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Partial Differential Equations in Domains
with Self-Contact.

A. VISINTIN (¥)

ABSTRACT - Let 2 be a Euclidean domain, I'}, I, c Q be « smooth » surfaces
of codimension 1, and o: I, — I', be a « smooth » application. Here second
and fourth order partial differential equations are studied in £ under the
constraints

1) v(0) = v(a(0)) on Iy
and, for fourth order equations,
(2) Vo(o) = Vv(a(o)) on I ;

these yield special discontinuity conditions on I} and I: These con-
straints can correspond to non-stadard geometrical structures, which have
natural applications in engineering.

1. Introduction.
Let us consider a body occupying a domain QcR¥ (N>1); as-

sume that its state is characterized by a field »: 2 — R and that its
equilibrium is governed by a potential of the form

(1.1) () := f [¥,(v, Vo) — folde  VoeHYR),
Q2

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universitd di Trento,
38050 Povo, Trento.
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where ¥, is a convex function and fe L*(2) is a datum. This is a
typical situation; for instance, it occurs in thermostatics, in elec-
trostatics, and so on.

Now we consider a «smooth» (N — 1)-dimensional manifold
I'yc Q and a «smooth » injective application o: Iy — 2; then we in-
troduce the condition

@.2) o(x) = v(x(x)) a.e. on Ij.

This constraint corresponds to two basic situations in applications;
in both cases £2 will be regarded as imbedded in some R¥, with M > N.
In the first example each ae€l is connected with «(c) € a(l}) by
means of a highly conducting wire; in electrostatics this corresponds
to a short circuit. The second example corresponds to deforming £

Fig. 1. Two examples of 1-dimensional manifolds in 2 c R? with and without
boundaries, respectively. In each case I'y and I, are «identified » by means
of a map a: I'y > I.

in R¥ in such a way that the body intersects itself along [; more
precisely we congider a map 2: £2 — R such that

Voely, 2)=2(x=));
1.3
( Va,ye ANIRY a(ly), 2@ ==z2@y) onlyifz=y;
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2 can be regarded as a discontinuous parametrization of the set
2(2) c R¥, For instance M = 2, N=1, 2 =10,1[, Iy = {}}, «(}) = %,
and 2(2) is as in fig. 2a.

LQ(cR) - 2(2)(cRy)

(a) —@——o— 4— () = o(I})
I T,

b ———e
I I, O:\ 2(I) = #(I)
(¢) G————@ O — ()= 2(Iy)
I, T,

(@ ——&— &— () = 2(I)
r, T,

Fig. 2. The left-hand side of this figure shows examples of 0-dimensional
manifolds (I; and I}), namely points, included in 1-dimensional sets (),
namely segments. In the right-hand side the corresponding identifications
of I'y and TI'; are represented by means of deformations 2 in the ambient space R?;
cf. (1.3) and (1.6). In (a) and (b) the identifications are of 0-order; in (c)
and (d) they are of 1st-order. In (a) and (d) I}, I,c Q;in (b) I, c 2, I, c292;
in (¢) (peridicity conditions) I'y, I, c 99.

Under suitable coerciveness assumptions, F has a minimum under
the constraint (1.2). In section 2 we study the corresponding Euler-
Lagrange equations; in particualr a discontinuity condition holds on
I':.= T,V «(I).

Let us now consider a funectional of the form

(1.4) F(v) :— f [Wy(v, Vo, Av) — folde, VoeH}Q),
2
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still with ¥, convex function and f e L*(£2) given. Here we can choose
between two constraints: either the 0-order identification (1.2), or the
1st-order one

(1.8) v(6) = v(«(o)), Vo(o) = Vo(a(s)) on I3.

The latter corresponds, for instance, to a deformation ze Wv1(Q)
which fulfills (1.3) and such that

(1.6) Vz(o) = Vz(a(o)) on I3.

Under each of the constraints (1.2) and (1.5), 7' has a minimum. In
section 3 we study the corresponding Euler-Lagrange conditions; in
particular in each case two discontinuity conditions arise on I

Of course several generalizations could be taken into account.
For instance one could consider non-differentiable convex funections
Y.’s; this would lead to variational inequalities. One could replace
with

1.7) Ew) := E®) —~fgv dz YveHYRQ)
r,

with g e L*(I}), and similarly for F; this would yield different jump
conditions on I. Also the evolution case ou/dt + 05(u) = 0 (with
Z = F or F) could be easily treated. And so on.

The developments of the present paper are just simple extensions
of some classical results of [2], and do not convey any essentially
new mathematical idea. However they extend the range of applica-
tions of boundary value problems to cases which seem to be of prac-
tical interest, such as the heat (or electric) diffusion in lattices, or
the similar.

2. Second order equations.

Let 2 be a domain of R¥ (N>1), and I;c Q be a Lipschitz,
(¥ — 1)-dimensional manifold, possibly with boundary; we endow I}
with the (I —1)-dimensional Hausdorff measure. At almost every
o€ I’ one can fix a unit normal vector vr (c); we assume that locally
all the yr, point toward the same side of I7.
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Let a: I — Q be an injective, Lipschitz-continuous map; then
also I,:= a(l}) is a Lipschitz, (N — 1)-dimensional manifold, which
we endow with the (¥ —1)-dimensional Hausdorff measure. Also
here we can introduce a field »r, of unit normal vectors, with the
same restriction as above; however we do not need any relationship
between the orientation of »r(c) and that of »r (x(c)). We assume
that I' I, =0, just for convenience of presentation. We set
I':=Irvr,.

We introduce

(2.1) Vo 1= {veH},(.Q): v(0) = v(x(0)) a.e. on I}};

this is a nonlocal Hilbert subspace of H({); more precisely V, is
the closure of

(2.2) Dy :={ve D(R): v(o) = v(x(o)) on I}
with respect to the topology of H(Q).

Let @,:R—>RU{+oco} and @,:R¥ >RU {+ oo} be proper,
lower semicontinuous, convex functions such that

(2.3) Dy(£)>Cifé[*— O, VEER
(2.4) D,(£)> Ciler— €, VEERY

(04, ..., C4: constants > 0). We assume that @, and P, are Giteaux-
differentiable, and denote their derivatives by ¢, and ¢, We fix an.
fe L) and set

(2.5) B(v) :— f [By(v) + By(Vo) — folde  Voe HYQ).
2

Under the previous assumptions, there exists at least one ueVy
such that

(2.6) Eu)<E@w) VoeV,,

and this condition is equivalent to the variational equation

(2.7) f[qao(u)v + ¢(Vu) Vo — folde =0 VveVs;
2
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in turn this yields
(2.8) @o(w) — Vogo(Vu) = f  in D'(Q\T).

Now we want to deduce the conditions fulfilled by % on I
We denote by zp: 2 — I" the (possibly multivalued) projection
onto I". For any «smooth » function w: 2 — R and almost any ¢ I’
we set
(vrw)(o) := lim w»r(mrz)w(®),

Qsz—>0
£(z—0) - vr(npz) >0

[rw] (0) := (Fw)(0) — (rw)(0) ,

when both limits exist. Notice that the signs of these quantities are
independent of the orientation of »,.

Let us fix any open subset B, of I such that its closure is dis-
joint from the boundary of I3, if existing, and let us set B:= B, U
U «(B,); then let us take any v € D(£2) such that » = 0 on I\ B.
For a moment let us assume that ¢,(Vu) is so smooth that the Green
formula can be applied on both sides of I'; this restriction will be re-
moved later on. Thus we have

2.9) f @u(Va)- Vo do = f 9(Vat)- Vo dw =
(2]

oN\r

= —fV'(pl(Vu) vdx —f|[vr'¢p1(Vu)]] (o) v(o)do .

oNr B

By (2.8), ..., (2.9) we get

2.10) [Br-gu(V0)] (@) o(0)do = 0.

B

As o was assumed to be Lipschitz-continuous, its Jacobian determi-
nant |Va| is in L>(I}); hence

(2.11) f [pr@:(V)] (o) v(0) do = f [pr (V)] («(0)) v((0)) [ Ver(o)|do .

a(B,) B

Now let assume that v € D2(£2), namely v(s) = v(x(c)) on I'; then (2.10)
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becomes,

(2.12) J' {Pr o1 (V)] (0) + [rr- gu(Va)] (2(0)) | Vex(o) } o(0) do = 0,
By

whence, as B; and v are generic, we finally get

(213)  [rr- @i (V)] (o) + [r-¢:(V)] (a(0))|Va(0)| = 0, on I3.
So far we assumed the solution » to be regular. However it is
possible to deduce a more rigorous formulation of the discontinuity

condition (2.13), under further assumptions on the data. Let us re-
quire that

(2.14) lpo(£)|<Cslé| + G VEER
(2.15) lp(€)| < Col€] + Cs  VEERY

(Cs, ..., Cs: constants > 0). Then by comparison in (2.8) we get
(2.16) o(Vu) e L¥(2)Y, V- (Vu)e L2(Q);

hence, cf. [2, chapter 2], [1; Appendix 4],

(2.17) vir@(Vu)e H¥(I) (= HYIY)) .

Now let us also assume that

(2.18) |Vee| € Wree(I) ;
then
(2.19) v (V)| V| € H-4(TY)

and the previous Green formulae hold, if the integrals are replaced
by the proper duality pairings. Thus we can conclude that (2.13) ef-
effectively holds, in the sense of H-¥(I}).

The previous results are summarized in the following statement:

PrOPOSITION 1. The functional F has at least one minimum in
V«, and the minimum condition is equivalent to the variational equa-
tion (2.7). This also corresponds to the equation (2.8) and to a weak
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form of the discontinuity condition (2.13). Under the further assump-
tions (2.14), (2.15), (2.18), the condition (2.13) holds in the sense of

REMARK. Set

(2.20)  J(v, p) := E(v) + g-1ar, <p(o), v(c) — ”(“(0'))>Hi(1\)
VoeHyR), Vue H¥(IY) .

Let u € V, be a minimum of the functional ¥ in V,, and set, cf. (2.13),

Mo) == [r- (V)] (0) = — [v-@u(Va)] (x(0)) | Vex(0)]

in the sense of H—#(I}) (hence not a.e. on I3!). Then, as it is easy
to check by applying the Green formulae as above, (u, 1) € Hy(2)x
x H-¥(I) is a stationary point of J. That is A is the Lagrange mul-
tiplier for the functional E corresponding to the constraint (1.2).

3. Fourth order equations.
Let 2, «, I' be as in section 2. We set

(3.1) W := {ve Hy(Q): v(c) = v(x(0)) a.e. on I3},
(3.2) W, = {ve Hy(Q): v(0) = v(x(0)), Vov(s) = Vo(x(0))
a.e. on I3};

both are nonlocal Hilbert subspaces of H2({2); more precisely, recal-
ling (2.2) and setting

(3.3) D) := {veDR): v(c) = v(x(0)), Vv(6) = Vo(x(0)) on I3},

W is the closure of D:(£2) with respect to the topology of H?*L2),
for ¢ = 0,1. The exponents 0 and 1 indicate the order of the deriv-
atives which are «identified » by e.

Besides @, and &, (introduced in section 1), let also @,: R >R U
U {4 oo} be a proper, lower semi-continuous convex function such
that

(3.4) Dy(8)> Olé*— Oy VEER



Partial differential equations in domains with self-contact 45

(C,, Cyo: constants > 0). We assume that also @, is Gateaux-differen-
tiable and denote its derivative by ¢,. We set

(3.5) F(v) :=f[d5o(v) + D,(Vv) 4 Dy(4v) — foldz Vve HyRQ).
o]

Obviously, for ¢ = 0,1, there exists at least one u,e W: such that
(3.6) Fu)<F@w) VoeW;
this condition is equivalent to the variational equation

B [pow)v + gu(Vu)- Vo + go(du) dv— fulds =0 Voe W,
0

which yields
(3.8) Po(ts) — V- @u(V) + Ago(du;) =F  in D(\T).

Also here we want to deduce the conditions fulfilled by u; on I. To
this aim, let us fix any open subset B, of I such that its closure does
not intersect the boundary of I, if existing, and let us set B := B, U
U a(B,;); then let us take any ve D(2) such that v =0 on I\ B.
For a moment we also assume that ¢,(Vu) and ¢,(4u) are so smooth
that the Green formulae can be applied on both sides of I'; thus we
have

(3.9)  [lg:(Vu)- Vo + gy(duw) Av)dw = [[g:(Vu)- Vo + gu(Adu) Ao dw =
2

o\r

= — [V @u(Va)lo + [Vgi(4w)]- Vo} do —

o\r

—[pr-p(V0)] (@) (0) do — [[or- pu(d0)] (0)- Vo(o) o
B B

(3.10) — f [Veu(du)]- Vo do = J‘ Apa(Au)vdo -+ J' [ Veu(Au)] (0)9(c) do;

oN\I o\r B

we also notice that a.e. on I" Vu cannot be discontinuous across [
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for Au e L*Q); hence

(3.11) [vr@(Vw)](0) =0 ae. on I'.
By assemblying (3.9), ..., (3.11) we get

(312) [[gu(Va)- Vo + gy(du) do] dz = [[— V-gy(Va) 4 Agy(du)]vdo+
2

o\r

+- f {[rr- Vou(4u)] (o) v(0) — [vr ps(Aw)] (0)- Vo(o)} do .
B

By (3.8) and (3.12), the integral over B vanishes; hence, using a
transformation formula similar to (2.11), we get

(313)  [{Dr Ve dw] (@) v(o) +
B,

+ [vr- Vou(4u)] (a(0)) v(x(0)) V(o) |} do +
—I—I{[[vﬂp,(du)]] (0): Vo(0) + [vr@a(4w)] (x(0)) - Vo(ex(0)) | Ver(o) [} do = 0 .
B,
Now let us distinguish between u, and #,. For u, we assume that

v € D;(2), namely v(0) = v(x(o)) on I; instead Vo(o) and Vo(x(c))
are independent on I;. Thus, as B, and v are arbitrary, we get

(3.14) I['VI-'V(p,(Au)]] (o) + |[vp' ch,(Au)]] (oc(o'))[V(x(o')] =0 on I} ’
(3.18)  [vroi(Vu)](0) = [vrpa(4u)] (x(0))|[Va(o)| =0 on I}.

For u, we assume that ve€ D,(2), namely v (¢) = v(x(0)), Vo(c)=
= Vo(a(o)) on I. Thus we get (3.14) and

(3.16)  [vrou(du)] (o) + [vr@.(4u)] («(0))|Va(o)| =0 on I3.

Also here it is possible to precise the discontinuity conditions,
under further assumptions on the data. Let us assume that (2.14)
holds and that

(3.17) I(P1(51) - ‘Pl(‘fs)l < 011]51 - le V&, & eRY,
(3.18) [P2(&)| < Ona)]| + Ois V&eR
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(Cyay ...y C13: constants > 0). Then by comparison in (3.8) we get
(3.19) Pa(du),  Apy(Au) € I¥(Q) ;

hence (3.14) holds in H¥(I}), (3.15) and (3.16) in H¥(I}); this justifies
the previous Green formulae.
Thus we have the following result:

PropPOSITION 2. For ¢ = 0,1 the functional F has a minimum in
W, and the minimum condition is equivalent to the variational equa-
tion (3.7). This also corresponds to the equation (3.8) and to the
diseontinuity conditions (3.14) and (3.15) for ¢+ = 0, to (3.14) and (3.16)
for ¢ = 1. Under the further assumptions (2.14), (3.17) and (3.18),
the conditions (3.14) holds in the sense of H¥(I}), and the condi-
tions (3.15), (3.16) hold in the sense of H¥(I}).

REMARKS. (i) Set
(3.20)  I’(v, py) := F(v) +f.“1(0) [v(0) — v(x(0))] do
" Vu e HXQ), Y € L¥TY)
(8.21)  IYv, pay o) := I°(v, py) +f.”2(‘7)' [Vo(o) — Vo(x(0))] do
r,

Vu € H¥(Q), Vu, € L¥(I1), Vus,e L¥(I1)3.

For i+ = 0,1, let w, be a minimum of the functional F in Wi, and
set, cf. (3.14) and (3.16),

(3.22)  M(0) := [rr- Vou(4w)] (0) = — [rr- Vps(A0)] (a(0)) | Va(0)|

a.e. on I,

(3.23) Ay(0) := [vr pa(4u)] (0) = — [vr @a(4u)] («(0))|Ve(0)]
a.e. on 1.

Then, as can be checked by applying the Green formulae as above,

(wy, 71) € H2(2) X H¥(I) and (uyy Ay Ag) € H¥(Q) X H¥(I7) x HY(I)
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are stationary points of I° and I, respectively. That is 4, and (4,, 4;)
are the Lagrange multipliers for the functional F corresponding to
the constraint (1.2) and (1.2), (1.5), respectively.

(ii) So far we assumed I3, I c 2; however one can also deal
with Iy, I ¢ Q (closure of ©2). For instance in fig. 2b Iy c Q, I, c 09Q;
in fig. 2¢ (periodicity conditions) I3, I;c 0. The developments of
sections 2 and 3 hold also here; for any function &, it is sufficient
to replace [vr&] with »7 on I'c 0, if v, is oriented outward .

REFERENCES

[1] C. BaroccHr - A. CarELO, Variational and gquasivariational inequalities,
applications to free boundary problems, Wiley, Chichester (1983).

[2] J. L. Lions - E. MAGENES, Non-homogeneous boundary value problems
and applications, vol. I, Springer, Berlin (1972).

Manoscritto pervenuto in redazione il 16 gennaio 1988.



