
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

CHEN SHU-JIN
Note on integral representation of holomorphic
functions in several complex variables
Rendiconti del Seminario Matematico della Università di Padova,
tome 81 (1989), p. 9-19
<http://www.numdam.org/item?id=RSMUP_1989__81__9_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1989__81__9_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Note on Integral Representation
of Holomorphic Functions in Several Complex Variables.

CHEN SHU-JIN (*)

1. Support function.

Integral representation of holomorphic functions of a single variable,
i.e. Cauchy formula

has two remarkable properties. Firstly, y the Cauchy kernel is holo-
morphic in x E D for fixed e aD and © - o 0 0, if C ~ x; the Cauchy
kernell/2ni(C - z) does not depend on the shape of D, so it is uni-
versal, that is true for any domain D with a sufficiently nice bound-
ary aD. Secondly, the value of holomorphic functions in domain D
is defined by its whole boundary value. The situation in several vari-
ables is quite different.

Let D be a bounded domain with piecewise smooth boundary
in Cn. C) is called a support function on D, if O(z, 0 for

any C E 8D and x E D. Especially: 1) if it is a continuously differen-
tiable funcation on D, then T(z, ~’) is called a continuously differen-
tiable support function, denoted by 2) if it is a holo-

morphic function of z E D for any fixed C E aD, and is continuously
differentiable at C E aD for any then O(z, C) is called a

(*) Indirizzo dell’A.: Xiamen University, Xiamen, Fujian, China.
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holomorphic support function in z, denoted by O(z, C; 3) if it
is a holomorphic function on D, then C) is called a holomorphic
support function, denoted by O(z, C) E A. Evidently a function C - z
is a holomorphic support function on any bounded domain D in Cl.

In the establishing of integral representation of holomorphic func-
tions in several complex variables, the key point is to find support
functions with good properties and wide use. Naturally, one wishes to
find support functions in Cn (n ~ 2 ) with first property as in space C’,
i.e. seek a holomorphic support functions with a universal property. But
it is false in the several complex variables case. In fact, J. J. Kohn
and L. Nirenberg [1] give an example of apseudoconvex domain, which
don’t possess any holomorphic support function in z. On the other

hand, the values of functions f (z) of several complex variables in the
domain D is sometimes determined by their values on partial boundary
faces.

Integral representations of several complex variables may be di-
vided into three kinds. 1) There is a continuous differentiable sup-
port function with a universal property, such that the integral repre-
sentation of holomorphic functions with integral kernel is defined by
these support functions, such as Cauchy-Fantappiè formula, Bochner-
Martinelli formula. In this case the support function as well as the
integral kernel does not depend on the shape of D. Although the
integral representation has a universal property, the integral kernel is
not holomorphic in z. 2) The domains with special boundary con-
struction, such as convex domains [2], [3], strictly pseudoconvex
domain [4], [5], [6], [7], classical domains [8], may use their boundary
character to construct the holomorphic support functions in z. 3) On
polyhedron domains in holomorphic domains of space Cn or Stein mani-
folds, there exists holomorphic support functions, for example integral
representations of polycylindrical domains, analytic polyhedrons, or
generalized polyhedron in [9], [10]. Moreover, values of holomorphic
functions in these domains are defined by their partial boundary values.

2. Integral representation of holomorphic functions in several com-
plex variables.

Now we obtain a general integral formula of holomorphic functions
in several complex variables, such that it contains the above three
kinds of integral representations.
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Given a B-harmonic mapping on the domain of holomorphy Q in
space Cn or Stein manifold: _

Let Da be a bounded domain in space with piecewise C1-boundary, y
denote 6,, = f z E 92: u(z) E = {z ua(z) E The inter-

sectionn 3« consists of a series of domains, let D be one of the do-
a = 1 

mains and Let X"(z) be holomorphic functions and Re X« = U"
or Im X" = Z7" on ~, then z) = X"(z) E A. By Hefer
theorem, there are holomorphic functions z) on domain of holo-
morphy such that

Let 9,. = z) E C, Dr = ...,1~~‘)t, here t denotes trans-

pose. For positive integer r, let

LEMMA 1. Let D be a bounded domain in Cn with piecewise smooth
boundary, and there are holomorphic support functions on z

The boundary of the domain D consists of a chain of slit space, and
this chain can be written as: 1) aD = 8(1):J 8(2):J ... where
as(o) _ S(0+1)7 0 -1, 2, ... , r -1; or 2) aD = S(l) D... where

be slit of Sc~~, and dimension of may be greater than dimen-
sion of at least one. Let be a (2m - r) dimensional boundary
chain, i.e. there is a (2m - r + 1) dimensional chain such that

= ~Scr~, and when C E D,
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Then for a holomorphic function f (z) in the closed domain D, When
z E D, we have

where 8(r) is a (2m - r) dimensional slit, - = + 1 denote orientation
of boundary surface.

PROOF. 1) For convenience, let = where is the
total of (0 - 1) dimensional simplex

where Since

On the other hand, since

It is easily seen that
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And what is more

From (6), (8) and (9), using Stokes theorem repeatedly we may
obtain

where Boy s = + 1 denote orientation of surface. Then formula (3)
follows from Lemma 3 in [3].

where 82 = ::f:: 1, then C is a (2n-1) dimensional cycle.
On the (r -1 ) dimensional simplex we can write

where -r) are differential forms, y the degree of d-r and d~ f is r
and m - r - 1 respectively. Thus

Therefore we obtain
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Applying (5) to left of (10), applying Cauchy-Fantappiè formula to
right of (10), we obtain (4).

LEMMA 2. If D is a bounded domain in the space Cn, its boundary
aD consists of chain of slit space. If this chain can be written as:

where is a (2n - P) dimensional boundary chain, i.e. there is

(2n - B + 1) dimensional chain such that aC1 = a(B). Assume
that there are holomorphic support functions

on o~l~-1~, denote kil’D = z). If there are continuously
differentiable support functions

where (N,6, ..., Np)t, which satisfy condition (3). Then for the

holomorphic function f(z) in a closed domain By when z E ~, we have
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where

PROOF. Since
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By a similar computation as in proving (4), we may obtain

By Stokes theorem, and substituting (15) into (14), it follows from
Lemma 1, that
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Hence

Using (17) repeatedly, we obtain

where E, E0a = + 1 denote the orientation of boundary surface and
the lower dimensional boundary surface respectively. By (16), we
may write (14) again as
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Then Lemma 2 is obtained by (19), y (18) and Lemma 1.
From Lemma 1 and Lemma 2, we have the following main the-

orem.

THEOREM. Let D be a bounded domain as defined in Lemma 1,
Ð a bounded domain as in Lemma 2. Then for the holomorphic func-
tion F(z, w) in the closed domain D E E aD,
C E we have
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COROLLARY 1. When F(z, w) = f (z) on D where D is a convex

domain, or a domain with piecewise smooth strictly pseudoconvex
boundaries, or classical domains, then from (20) we obtain the integral
representation of second kind in § 1.

COROLLARY 2. When F(z, w) = f(w) on where 0 is a poly-
hedron defined by B-harmonic mapping (specially holomorphic map-
ping) as in the begining of this section, then from (20) we obtain
integral representation of third kind in 4 1.

COROLLARY 3. When F(z, w) = f (w) on and = 1, l~ = 0,
then from (20) we obtain integral representation of first kind in § 1.
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