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A Block-Theory-Free Characterization of M ,,.

D. HELD - J. HRABE DE ANGELIS (*)

In [5, § 5] a characterization of the Mathieu-group M,, as a simple
group G having a central involution 2 such that the centralizer H
of z in G is isomorphic to the centralizer of a central involution of
M,, had been given. To distinguish M,, from the simple groups L;(2)
and He, it was assumed that the normalizers in G of the two elemen-
tary abelian normal subgroups of order 16 of H are not isomorphic.
The information about the local structure obtained had been enough
to apply the order-formula of J. G. Thompson [3] to get the uniquely
determined order of G which then is the order of M,,. Then, by a
result of R. Stanton [8], who characterized M,, as a simple group
having the same order as M,,, the group G could be identified
with M,,.

Unfortunately, the Ph. D-thesis of R. Stanton, written under the
supervision of Richard Brauer, had not been published, there is only
the short summary [8] available in which he describes his methods
which are heavily block theoretical and computational.

This was the reason that we tried to make §5 of [5] free of Stan-
ton’s result. In [11], J. A. Todd gives generators and relations for the
group M,,, and we succeeded in showing that the group G can be
generated by elements satisfying the Todd-relations. Thus, without
using Stanton’s result, we are able to identify G with M,,. It is in
this sense that our title should be understood.

Similar procedures allow to throw out character theory from
Z. Janko’s characterizations of M,, and M,, in [7]. Also, it seems

(*) Indirizzo degli A.A.: Fachbereich Mathematik (17) der Universitit,
D-6500 Mainz, R.F.T.
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possible to eliminate character theory from characterizations of M,
and M,,. Moreover, theorems of B. Beisiegel [1] and V. Stingl [9]
permit to prove Stanton’s result without block theory.

1. Notations.

In the whole paper, G denotes a finite simple group having all
the properties of the group G of [5; §5]. We shall use the notation
introduced in [5] with one exception: We do not use the letter H to
denote the centralizer of z, in @. In addition, we put § = (=, 7, u,A>
and F = {(#,,%;,u, ). The centralizer of the non-2-central involu-
tion z;7z in G is described in [5; § 5]. There, one finds also the struc-
tures of the normalizers of the elementary abelian groups R, and R,
both of order 64 and of F of order 16 which — essentially — determined
the fusion of the involutions of G. The multiplication table of C(z,)
is completely given in [5, §1]; the relations of [6; §1, p. 218] are
satisfied inside C(z,).

Put H, = C(z,). Then, E = <z, 2,, #;, 2,y is an elementary abelian
normal selfcentralizing subgroup of order 16 of H,. The 2-group
T=En 1>y u, 1 is a Sylow 2-subgroup of G. The two ele-
mentary abelian normal subgroups of order 64 of T are R, = {2y, 2,
2, 7y uT, p't’y and R, = (2,2, 7, u, 7, A>. One has N(R,) N H, =
= (T, 0> and N(R,) N H, = {T, u). The element u of order 3 cen-
tralizes <z;,2,> and operates on S fixed-point-free in the fcllowing
way: n — 7 — nt, 4 — A — ulA. Further, [u, '] = 1. There is another
elementary abelian normal subgroup FE, = {#,x, 7,7’y of H,. We
have to treat here the situation in which N(#,) = H, and N(E)/E ~ A4,.

2. Some facts about the subgroup structure of G.

In this paragraph we shall derive some results about the 3-struc-
ture of G and shall exhibit certain subgroups of N(#) and N(F') with
which we are able to construct a subgroup of G isomorphic to Ls(4).

(2.1) LemmA. The group G has the following properties:

(#) A Sylow 3-subgroup of G is non-abelian of exponent 3.
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(b) If & is an element of order 3 of 0,,(N(R,)) then % is con-
jugate to o in G and C(<g))/<e> =~ 4¢, N(o))/e) == Zs. Moreover,
the element k acts fixed-point-free on E,.

(¢) If K is a Sylow 3-subgroup of N(R,) and « is an element
of K not in K' then |C(x) N R,| = 4.

(d) In G there are precisely two classes of elements of order 3.

(¢) If v is an element of order 3 not conjugate to ¢ in G then
C(v) = <v) X Ly(7).

(f) If « is an element of order 3 of G then all involutions of
C(x) are conjugate in C(z).

Proor. The structure of N(R,) is described in lemmas (2.17)
and (5.3) of [6]. From [5; §5] we know that C(z;7) is contained
in N(R,).

Let K be a Sylow 3-subgroup of N(R,) containing the element
of order 3. If K was abelian then a subgroup of order 9 of K would
centralize C(u) N R, = <{#,, 2;,>. This, however, is not possible as the
order of the centralizer of an involution of @ is not divisible by 9.
It follows that a Sylow 3-subgroup of G is nonabelian.

We have T'=R,({t"> X (2;2,, tu't") {2,») and the commutator group
of (7') X <%z, mu't"> {2y is {23%2,y. Thus, if k is an element of or-
der 3 in O,;(N(R,)), we get [k, 2z,]€ R,: It follows that k operates
on the set <2, %;, 7w, ury2, of all involutions of R,z,. But there are
only four 2-central involutions of G in R,z,. 1t follows that &k~ g,
since 2, ~2,. Frattini’s argument yields N(R,) = (N(<k)) N.N(R,)) R, .
Since the order of N(<k)) is divisible by 32, application of [5; Lem-
ma (2.10)] gives N(<k))/<k) =~ X;. In particular, we see that k acts
fixes-point-free on R,.

Let K' = (k) and let x be an element of K not in K'. Then,
K, = (k,x) is elementary abelian of order 9 and normalizes R,.
We apply [2; 5.3.16] and get R, = IIC(y), where y runs through all
elements of Kf. Assume that for such a y we had |C(y) N R,| = 16.
Then y cannot centralize a conjugate of z, by the structure of C(p).
However, F' = {2, #;, u, Ay has only 2-central involutions and |[F N
N C(y) N R,|>4; this yields a contradiction. It follows that for all y
in K! we have |C(y) N R,|<4, and so, if y in <k, x)\(k), we must
have |C(y) N R,| = 4. We have shown that every element of order 3
of @ is centralized by an involution and this implies that G has pre-
cisely two classes of elements of order 3.
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Put H, = C(z,n). We know that H, lies in N(R,). From [5; Lem-
ma (5.4)] we get that V = (23m, 2,u7) is normal in H,. Note that
H,/R, ~ X; and that C(V)/R, ~ A;. Denote by v an element of or-
der 3 in H,. We get that C(v) N\ H, has order 2-3 and that a Sylow
2-subgroup of C(v) is dihedral of order 8. From [6; Lemmas (2.19)
and (5.2)] we get that v is centralized by a subgroup isomorphic to
Ly(2) of G. Hence, C(v) has no subgroup of index 2, and since v is
not 3-central, we see that |C(v)| is not divisible by 33. Application
of the result of [4] yields that C(v) = <{v) X L4(2). All assertions of
the lemma are proved.

(2.2) LemMmA. The group G contains a subgroup isomorphic
to L,y(4).

ProoF. Application of [5; Lemma (2.9)] yields that |N(<z,, z))| =
= 210.32, We know that N(<{z, 2;)) lies in N(R,) and in N(E). We
have C(<2,, %)) = ER,{u, u't’). Denote by H a Sylow 3-subgroup of
N(<21, #;p) such that u € H. Then, H = (u, »), where » is an element
of order 3. The element % of order 3 acts fixed-point-free on
8 = {=n, 7, u, &) and [u, R,] = 8. Therefore, we get that H normal-
izes 8. The normalizer of an elementary abelian group of order 16
of Ag does not contain the centralizer of a 2-central involution of A,.
Thus, under the action of H, the involution z has precisely 9 con-
jugates in 8. It is easy to see that the conjugates of = in S under
the action of H centralize subgroups of order 8 in K. The six ele-
ments u, A, uld, mu, vA, nruld centralize only subgroups of order 4
in BE. Clearly, |[H:H NnC(u)| =3, and we may and shall assume
that [v, u] = 1. Since u acts on Cg(»), we get Cs(v) = (u, ). With
respect to F we may call the 9 conjugates of = long and the 6 con-
jugates of u short involutions. Then, # is a long and » is a short
element of order 3 with respect to FE.

Clearly, H acts on E. But H acts also on F = {2, 2;, u, 4), since
[u,v] =1. We know that » acts fixed-point-free on E, and so,
we get {2y, 2)(V) = (2, 232)<¥) = A, a8 Cy(u) = <21, 2;) and [u, B] =
= (%, % %,y. 1t follows that (z,,2;2,)<{»> lies in N(R,)’; note that
{%q, #32,)(¥)> normalizes F.

Now, {u, A> (u) x (»> normalizes F. From the structure of N(E)
follows that Cyg)(v) acts faithfully on E as v is short and that Cy gy (v)=~
= Zyx A;. Clearly, vu or v—'u acts fixed-point-free on E. So, inter-
changing » and »! if necessary, we may and shall assume that uy
acts fixed-point-free on E. It follows that {u, ) <uv) is contained in
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a subgroups Ay isomorphic to A4, of Cy)(»). Note that Elu, 1) is
a Sylow 2-subgroup of ECy)(»)

We shall now study the normalizer of F' in G. Clearly, C(¥) = R,,
and so, N(F)C N(R,). We have R, = V xXF, where V = <27, 2 u7);
all involutions of F' are 2-central but no involution of V is 2-central
in @. There are precisely the following six subgroups of E, with the
property that they have order 16 and possess only 2-central involu-
tions:

1) F = {2,204 4,
2)  (#yy 2, U, TAY,

3) LmyTym Ay,

4) Ly 2,7y 2 Yy % L),

5) (&7, T, 21204, 21 A),
6) (w7, 2, 2125A) .

Each of these six subgroups is a complement of V in R,. The first
two subgroups are conjugate via 7/, and the last four subgroups are
conjugate under the action of (2,,2,). Since 2, ~x holds in N(R,),
we see that under the action of N(R,) all six subgroups are conjugate
to F.

It follows that |N(R,):N(¥#)| = 6, and so, N(F) has order 2°-32-5.
Since R,(?;232;, 2,) {u'> is a Sylow 2-subgroup of N(F), we get that
N(F') splits over R,. We know that uy and uy—! act fixed-point-freely
on F as Cy(u) = {21, 2y and Cp(y) = (u, 4). From our above choice
we get that <z,,2;2,)> Cuv) ~ A, and that <{z,,2;2,) is centralized by
uy~t. We have <z, 2;2,> Cuv) C C(ur1). If uy~! was not fixed-point-
free on R,, then uy—! centralizes {z, 2;2,> and would in addition cen-
tralize a four-subgroup of R,; but no element of order 3 in G central-
izes a group of order 16. Thus, u»! operates fixed-point-free on R,
and on F. It follows that (z,,2;2,> <ur) lies in a subgroup A iso-
morphic to 4; of C(uv-1) N N(F).

We have obtained A;Xx<{»> C N(E) and Ap X {uy~1) C N(F).

There is an involution 7, in A; which inverts u», and there is an
involution 7, in A which also inverts uy. We have therefore

[ri,v1=1, <Luv,r)=~2;, nreAzCN(E)
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and
[rey w=1] =1, Cuy,ry) =2y, r€ApCN{F), and [rr,w]=1.

For the action of {r,,7,> on H = {u,»v) we get:

i Y=V,
r: u—>uly,

720 v —>wul,

Te: U >,

et U—>uly >y,

Pl ¥y > Ul > Uyl

It follows that (r,7;)* € C(H). But C(H) = H by the structure of C(u).
Clearly, r,r, ¢ H. It follows o(r,7,) = 3, since there are no elements
of order 9 in G. Thus, {r,7r) ~2,. Put N = H{r,r,)> and
B =FEF{u,vy. Then, N/H ~ 2; and |B|= 2¢%-3%. Moreover, BN N =H
as B is 2-closed, and no involution centralizes H. Put N/H = W.

We shall show that the following conditions of [10] are satisfied:

(i) Bu Br,B is a subgroup of G for i =1,2;

(iv) if Uryw)>Uw) for some we W in the generators r,,r, then
Bv C BnvB for i =1, 2.

We have that BN B = EH; note that H acts transitively on
EF|E and that r, ¢ N(B) as r, ¢ N(EF). Similarly, one gets BN\ B =
= FH. It follows that the number of left cosets of B in Br;B is equal
to [B:Bn N B]=2% Thus, BuU Br,B = E({¥) x4;) and BuU Br,B=
= F({uv—*)-Ay) are subgroups of G. We have shown that (i’) holds.

Put Z=ENF = {z,2,)y. If r, would normalize Z then r, would
normalize EF and also EFH =— B which is not the case; use here
the structure of H(<») X Az). Similarly, we see that r,¢ N(Z). Thus,
Zr Z for 1 =1,2. Since H acts nontrivially on Z7 and on Z, we
get ZnNZ = (1). Clearly, ZnCFE and Z~CF. It follows B = ZZn
and F = ZZm; hence EF = ZZmZr-.
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It is easy to see that w € {r,, ryr,} if i =1, and that we {r, r,r}
if i = 2.

Case 1. Here, i = 1 and w = r,. Compute:
B = ZZ~Z"H,
B = ZnZ"".ZH ,
BTITZ _— ZTITZ Z'z Z':TI":H .
It follows B".C Bnn:B.
Case 2. Here, ¢ =1 and w = r,r,. Compute:
Bty = ZnnZntnZnH y
Britt = ZnrnZnnZnmH .
It follows B7.":C Bn"B .
Case 3. Here, ¢ =2 and w =r, Compute:
By = ZnZZH ’
Brlrl = Z'!rl ZrlrlrlZle .
It follows B".C B"."1B.
Case 4. Here, ¢ = 2 and w = r,r,. Compute:
Brts = ZnnZrs ZnnH ’
Branrs = Zrsnn Znn ZnH .

It follows Bn".C Bn""B.

Application of [10] yields that U= BNB is a subgroup of G.
Another application of [10] gives B* N Bc B for all we W*. Also,
gince H acts on EF N (EF)* without fixed-points, we get that
|B:B* N B| = 2¢, where ¢ is even and greater than 1 for w# 1. Put

|U] = 26-3%- (1 4 27 4 22 4 2% 4 2% 4 27)
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and denote the bracket by n. Then, 5 divides n, and n is a divisor
of 3-5-7-11-23. Onme gets ¢, = ¢; = 4, and ¢ = 6. Thus,

|U| = 3+|Ly(4)] = 2¢-33-5-7 .

Put H*= {wv), B*= EFH¥*, and N*= H*{r,, r,>. Then, N* N B*= H*
as uy acts fixed-point-freely on # and on F and any involution
of EF lies in E or in F; clearly, H* is normal in N*. Moreover,
B*y B*r,B¥* = FA; and B* U B*r,B* = FA,. Put N*/H* = W*,
Since |B:B* N B| = |B*:B** N B*| if w in W and v in W* correspond
to each other, we obtain in a similar way as before that in U there
is a subgroup L = B*N*B* of order |L,(4)|.

We show that L is a simple group. Note that EF is a Sylow
2-subgroup of L and that EF has order 2%. We know that 4, acts
transitively on E and that A, acts transitively on F. Thus, L has
precisely one class of involutions. Let K be a minimal normal sub-
group of L. Then, by Frattini’s argument, K cannot have odd order.
It follows that EF lies in K. Since L = KN (EF), we get from the
structure of C(z,) that 5-7 divides |K|. It follows that (FAd;, FAr)
lies in K and this implies L = K. We have shown that L is a simple
group. Since L has only one class of involutions, we get L o~ L,(4).

3. Adaption of Todd’s presentation of M,, to the group G.

According to [11], the Mathieu-group M,, can be presented by the
set {2, b, ¢, d, 1, g, h, i, j, k} together with the following relations:

i eae=bk=c=d=1, ¢®>=a¢"=a*=a, b=0=b, #=c,
(i) # =1, a*'=cd, b*=ad, c'=bd, d'= abe,
(iii) g% = (ga)®* = (gb)* = (go)* = (g?)* =1,

(iv) Rh*=1, a*=a, b*=abd, ¢ =ac, d*=d,
=i, (gh)*=1,

(v) #=1, o' =cd, b'=ad, ¢ =abed, d'= bed,
t=1t1, g'=1g, (hi)*=1,
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(vi) j2=1, a'=abe, b'=b, ¢/ =c¢, d=ucd,
V=11, gi=g, W=th, @{°=1,

(vii) k*=1, a*—ad, b*—od, o =bd, @ =d,
tk:t—l’ gkzt!], hk:hy ik:i’ (7k3:1'

The set {a, b, ¢, d} together with (i) defines the elementary abelian
group of order 16. The set {a, b, ¢, d,t} together with (i) and (ii)
defines a group of order 48. The set {a,b,c,d,¢?, g} together with
(i) to (iii) defines a group of order 2¢-3-5 which is isomorphic to a
parabolic subgroup of L,(4). The set {a,b, ¢, d,t,g, h} together with
(i) to (iv) defines L,(4). The set {a,b,¢,d,t,g, h,i} together with (i)
to (v) defines M,,. Finally, the set {a, b, ¢, d, t, g, h, i, j} together with
(i) to (vi) defines M,,.

In §2 we had constructed a subgroup L of G which is isomorphic
to Ly(4). Therefore, we are able to find elements a, b, ¢, d, t, g, and h
in L such that L = {a, b, ¢, d,t, g, k) and such that the relations (i)
to (iv) are satisfied.

From the representation of M,, as a subgroup of 4,, given in [11],
we get that the element gd has order 5. The subgroup L has only one
class of involutions and only one class of elements of order 3. By
construction, the involutions of L are all 2-central in @, and from
the order of L follows that the elements of order 3 are all 3-central
in G.

The element ¢ of order 3 of L acts fixed-point-freely on the elemen-
tary abelian group <a,b,c¢,d) of order 16, and we know that
N(<8)) /<ty == X and C(t)/<t) =~ A, holds; remember that C(¢) does not
split over (t).

Put X = <a,b,¢,d) and P = (X, t,g>. We have that P has or-
der 2%-3-5 and is isomorphic to a parabolic subgroup of L. Denote
by Y the largest normal 2-subgroup of P. Then, Y is elementary
abelian of order 16 and P is a transitive splitting extension of Y
by A;. Since g ¢ N(X), we see that X == Y.

(3.1) LemMMA. The 2-group XY is a Sylow 2-subgroup of L, and
Y = <ab, ac, (ab)?, (ac)’>.

ProoF. We know that ¢ acts fixed-point-freely on X and nrormal-
izes Y. Thus, ¢ has no nontrivial fixed-poirts in X N Y. Therefore,
IXNY|=4 and |[XY|=2¢ It follows that XY e Syly(L). From the
embedding of L in G, we see that X and Y are not conjugate in G.
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The relations ingide L describe the action of { on X in the following
way:
t: a-—>cd—acd,

b —ad — abd ,
¢ — bd — bed ,
d — abe — abed ,

ab — ac — be .

Now, Y{g) is a group of order 25, since (¢, g) ~2;. Since ga, gb,
and ge have order 3, and gd has order 5, we get that neither a, b, ¢,
nor d is contained in Y. It follows that X N Y = {ab, ac).

We want to show that C(g) N <ab,ac) = <1>. Assume that
[g, ab] = 1. Then,

1 = gab(ga)b = gab(agag)b = gbgagb, and so, bgbg = ga = gb

which is impossible as @ is different from b; here, we have used the
fact that both ga and gb have order 3. Similarly, one shows that g
does not centralize ac and be. It follows C(g) N {ab, ac) = <{1).
Since g is an involution, we get that <{ab,ac) N {ab, ac)’ = {1).
But g lies in N(Y), and so, Y = <ab, ac, (ab)’, (ac)’>. The lemma is
proved.

(3.2) LemMmA. The element ¢ of order 3 acts fixed-point-free
on Y in the following way:

t: ab—>ac—be,
gabg — gbeg — gacg .

Proor. The assertion follows from the relations (i), (ii), and (iii)
which hold in L.

(3.3) LEMMA. We have N,(X) = (XY, 1, k).

PrOOF. Since ¢ acts fixed-point-freely on Y, we have (X Y,t)/ X~ A,.
If N is the full normalizer of X in L then N/X ~ A,. Therefore,
(XY,t)/X is a maximal subgroup of N/X. Since (XY, ¢) normalizes
Y but & does not, the assertion follows.
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From the structure of G and the embedding of L in G, we know
that one of the two elementary abelian subgroups X and Y is self-
centralizing in G whereas the centralizer of the other in @ is elemen-
tary abelian of order 64. Now, L possesses an automorphism of
order 2 which interchanges X and Y. Therefore, we may and shall
assume that X = C(X) and C(Y)>Y.

In what follows we change notation and put ¥ = X and F=Y
to be in conformity with §2. Thus, N(E) is a splitting extension of ¥
by A4,, and N(F) is a splitting extension of C(#) by a group of type
(Zy % A5) Z, such that Z,Z, ~ 2, and A;Z, ~ ;.

Denote by C a complement of E in N(Z) such that ¢ lies in C.
Clearly, as t is fixed-point-freely on E, we have that ¢ corresponds to
a short element of order 3 of C. Also, N¢(<t)) = N(<¢)) N N(E) and
this group is isomorphic to N({(123))) N 4,. Obviously, modulo <t),
the element h corresponds to a transposition of No(<t))/{t) =~ ;.
We can find now involutions 4, j, and ¥ in Ny(<t)) which satisfy all
the relations (v), (vi), and (vii) with the possible exception of igi = g,
jgi = g, or kgk = tg.

The following easy lemma is helpful. We shall state it without
proof.

(3.4) LEMMA. Let X be a group of type (Z,;xA4;)Z, such that
Z3Z, ~ 2y and A;Z, ~ 2;. Then, X possesses precisely one subgroup
A isomorphic to 4,. If ¢ is an involution of X\ A4, then Ai) =~
=~ 2.

(3.5) LEMMA. We have N(E) = (EF, 1, h, i, j, k>.

Proor. Note that {EF,t, h)|E ~ A, and that {E,¢, h, <, ], k)/E
has the structure of the group X of lemma (3.4). Clearly,

CEFE, t, hy|E N (B, 1, hy iy j, k)| B ~ Xy .

Thus, these two subgroups of N(E)/E generate a subgroup of order
at least (22-3-5)-(23-32-5)/6. But A, has no proper subgroup of index
smaller or equal to 5. The lemma is proved.

In what follows, a matrix indexed by the letter E stands for the
action of an element from N(E) on E with respect to the basis {a, b,
¢, d} over GF(2). Analogously, a matrix indexed by F is used to
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describe the action of an element on F with respect to the basis
{ab, ac, gaby, gacg} over GF(2).

In the next lemma we shall derive more information about the
multiplication table of N(E).

(3.6) LEMMA. With respect to the «basis» {a,b,¢,d} of the
« vector space» E over GF(2), the action on F of gabg and gacg is
described by the following correspondences:

o 1 0 0
1 0 o0 o0

999> 1 1 ol?
1 0 1 1l
0o 0o 1 0
1 1 1 0

9= 0 0 o
0 1 1 1l

(For example, the first matrix shows that a®®* = b, %> = a, ¢**"? =
= abe, d**” = acd.)

ProoF. We know that F normalizes F. Using the relations (i)
and (iii), we get

(gabg) a(gabg) = gb(agaga) by = gb(gaa)bg — gbgbg = bgg = b .
It follows
(gabg) b(gabg) = a .
Since [gabg, ac] = 1, we get

(gabg) ac(gabg) = ac = b(gabyg) ¢(gabyg) .

Hence,

(gabg) c(gabg) = abe .



A block-theory-free characterization of M,, 145
Similarly, one computes
(gacg) a(gacg) = ¢, (gacg)c(gacg) = a and  (gacg)b(gacg) = abe .
Finally, using lemma (3.2), we get

(gacg) d(gacg) = tt=(gacg) d(gacg) ti=* = i(gabg)t~* di(gabg)t~* =
= t(gabg) abc(gabg)t—* = t(baabe)t—t = tet—* = bed ,

and similarly, we get
(gabg) d(gabg) = acd .

The lemma is proved.

4. A subgroup isomorphic to M,,.

(4.1) LEMMA. The involution ¢ normalizes F, and its action
on F is described by the following correspondence

0

0
0
1
0

(=R ]
S O O M

1ir

ProoF. Put « = (ab)’ and y = (ac)’. Consider the group
{#,y,i>E[E. The action of the involutions «, ¥, and ¢ on E are known.
Modulo E one gets (vi)t= (yi)!=2a2=y?=1492=1, and (xi)?=y.
Note that C(E) = E. It follows that <=,y,i) E/E = {x,i)E[E is a
dihedral group of order 8 with center (yF). Thus, modulo E we have
ixt = oy and iyi = y. This implies (EF)' = EF. Since ¢ € N(E), we
get i€ N(IF') as F and F are the only elementary abelian subgroups
of order 16 of EF.

Clearly, i(ab)i = ac, i(ac)t = ab, and i(gabg)i = ixi = xye,, and
i(gacg) i = iyi = ye, with elements ¢, e, EN F. In this way we
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have found the correspondence

0 1 0 0

1 0 0 0
7 —

a« p 1

y é 0 1l

with «, 8, y, 6 € GF(2).
The relations ¢2 =— 1 and (¢t)2 = 1 force that we get only the fol-
lowing two possiblities:

Case 1. 0 =0, =y=0=1.
Case 2. a=f=y=0=0.

By way of contradiction, we assume that we are in the first case.
We get

g — ’
1
|
r

0 0 0
0 0 1
1 1 0
0 1 1

=

and (g¢)® centralizes F. It is easy to see that there is no element in
{t> which acts on F in the same way as g¢ does. But g¢ centralizes i.
It follows that (g7, > C(F)/C(F) is a Sylow 3-subgroup of N(F)/C(F).
In particular, |<EF,t,g,iyC(F)/C(F)| is divisible by 32 We know
that <EF,t, g> C(F)/C(F) =~ A;, and therefore, by lemma (3.4), we see
that {EF,t,g,:>C(F)/C(F) is isomorphic to A; or X;. But 32 does
not divide 120. We have ruled out case 1. The lemma is proved.

(4.2) THEOREM. We have (ig)? =¢ and (H,t,g, h,?) is isomor-
phic to M,,.

Proor. For the action of 29 on F we get the correspondence

0 0 0 1

0 0 1 0
ig —

1 1 0 0

0 1 0 0|p
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It follows that (¢g)* acts in the same way as ¢ on I, and the order
of ig is either 6 or 12; remember that C(F) is elementary abelian of
order 2¢. Put N = N(<t))/<t) and C = C(t)/{t). Assume by way of
contradiction that the order of ¢g was 12. Then, ig<¢> is an element
of order 4 of C, since both ¢ and ¢ invert ¢ and A4; does not contain
elements of order divisible by 6. The involutions <> and g¢<{t) lie
in M\ C. Thus, it is not possible that i{¢> and g<t> would be conju-
gate in N. We know that (gh)® = (h¢)® = 1 holds. Hence, g, k, and ¢
are conjugate to each other in N((t)). This is a contradiction. We
have proved that the order of ig is equal to 6.
Since C(F') is elementary abelian, we have

1= ((1g)*t™)* = (ig)*t,
and therefore,
(ig)*=t¢.

Application of the result of [11] proves the theorem.

5. A subgroup isomeorphic to M.

(5.1) LEMMA. The involution j normalizes . We have the cor-
respondence

0 1 0 0
o0 0 o
) —

0 0 0

0 0 1 0}

Proor. The action of j, gabg, and gacg on E is known. Thus,
we get that j(gabg)j = gacg holds modulo E. Hence, j normalizes EF
which implies that j € N(F).

We have that j(ab)j = ac and j(ac)j = ab. Further, there are ele-
ments ¢,,¢,€ E N F guch that

j(gabg)j = (gacg)e, and  j(gacg)j = (gabg)e, .
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Therefore, we obtain the correspondence

0 1 0 0

1 0 0 0
j—

« p 0

Y d 1 Op

with e, §, v, d € GF(2).
The equations j2 = 1 and (jt)2 = 1 give precisely two possibilities:

Case 1. a=06=1, f=9=0.
Case 2. a=f=yp=0=0.

Suppose that we are in case 1. Then, we get

g —

- o o o
S H o o
o o

0
1
1
0 F
Thus, (jg)* centralizes F. Since no element of {¢> acts on F in the
same way as jg, we see that {(jg,t) C(F)/C(F) is a Sylow 3-subgroup

of N(#)/C(F). Now, the same argument as in the proof of (4.1) yields
a contradiction. The lemma is proved.

(5.2) THEOREM. We have (jg)? =1 and <%, ¢, g, h, 1, j> is iso-
morphic to M,,.

Proor. The previous result implies that the order of jg is either 2
or 4.

Assume by way of contradiction that the order of jg was 4. As
in the proof of (4.2) we put N = N(<t))/<t> and C = C(?)/<{t>. Then,
jg<{t> is an element of order 4 in C. The involutions j{¢> and g{t)
of N lie in M\ C. Hence, j<t) and g {¢> are not conjugate in N. We
know that (gh)® = (hi)® = (4j)®* = 1 holds, and therefore, the involu-
tions g, h, 4, and j are all conjugate in N(<t>). This is a contradiction.
We have shown that the order of jg is equal to 2. Now, application
of the result of [11] proves the assertion of the theorem.
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6. The identification of G with the Mathieu-group M,,.

(6.1) LemMMA. The involution k normalizes #. We have the cor-
respondence

k —

0
0 0
1
0

S <o o =

0
1
0
0 1|

Proor. As in the proof of (5.1) we get k(gabg)k = gbcg modulo E.
Hence, k normalizes EF and F. Thus,

0 1 0 0

1 0 0 0
k—

« B 1

iy 6 0 1

with o, g, y, 0 € GF(2).
The equations k% =1 and (kt)? =1 give precisely two possibili-
ties:

Case 1. a =0, f=y=0=1.
Case 2. a=f=y=0=0.

In case 1, we obtain that <{kg,t) C(F)/C(F) is a Sylow 3-subgroup
of N(F)/C(F). This produces a contradiction just as in the proof
of (4.1). The lemma is proved.

(6.2) THEOREM. We have (kg)2 =, and the group G is isomor-
phic to M,,.

ProoF. From (6.1) we get that the order of kg is either 6 or 12.
Assume by way of contradiction that the order of kg was 12. As
in (4.2) we denote by N the factor group N(<#))/<t)> and put
C = C(t)/{¢t). Then, kg {t) is an element of order 4 of C, since both %
and ¢ invert ¢. The involutions k(> and g<t) of N lie in N\C.
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Hence, k<t) and g¢<{¢) are not conjugate in N. We know that (gh)® =
= (h3)® = (4j)®* = (jk)* = 1 holds. Hence, g, &, ¢, j, and k are all con-
jugate to each other in N(<¢)). This is a contradiction which proves
that o(kg) = 6.

It is now easy to compute that (kg)* and ¢ act in the same way
on F. Using a similar argument as that in the proof of (4.2), we get
that (kg): = t.

We apply now the result of [11] and get that

<E’ g, h7 i7 7'7 kY ~M,,.

As |G| = |M,,|, the theorem is proved.
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