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Partial Differential Equations in Domains
with Self-Contact.

A. VISINTIN (*)

ABSTRACT - Let Q be a Euclidean domain, r1, r2 be « smooth » surfaces
of codimension 1, and a : r2 be a « smooth &#x3E;&#x3E; application. Here second
and fourth order partial differential equations are studied in SZ under the
constraints

and, for fourth order equations,

these yield special discontinuity conditions on r1 and r2: These con-

straints can correspond to non-stadard geometrical structures, ’which have
natural applications in engineering.

1. Introduction.

Let us consider a body occupying a domain 92 c RN (N ~ 1 ) ; as-

sume that its state is characterized by a field v : S~ --? R and that its

equilibrium is governed by a potential of the form

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Trento,
38050 Povo, Trento.
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where fi is a convex function and f E is a datum. This is a

typical situation; for instance, it occurs in thermostatics, in elec-

trostatics, and so on.
Now we consider a  smooth &#x3E;&#x3E; (N - I )-dimensional manifold

r1 c D and a ((smooth * injective application a: F1 -+ S~; then we in-
troduce the condition

This constraint corresponds to two basic situations in applications;
in both cases D will be regarded as imbedded in some R~, with 
In the first example each is connected with E by
means of a highly conducting wire; s in electrostatics this corresponds
to a short circuit. The second example corresponds to deforming SZ

Fig. 1. Two examples of 1-dimensional manifolds in D c R2, with and without
boundaries, respectively. In each case 1’1 and r2 are ((identified * by means
of a map x: r2.

in RM in such a way that the body intersects itself along r1; more
precisely we consider a map z : S~ --~ RM such that
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z can be regarded as a discontinuous parametrization of the set

RM. For instance if = 2, N = 1, Q = ]0,1[, FI = (§), = i,
and z(Q) is as in fig. 2a.

Fig. 2. The left-hand side of this figure shows examples of 0-dimensional
manifolds (1’1 and r2), namely points, included in 1-dimensional sets (Q),
namely segments. In the right-hand side the corresponding identifications
of T1 and T2 are represented by means of deformations z in the ambient space R2 ;
cf. (1.3) and (1.6). In (a) and (b) the identifications are of 0-order; in (c)
and (d ) they are of 1 st-order. In (a) and (d) Fl, Q; in (b ) Fl c S2, 1~2 c 
in (c) (peridicity conditions) F,, 1’2 c aS2.

Under suitable coerciveness assumptions, E has a minimum under
the constraint (1.2). In section 2 we study the corresponding Euler-
Lagrange equations; in particualr a discontinuity condition holds on
T := T1 U a(T1). 

Let us now consider a functional of the form
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still with P2 convex function and f e L2(Q) given. Here we can choose
between two constraints: either the 0-order identification (1.2), or the
1 st-order one

The latter corresponds, for instance, to a deformation z E 
which fulfills (1.3) and such that

Under each of the constraints (1.2) and (1.5), 1~ has a minimum. In

section 3 we study the corresponding Euler-Lagrange conditions; in
particular in each case two discontinuity conditions arise on 1~.

Of course several generalizations could be taken into account.

For instance one could consider non-differentiable convex functions

f;’s ; this would lead to variational inequalities. One could replace E
with

with g E L2(rl), and similarly for .~’ ; this would yield different j ump
conditions on Also the evolution case 8uf8t + 8E(u) = 0 (with
~ = E or F) could be easily treated. And so on.

The developments of the present paper are just simple extensions
of some classical results of [2], and do not convey any essentially
new mathematical idea. However they extend the range of applica-
tions of boundary value problems to cases which seem to be of prac-
tical interest, such as the heat (or electric) diffusion in lattices, or
the similar.

2. Second order equations.

Let Q be a domain of and rl c Q be a Lipschitz,
(N-1)-dimensional manifold, possibly with boundary; we endow r1
with the Hausdorff measure. At almost every
a E 7’i one can fix a unit normal vector ’Pr1(a); we assume that locally
all the ’J’r1 point toward the same side of 7~.
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Let be an injective, Lipschitz-continuous map; then
also F2:== a(F1) is a Lipschitz, (N -I)-dimensional manifold, which
we endow with the (N- )-dimensional Hausdorff measure. Also
here we can introduce a field vr, of unit normal vectors, with the
same restriction as above; however we do not need any relationship
between the orientation of vrl (o’) and that of vr$ (a(a’)) . We assume
that r1 r’1.1~’2 = 0, just for convenience of presentation. We set

r := r1 U r2.
We introduce

this is a nonlocal Hilbert subspace of more precisely TTa is
the closure of

with respect to the topology of 
Let be proper,

lower semicontinuous, convex functions such that

... , °4: constants &#x3E; 0). We assume that 00 and 01 are G&#x26;teaux-

differentiable, and denote their derivatives by (po and qJ1 We fix an .
f E L2(S~) and set

Under the previous assumptions, there exists at least one u E Ya
such that

and this condition is equivalent to the variational equation
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in turn this yields

Now we want to deduce the conditions fulfilled by u on 7~.
We denote by Q - 1’ the (possibly multivalued) projection

onto T. For any « smooth » function w: Q - R and almost any a e r
we set

when both limits exist. Notice that the signs of these quantities are
independent of the orientation of vr .

Let us fix any open subset Bl of 1~1 such that its closure is dis-

joint from the boundary of F1, if existing, and let us set B := Bl U
U oc(j6i); then let us take any v E D(Q) such that v = 0 on 
For a moment let us assume that qi(Vu) is so smooth that the Green
formula can be applied on both sides of 7~; this restriction will be re-
moved later on. Thus we have

By (2 . 8 ), ... , (2 . 9 ) we get

As a was assumed to be Lipschitz-continuous, its Jacobian determi-
nant is in hence

Now let assume that namely
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becomes,

whence, as Bl and v are generic, we finally get

So far we assumed the solution u to be regular. However it is

possible to deduce a more rigorous formulation of the discontinuity
condition (2.13), under further assumptions on the data. Let us re-

quire that

(05, ... , constants &#x3E; 0 ). Then by comparison in (2.8) we get

hence, cf. [2, chapter 2], [1; Appendix 4],

Now let us also assume that

then

(2.19)

and the previous Green formulae hold, if the integrals are replaced
by the proper duality pairings. Thus we can conclude that (2.13) ef-
effectively holds, in the sense of H-i(r1).

The previous results are summarized in the following statement:

PROPOSITION 1. The functional E has at least one minimum in

V,,,, and the minimum condition is equivalent to the variational equa-
tion (2.7). This also corresponds to the equation (2.8) and to a weak
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form of the discontinuity condition (2.13). Under the further assump-
tions (2.14), (2.15), (2.18), the condition (2.13) holds in the sense of
H-1/2(r1).

REMARK. Set

Let u e 7~ be a minimum of the functional E in and set, cf. (2.13),

in the sense of (hence not a.e. on 7~!). Then, as it is easy
to check by applying the Green formulae as above, (~c, Â) e .H~o(S~) X

is a stationary point of J. That is A is the Lagrange mul-
tiplier for the functional E corresponding to the constraint (1.2).

3. Fourth order equations.

Let S~, ocy h be as in section 2. We set

both are nonlocal Hilbert subspaces of H2(S~) ; more precisely, recal-
ling (2.2) and setting

Wa is the closure of 9)’ a (92) with respect to the topology of H2(Q),
for i = 0,1. The exponents 0 and 1 indicate the order of the deriv-
atives which are  identified » by a.

Besides 0,, and 0, (introduced in section 1), let also Ø2: 
u {+ oo} be a proper, lower semi-continuous convex function such
that



45

(Cay Clo: constants &#x3E; 0). We assume that also ø2 is Gateaug-differen-
tiable and denote its derivative by f{J2 . We see

Obviously, for i = 0, 1, there exists at least one u; e Wa such that

this condition is equivalent to the variational equation

which yields

Also here we want to deduce the conditions fulfilled by u2 on 1~’. To

this aim, let us fix any open subset B1 of 1’1 such that its closure does
not intersect the boundary of r1, if existing, and let us set B : = B1 u
U a(Bi); then let us take any v E such that v = 0 on 
For a moment we also assume that and are so smooth
that the Green formulae can be applied on both sides of 1’; thus we
have

we also notice that a.e. on T Vu cannot be discontinuous across F,
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for hence

By assemblying (3.9 ), ... , (3.11) we get

By (3.8) and (3.12), the integral over B vanishes; hence, using a
transformation formula similar to (2 .11 ), we get

Now let us distinguish between uo and ui. For uo we assume that
v E namely = v(a(a)) on T’1; instead and 
are independent on Thus, as Bl and v are arbitrary, we get

For w, we assume that v E 0’(D), namely (a) = Vw(u) =
- on Thus we get (3.14) and

Also here it is possible to precise the discontinuity conditions,
under further assumptions on the data. Let us assume that (2.14)
holds and that
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(011, ... , Cl~ : constants &#x3E; 0). Then by comparison in (3.8) we get

hence (3.14) holds in (3.15) and (3.16) in this justifies
the previous Green formulae.

Thus we have the following result:

PROPOSITION 2. For i = 0,1 the functional F has a minimum in
W~, and the minimum condition is equivalent to the variational equa-
tion (3.7). This also corresponds to the equation (3.8) and to the
discontinuity conditions (3.14) and (3.15) f or i = 0, to (3.14) and (3.16)
f or i = 1. Under the further assumptions (2.14), (3.17) and (3.18),
the conditions (3.14) holds in the sense of and the condi-
tions (3.15), (3.16) hold in the sense of Ht(r1).

REMARKS, (i) Set

For i = 0,1, let ~c1 be a minimum of the functional .F’ in W~, and
set, cf. (3.14) and (3.16),

Then, as can be checked by applying the Green formulae as above,
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are stationary points of 1° an d respectively. That is ~1 and (ÂI, Âs)
are the Lagrange multipliers for the functional .F’ corresponding to
the constraint (1.2) and (1.2), (1.5), respectively.

(ii) So far we assumed however one can also deal
with c D (closure of S~). For instance in fig. 2b 1’1 .1~~ c 8Q ;
in fig. 2c (periodicity conditions) c ôQ. The developments of
sections 2 and 3 hold also here; for any function ~, it is sufficient
to replace wr ~~ With vr on Tc if vr is oriented outward D.
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