \rangle$ lie in $N \setminus C$. Thus, it is not possible that $i\langle t \rangle$ and $g\langle t \rangle$ would be conjugate in N. We know that $(gh)^3 = (hi)^3 = 1$ holds. Hence, g, h, and i are conjugate to each other in $\mathbb{N}(\langle t \rangle)$. This is a contradiction. We have proved that the order of ig is equal to 6.

Since $\mathbb{C}(F)$ is elementary abelian, we have

$$1 = ((ig)^2 t^{-1})^2 = (ig)^4 t,$$

and therefore,

$$(ig)^2 = t$$
.

Application of the result of [11] proves the theorem.

5. A subgroup isomorphic to M_{23} .

(5.1) LEMMA. The involution j normalizes F. We have the correspondence

$$j
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}_{F}.$$

PROOF. The action of j, gabg, and gaeg on E is known. Thus, we get that j(gabg)j = gaeg holds $modulo\ E$. Hence, j normalizes EF which implies that $j \in \mathbb{N}(F)$.

We have that j(ab)j=ac and j(ac)j=ab. Further, there are elements $e_1,e_2\in E\cap F$ such that

$$j(gabg)j = (gaeg)e_1$$
 and $j(gaeg)j = (gabg)e_2$.

Therefore, we obtain the correspondence

$$j
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ lpha & eta & 0 & 1 \ \gamma & \delta & 1 & 0 \ \end{bmatrix}_F$$

with $\alpha, \beta, \gamma, \delta \in GF(2)$.

The equations $j^2 = 1$ and $(jt)^2 = 1$ give precisely two possibilities:

Case 1.
$$\alpha = \delta = 1$$
, $\beta = \gamma = 0$.

Case 2.
$$\alpha = \beta = \nu = \delta = 0$$
.

Suppose that we are in case 1. Then, we get

$$jg
ightarrow egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \end{bmatrix}_F.$$

Thus, $(jg)^3$ centralizes F. Since no element of $\langle t \rangle$ acts on F in the same way as jg, we see that $\langle jg, t \rangle \mathbb{C}(F)/\mathbb{C}(F)$ is a Sylow 3-subgroup of $\mathbb{N}(F)/\mathbb{C}(F)$. Now, the same argument as in the proof of (4.1) yields a contradiction. The lemma is proved.

(5.2) Theorem. We have $(jg)^2=1$ and $\langle E,\,t,\,g,\,h,\,i,\,j\rangle$ is isomorphic to M_{23} .

PROOF. The previous result implies that the order of jg is either 2 or 4.

Assume by way of contradiction that the order of jg was 4. As in the proof of (4.2) we put $N = \mathbb{N}(\langle t \rangle)/\langle t \rangle$ and $C = \mathbb{C}(t)/\langle t \rangle$. Then, $jg \langle t \rangle$ is an element of order 4 in C. The involutions $j \langle t \rangle$ and $g \langle t \rangle$ of N lie in $N \setminus C$. Hence, $j \langle t \rangle$ and $g \langle t \rangle$ are not conjugate in N. We know that $(gh)^3 = (hi)^3 = (ij)^3 = 1$ holds, and therefore, the involutions g, h, i, and j are all conjugate in $\mathbb{N}(\langle t \rangle)$. This is a contradiction. We have shown that the order of jg is equal to 2. Now, application of the result of [11] proves the assertion of the theorem.

6. The identification of G with the Mathieu-group M_{24} .

(6.1) Lemma. The involution k normalizes F. We have the correspondence

$$k
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix}_F$$

PROOF. As in the proof of (5.1) we get $k(gabg)k = gbcg \ modulo \ E$. Hence, k normalizes EF and F. Thus,

$$k
ightarrow egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ lpha & eta & 1 & 1 \ \gamma & \delta & 0 & 1 \ \end{bmatrix}_F$$

with $\alpha, \beta, \gamma, \delta \in GF(2)$.

The equations $k^2 = 1$ and $(kt)^2 = 1$ give precisely two possibilities:

Case 1.
$$\alpha = 0$$
, $\beta = \gamma = \delta = 1$.

Case 2.
$$\alpha = \beta = \gamma = \delta = 0$$
.

In case 1, we obtain that $\langle kg, t \rangle \mathbb{C}(F)/\mathbb{C}(F)$ is a Sylow 3-subgroup of $\mathbb{N}(F)/\mathbb{C}(F)$. This produces a contradiction just as in the proof of (4.1). The lemma is proved.

(6.2) Theorem. We have $(kg)^2=t$, and the group G is isomorphic to M_{24} .

PROOF. From (6.1) we get that the order of kg is either 6 or 12. Assume by way of contradiction that the order of kg was 12. As in (4.2) we denote by N the factor group $\mathbb{N}(\langle t \rangle)/\langle t \rangle$ and put $C = \mathbb{C}(t)/\langle t \rangle$. Then, $kg \langle t \rangle$ is an element of order 4 of C, since both k and g invert t. The involutions $k \langle t \rangle$ and $g \langle t \rangle$ of N lie in $N \setminus C$.

Hence, $k\langle t\rangle$ and $g\langle t\rangle$ are not conjugate in N. We know that $(gh)^3 = (hi)^3 = (ij)^3 = (jk)^3 = 1$ holds. Hence, g, h, i, j, and k are all conjugate to each other in $\mathbb{N}(\langle t\rangle)$. This is a contradiction which proves that o(kg) = 6.

It is now easy to compute that $(kg)^2$ and t act in the same way on F. Using a similar argument as that in the proof of (4.2), we get that $(kg)^2 = t$.

We apply now the result of [11] and get that

$$\langle E, t, g, h, i, j, k \rangle \cong M_{24}$$
.

As $|G| = |M_{24}|$, the theorem is proved.

REFERENCES

- [1] B. Beisiegel, Über endliche einfache Gruppen mit Sylow 2-Untergruppen der Ordnung höchstens 2¹⁰, Commun. Algebra, **5** (1977), pp. 113-170.
- [2] D. GORENSTEIN, Finite Groups, Harper and Row Publishers, New York-Evanston-London (1968).
- [3] D. GORENSTEIN, Finite Simple Groups An Introduction to their Classification, Plenum Press, New York-London (1982).
- [4] D. GORENSTEIN J. H. WALTER, On finite groups with dihedral Sylow 2-subgroups, Ill. J. Math., 6 (1962), pp. 553-593.
- [5] D. Held, The simple groups related to M₂₄, J. Algebra, 13 (2) (1969), pp. 253-296.
- [6] D. Held, A characterization of the alternating groups of degrees eight and nine, J. Algebra, 7 (2) (1967), pp. 218-237.
- [7] Z. Janko, A characterization of the Mathieu simple groups I, II, J. Algebra, 9 (1968), pp. 1-19, 20-41.
- [8] R. G. STANTON, The Mathieu-groups, Can. J. Math., 3 (1951), pp. 164-174.
- [9] V. Stingl, Endliche, einfache Component-Type-Gruppen, deren Ordnung nicht durch 2¹¹ geteilt wird, Dissertation, Mainz (1976).
- [10] J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris, 254 (1962), pp. 2910-2912.
- [11] J. A. Todd, Abstract definitions for the Mathieu groups, Quart. J. Math. Oxford, (2), 21 (1970), pp. 421-424.

Manoscritto pervenuto in redazione il 30 giugno 1988.