Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

O. M. Di Vincenzo
 Derivations and multilinear polynomials

> Rendiconti del Seminario Matematico della Università di Padova, tome 81 (1989), p. 209-219

http://www.numdam.org/item?id=RSMUP_1989__81__209_0
© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Derivations and Multilinear Polynomials.

O. M. Di Vincenzo (*)

Let R be a ring and $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a multilinear homogeneous polynomial in n noncommuting variables.

We recall (see [7]) that R is an f-radical extension of a subring S if, for every $r_{1}, r_{2}, \ldots, r_{n} \in R$, there is an integer $m=m\left(r_{1}, r_{2}, \ldots, r_{n}\right) \geqslant 1$ such that $f\left(r_{1}, \ldots, r_{n}\right)^{m} \in S$.

When R is f-radical over its center $Z(R)$ we say that f is power central valued.

Rings with a power central valued polynomial have been studied in [10]. Results on f-radical extensions of rings have been obtained in [1] and [7] also.

Let now d be a nonzero derivation on R; in this paper we will study the case in which there exists a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ such that $d\left(f\left(r_{1}, \ldots, r_{n}\right)^{m}\right)=0$ for all $r_{i} \in R$ with $m=m\left(r_{1}, \ldots, r_{n}\right) \geqslant 1$. This is equivalent to say that R is f-radical over $S=\{x \in R: d(x)=0\}$.

Notice that when $f=x_{1}$ and R is a prime ring with no nonzero nil ideals then, by [6], the above condition forces R to be commutative. Moreover, if d is an inner derivation on R, a prime ring with no nonzero nil right ideals, then in [4] it was proved that f is power central valued and R satisfies the standard identity of degree $n+2$, $S_{n+2}\left(x_{1}, \ldots, x_{n+2}\right)$ provided an additional technical hypothesis also holds.

This is related to the following open question: «Let D be a division ring and f a polynomial power central valued in D, then is D finite dimensional over its center?" (see [10]).
${ }^{(*)}$ Indirizzo dell'A.: Università degli Studi della Basilicata, Istituto di Matematica, via N. Sauro 85, 85100 Potenza.

In [4] and [10] it is proved that if R is a prime ring with no nonzero nil right ideals and f is power central valued in R, then R satisfies a polynomial identity; the proof in [4] and [10] that R is P.I. holds under the assumption that f is not an identity for $p \times p$ matrices in char. $p>0$. Hence, to apply this results in our paper we assume this extra hypothesis:
(A) If char $R=p \neq 0$ then f is not an identity for $p \times p$ matrices in characteristic p.

The main result of this paper is the following.
Theorem 1. Let R be a prime ring, char $R \neq 2$, with no nonzero nil right ideals and let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear homogeneous polynomial. Suppose that d is a nonzero derivation on R such that, for every $r_{1}, \ldots, r_{n} \in R$, there exists $m \in N, m=m\left(r_{1}, \ldots, r_{n}\right)$ with

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)^{m}\right)=0
$$

If hypothesis (A) holds, then $f\left(x_{1}, \ldots, x_{n}\right)$ is power central valued and R satisfies $S_{n+2}\left(x_{1}, \ldots, x_{n+2}\right)$.

Moreover if $f\left(x_{1}, \ldots, x_{n}\right)$ is not a polynomial identity for R and $d(Z(R)) \neq 0$ then $Z(R)$ is infinite of characteristic $p \neq 0$.

As a consequence we will prove the following result of independent interest on Lie ideals (see [3]).

Theorem 2. Let R be a prime ring with no nonzero nil right ideals, char $R \neq 2$, and let U be a noncentral Lie ideal of R.

Suppose that d is a nonzero derivation on R such that for every $u \in U$ there is $m=m(u) \geqslant 1$ with $d\left(u^{m}\right)=0$. Then R satisfies $\mathbb{S}_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Throughout this paper we will use the following notation:

1) R will always be an associative algebra over C, where C is a commutative ring with 1.
2) $f\left(x_{1}, \ldots, x_{n}\right)$ will denote a multilinear homogeneous polynomial in n non commuting variables, and we will assume that

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n}+\sum \alpha_{\pi} x_{\pi(1)} x_{\pi(2)} \ldots x_{\pi(n)}
$$

where $\alpha_{T} \in C$ and $1 \neq \pi \in S_{n}$ the symmetric group on $\{1, \ldots, n\}$.
3) $f\left(x_{1}, \ldots, x_{n}\right)$ will often be abbreviated as f or $f\left(x_{i}\right)$.
4) $Z(R)$ will always denote the center of R.
5) d will be a nonzero derivation on R which is C-linear. (i.e. for $c \in C, r \in R, d(c r)=c d(r))$.
6) $S=\{x \in R: d(x)=0\}$.

Finally, in all that follows, unless stated otherwise, we will assume that R is a prime ring, char $R \neq 2$, and R is f-radical over S. Furthermore we will assume that hypothesis (A) holds.

We now can begin a series of reductions necessary to prove our result.

Lemma 1. If R is a division ring then $f\left(x_{1}, \ldots, x_{n}\right)$ is power central valued.

Proof. Let $0 \neq x \in S=\{r \in R: d(r)=0\}$, then we have

$$
0=d(1)=d\left(x x^{-1}\right)=d(x) x^{-1}+x d\left(x^{-1}\right)=x d\left(x^{-1}\right)
$$

which implies $d\left(x^{-1}\right)=0$, i.e. $x^{-1} \in S$, so that S is a proper subdivision ring of R. Then, by [7, Theorem 1], f is power central valued.

For the next lemma we need to recall the following:
Definition 1. We say that $a \in T(R)$ if for all r_{1}, \ldots, r_{n} in R there exists an integer $m=m\left(a, r_{1}, \ldots, r_{n}\right) \geqslant 1$ such that $a f\left(r_{1}, \ldots, r_{n}\right)^{m}=$ $=f\left(r_{1}, \ldots, r_{n}\right)^{m} a$ (see [4]).

Definition 2. Let x be a quasi regular element of R, i.e. there exists $x^{\prime} \in R$ such that $x+x^{\prime}+x x^{\prime}=x+x^{\prime}+x^{\prime} x=0$.

Notice that if R has a unit element 1 then $1+x$ is invertible and $(1+x)^{-1}=1+x^{\prime}$.

Let $\varphi_{x}: R \rightarrow R$ be the map defined by

$$
\varphi_{x}(r)=r+x r+r x^{\prime}+x r x^{\prime}
$$

φ_{x} is an automorphism of R, we write $\varphi_{x}(r)=(1+x) r(1+x)^{-1}$ and we say that $a=1+x$ is formally invertible.

We also write $r(1+x)$ for $r+r x$ and $(1+x) r$ for $r+x r$.
Lemma 2. If $a \in R$ is invertible, or formally invertible, then there exists $z \in T(R)$ depending on a such that $d(a)=a z$.

Proof. If $r_{1}, \ldots, r_{n} \in R$ let $m \geqslant 1$ be such that $f\left(r_{i}\right)^{m}$ and $f\left(a r_{i} a^{-1}\right)^{m}$ are in S. Thus $d\left(a f\left(r_{i}\right)^{m} a^{-1} a\right)=d(a) f\left(r_{i}\right)^{m}$ and also $d\left(a f\left(r_{i}\right)^{m} a^{-1} a\right)=$ $=a f\left(r_{i}\right)^{m} a^{-1} d(a)$.

Therefore $a^{-1} d(a)=z \in T(R)$ and so $d(a)=a z$.
Lemma 3. If $T(R)=Z(R)$ and $J(R)$, the Jacobson radical of R, is non zero then R is commutative.

Proof. If $x \in J(R)$ then $1+x$ is formally invertible. By Lemma $2 d(x)=d(1+x)=z+z x$ for some $z \in T(R)=Z(R)$, and so $d(x)$ commutes with x; that is $d(x) x=x d(x)$ for all $x \in J(R)$. Since R is prime, by [6, Lemma], R is commutative.

Lemma 4. Suppose that $T(R)=Z(R)$. If $t \in R$ is such that $t^{2}=0$ then $d(t)=0$.

Proof. Since $1+t$ is formally invertible, by Lemma 2, one has $d(t)=d(1+t)=z+z t$ for some $z \in T(R)=Z(R)$.

But $\quad 0=d\left(t^{2}\right)=t d(t)+d(t) t=2 z t . \quad$ Since char $R \neq 2 \quad z t=0$. Moreover since $z \in Z(R)$, either $z=0$ or z is not a zero divisor in R. In any case $d(t)=0$.

Lemma 5. Let R be without nonzero nil right ideals. If there exists a non trivial idempotent $e=e^{2} \neq 0,1$ in R then f is power central valued.

Proof. Let A be the subring of R generated by the elements of square zero. A is invariant under all automorphism of R. Since R is a prime ring with nontrivial idempotents than, by [9, Theorem], A contains a nonzero ideal I of R. On the other hand by [4, Theorem] either f is power central valued in R or $T(R)=Z(R)$. In this last. case, by Lemma $4, d(x)=0$ for all $x \in A$ and so $d(I)=0$.

Now, since $0=d(I) \supseteq d(I R)=I d(R)$, by the primeness of R we obtain $d(R)=0$ which is a contradiction.

In the next Lemma we examine the case when R is primitive.
Lemma 6. If R is primitive then f is power central valued.
Proof. Let V be a faithful irreducible right R-module with endomorphism ring D, a division ring. By Lemma 1 and Lemma 5 we may assume that V is infinite dimensional over D and R does not contain a non trivial idempotent. By [8] this says that R does not have nonzero linear transformations of finite rank.

We will prove that these assumptions lead to a contradiction.
Now, (see [1, Lemma 7]), C acts on V and we may assume that both R and $S=\{x \in R: d(x)=0\}$ act densely on V over D.

Let now $v r=0$, for some $v \in V$ and $r \in R$, and suppose that $v d(r) \neq 0$.

Since r has infinite rank there exist $w_{1}, \ldots, w_{n} \in \operatorname{Im} r$ such that $v d(r), w_{1}, \ldots, w_{n}$ are linearly independent, and let $v_{1}, \ldots, v_{n} \in V$ such that $w_{i}=v_{i} r, 1 \leqslant i \leqslant n$.

Now by the Jacobson density theorem there exist $a_{1}, \ldots, a_{n} \in R$ such that $w_{i} a_{i}=v_{i+1}(i=1, \ldots, n \bmod n), w_{i} a_{j}=0$ otherwise, and $v d(r) a_{1}=v_{2}, v d(r) a_{i}=0(i=2, \ldots, n)$.

Notice that for all $r_{1}, \ldots, r_{n} \in R$ we have

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)^{m}\right)=\sum_{p+a=m-1} f\left(r_{i}\right)^{p} d\left(f\left(r_{i}\right)\right) f\left(r_{i}\right)^{q}
$$

and also, since $f\left(x_{1}, \ldots, x_{n}\right)$ is multilinear, we have:

$$
d\left(f\left(r_{i}\right)\right)=\sum_{t=1}^{n} f\left(r_{1}, \ldots, d\left(r_{t}\right), \ldots, r_{n}\right)
$$

Let $m \geqslant 1$ be such that $d\left(f\left(r a_{i}\right)^{m}\right)=0$, hence one has:

$$
\begin{aligned}
& 0=v d\left(f\left(r a_{i}\right)^{m}\right)=\sum_{p+a=m-1} v f\left(r a_{i}\right)^{p} d\left(f\left(r a_{i}\right)\right) f\left(r a_{i}\right)^{q}= \\
& =v d\left(f\left(r a_{i}\right)\right) f\left(r a_{i}\right)^{m-1}=\sum_{t} v f\left(r a_{1}, \ldots, d\left(r a_{t}\right), \ldots, r a_{n}\right) f\left(r a_{i}\right)^{m-1}= \\
& \quad=v f\left(d(r) a_{1}, r a_{2}, \ldots, r a_{n}\right) f\left(r a_{i}\right)^{m-1}=v_{1} f\left(r a_{i}\right)^{m-1}=\ldots=v_{1}
\end{aligned}
$$

a contradiction.
Hence if $v r=0$ then $v d(r)=0$.
Let $0 \neq v \in V$ and suppose that $v r$ and $v d(r)$ are linearly dependent for all $r \in R$. Let $x, y \in R$ be such that $v x$ and $v y$ are linearly independent, then

$$
v d(x)=\lambda_{x} v x, \quad v d(y)=\lambda_{y} v y \quad \text { and } \quad v d(x+y)=\lambda_{x+y} v(x+y)
$$

where λ_{x}, λ_{y} and λ_{x+y} are in D.
Therefore $\lambda_{x+y} v x+\lambda_{x+y} v y=\lambda_{x} v x+\lambda_{y} v y$, thus $\lambda_{x}=\lambda_{y}$.
As a result there exists $\lambda \in D$ such that $v d(x)=\lambda v x$ for all $x \in R$
with $v x \neq 0$. On the other hand, as we said above, $v r=0$ implies $v d(r)=0$, hence $v d(x)=\lambda v x$ for all $x \in R$.

However since S acts densely on V there is $x \in S$ such that $v x \neq 0$ and we obtain $0=v d(x)=\lambda v x$, hence $\lambda=0$. By this argument, if $v r$ and $v d(r)$ are linearly dependent for all $v \in$ and r in R then $V d(R)=0$ and so $d=0$.

Therefore, we may assume that there exist $v \in V \quad r \in R$ such that $v r$ and $v d(r)$ are linearly independent; moreover, as above r has infinite rank.

Let $w_{1}, \ldots, w_{n} \in \operatorname{Im} r$ be such that $v r, v d(r), w_{1}, \ldots, w_{n}$ are linearly independent, and let $v_{1}, v_{2}, \ldots, v_{n} \in V$ be such that $v_{i} r=w_{i}(i=$ $=1, \ldots, n$).

By the density of S on V there exist $s_{1}, \ldots, s_{n} \in S$ such that $v r s_{i}=\mathbf{0}$ $(i \geqslant 1), \quad v d(r) s_{1}=v_{2}, \quad v d(r) s_{i}=0 \quad(i \geqslant 2), \quad w_{i} s_{i}=v_{i+1} \quad(i=1, \ldots, n$ $\bmod . n), w_{i} s_{j}=0$ for $i \neq j$.

Then we have:

$$
\begin{gathered}
v f\left(r s_{1}, \ldots, r s_{n}\right)=0, \quad v f\left(d(r) s_{1}, r s_{2}, \ldots, r s_{n}\right)=v_{1} \\
v f\left(r s_{1}, \ldots, d(r) s_{t}, \ldots, r s_{n}\right)=0(t \neq 1), \quad v_{1} f\left(r s_{1}, \ldots, r s_{n}\right)=v_{1}
\end{gathered}
$$

Let now $m \geqslant 1$ be such that $d\left(f\left(r s_{1}, \ldots, r s_{n}\right)^{m}\right)=0$; hence we have

$$
\begin{aligned}
& 0=v d\left(f\left(r s_{i}\right)^{m}\right)=\sum_{p+a=m-1} v f\left(r s_{i}\right)^{p} d\left(f\left(r s_{i}\right)\right) f\left(r s_{i}\right)^{q}= \\
& \quad=v d\left(f\left(r s_{i}\right)\right) f\left(r s_{i}\right)^{m-1}=\sum_{i} v f\left(r s_{1}, \ldots, d\left(r s_{t}\right), \ldots, r s_{n}\right) f\left(r s_{i}\right)^{m-1}= \\
& \quad=v f\left(d(r) s_{1}, r s_{2}, \ldots, r s_{n}\right) f\left(r s_{i}\right)^{m-1}=v_{1} f\left(r s_{i}\right)^{m-1}=\ldots=v_{1},
\end{aligned}
$$

a contradiction, and this proves the result.
Next we are going to examine the general case. First we will study a special kind of ideals invariant under the derivation.

Let I be any ideal of R. We define

$$
I^{\prime}=\left\{x \in I: d^{n}(x) \in I \quad \forall n \geqslant 1\right\}
$$

Then I^{\prime} is an ideal of R invariant under d; in fact I^{\prime} is the largest subset of I invariant under d. We have the following:

Lemma 7. Let P be a primitive ideal such that char $R / P \neq 2$. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not power central valued in R / P then

1) char $R / P^{\prime} \neq 2$;
2) $T\left(R / P^{\prime}\right)=Z\left(R / P^{\prime}\right)$;
3) R / P^{\prime} is a prime ring.

Proof. To prove 1), let $x \in R$ be such that $2 x \in P^{\prime}$; hence $d^{i}(2 x) \in P$, $\forall i \geqslant 0$, and so $2 d^{i}(x) \in P, \forall i \geqslant 0$. Since char $R / P \neq 2$ this implies that $d^{i}(x) \in P \quad \forall i \geqslant 0$, thus $x \in P^{\prime}$.

This says that R / P^{\prime} is 2 -torsion free.
We now prove 2). Let

$$
A=\left\{x \in R: x+P^{\prime} \in T\left(R / P^{\prime}\right)\right\}
$$

A is a subring of R invariant under d. In fact, for $x \in A$ and $r_{1}, \ldots, r_{n} \in R$ there exists $m \geqslant 1$ such that $x f\left(r_{i}\right)^{m}-f\left(r_{i}\right)^{m} x$ is in P^{\prime} and we may assume that $d\left(f\left(r_{i}\right)^{m}\right)=0$.

Since P^{\prime} is d-invariant we have:

$$
P^{\prime} \ni d\left(x f\left(r_{i}\right)^{m}-f\left(r_{i}\right)^{m} x\right)=d(x) f\left(r_{i}\right)^{m}-f\left(r_{i}\right)^{m} d(x)
$$

and so $d(x)$ is also in A. Since f is not power central valued in R / P, then by [4, Theorem] $T(R / P)=Z(R / P)$, hence, as $P^{\prime} \subseteq P$, we have $x+P \in T(R / P)=Z(R / P)$ for all $x \in A$. This says that, for $x \in A$ and $y \in R,[x, y]=x y-y x \in P$.

Next we claim that $[x, y] \in P^{\prime}$.
In fact, for $m \geqslant 1$, we have by Leibniz's formula

$$
d^{m}(x y-y x)=d^{m}(x y)-d^{m}(y x)=\sum_{i}\binom{m}{i}\left[d^{i}(x), d^{m-i}(y)\right]
$$

Since $d^{i}(x) \in A$ one has, as above, that $\left[d^{i}(x), R\right] \subseteq P$, hence

$$
d^{m}(x y-y x) \in P, \quad \forall m \geqslant 1
$$

This says that $x y-y x \in P^{\prime}$ for $x \in A \quad y \in R$ and so $T\left(R / P^{\prime}\right)=Z\left(R / P^{\prime}\right)$.
To prove 3) we first show that R / P^{\prime} is a semiprime ring.
We remark that $R^{\prime}=R / P^{\prime}$ is a ring with induced derivation, defined by $d\left(x+P^{\prime}\right)=d(x)+P^{\prime}$ and for all $r_{1}^{\prime}, \ldots, r_{n}^{\prime} \in R^{\prime}$ there exists $m=m\left(r_{i}^{\prime}\right) \geqslant 1$ such that $d\left(f\left(r_{i}^{\prime}\right)^{m}\right)=0 \in R^{\prime}$; moreover if $d=0$ then $\boldsymbol{P}=\boldsymbol{P}^{\prime}$ and we are done. Hence we may assume that d is nonzero
in \mathbf{R}^{\prime}. Furthermore, as we said above, R^{\prime} is 2 -torsion free and $T\left(R^{\prime}\right)=$ $=\boldsymbol{Z}\left(R^{\prime}\right)$.

If $t \in R$ and $t^{2} \equiv 0 \bmod P^{\prime}$ then, since $(1+t)+P^{\prime}$ is formally invertible, by the argument given in Lemma 4 it follows that $d(t) \equiv$ $\equiv z+z t$ and $0 \equiv d\left(t^{2}\right) \equiv 2 z t$ for some $z \in R$ such that $z+P^{\prime} \in Z\left(R^{\prime}\right)$. Therefore, since R^{\prime} is 2 -torsion free $z t \equiv 0$ and $d(t) \equiv z \bmod P^{\prime}$.

Let $t \in R$ be such that $t R t \equiv 0\left(\bmod P^{\prime}\right)$ and $t^{2} \equiv 0\left(\bmod P^{\prime}\right)$.
Then, for every $r \in R$, we have $d(t)+P^{\prime} \in Z\left(R^{\prime}\right)$ and also $d(t r)+P^{\prime} \in Z\left(R^{\prime}\right) ;$ which implies $(d(t) r+t d(r))+P^{\prime} \in Z\left(R^{\prime}\right)$, and so

$$
\left(d(t)^{2} r+d(t) t d(r)\right)+P^{\prime}=d(t)^{2} r+P^{\prime} \in Z\left(R^{\prime}\right)
$$

Therefore, for $r, s \in R$, we have $d(t)^{2}(r s-s r) \equiv 0 \bmod P^{\prime}$ and so $d(t)^{2} R(r s-s r) \equiv 0 \bmod P^{\prime}$ (recall that $\left.d(t)+P^{\prime} \in Z\left(R^{\prime}\right)\right)$.

Let now

$$
B=\left\{x \in R: x R(r s-s r) \equiv 0 \bmod P^{\prime} \forall r, s \in R\right\}
$$

Notice that B is invariant under d; in fact

$$
\begin{aligned}
& 0 \equiv d(x R(r s-s r)) \equiv d(x) R(r s-s r)+x d(R)(r s-s r)+ \\
& \quad+x R(d(r) s-s d(r))+x R(r d(s)-d(s) r) \equiv d(x) R(r s-s r)
\end{aligned}
$$

Moreover, since R / P is noncommutative, there exists r, s in R such that $r s-s r \notin P$. But, for all $x \in B$, we have $x R(r s-s r) \subseteq P^{\prime} \subseteq P$; since R / P is primitive this implies $B \subseteq P$. Hence $B \subseteq P^{\prime}$, the largest subset of $P d$-invariant.

In other words we have proved that $t R t \equiv 0$ and $t^{2} \equiv 0 \bmod P^{\prime}$ implies $d(t)^{2} \equiv 0$ and $d(t) R d(t) \equiv 0 \bmod P^{\prime}$.

Hence, by induction, we have $d^{i}(t)^{2} \equiv 0$ and $d^{i}(t) R d^{i}(t) \equiv 0 \bmod P^{\prime} ;$ since $P^{\prime} \subseteq P$ and R / P is primitive this says that $d^{i}(t) \in P, \forall i \geqslant 0$, that is $t \in P^{\prime}$ and $R^{\prime}=R / P^{\prime}$ is semiprime.

Finally, let $a, b \in R$ and suppose that $a R b \subseteq P^{\prime}$.
Then, for any $x \in R$ we have $d(a x b) \in P^{\prime}$ and $a d(x) b \in P^{\prime}$, so

$$
\begin{equation*}
d(a) x b+a x d(b) \in P^{\prime} \tag{*}
\end{equation*}
$$

Now R / P^{\prime} is a semiprime ring, hence $a R b \subseteq P^{\prime}$ forces $b R a \subseteq P^{\prime}$. Multiplying (*) on the left by $b R$ we obtain $b R d(a) x b \subseteq P^{\prime}$ and con-
sequently $d(a) x b$ is in P^{\prime}. From (*) it follows that $a x d(b)$ is also in P^{\prime}.
We have proved that $d(a) R b \subseteq P^{\prime}$ and also $a R d(b) \subseteq P^{\prime}$. At this stage an easy induction leads to $d^{i}(a) R d^{j}(b) \subseteq P^{\prime} \forall i, j \geqslant 0$. Since $P^{\prime} \subseteq P$ and R / P is primitive, we conclude as above that either $a \in P^{\prime}$ or $b \in P^{\prime}$. This completes the proof.

Now we are ready to prove the main result of this paper.
Proof of Theorem 1. As quoted above, since R is a prime ring with no nonzero nil right ideals and hypothesis (A) holds then either f is power central valued or $T(R)=Z(R)$ (see [4]).

In the first case, by [4, Lemma 6], R satisfies S_{n+2}. In the last case, if $J(R) \neq 0$ then by Lemma $3 R$ is commutative.

Suppose now that R is semisimple, so that R is a subdirect product of primitive rings \boldsymbol{R}_{α} of characteristic different from 2. Let P_{α} be a primitive ideal of R such that $R_{\alpha} \cong R / P_{\alpha}$; we now partition these primitive ideals into four sets:
$\mathscr{Q}_{1}=\{P: d(R) \subseteq P\}$
$\mathscr{Q}_{2}=\{P: d(P) \subseteq P$ but $d(R) \nsubseteq P\}$
$\mathscr{Q}_{3}=\{P: d(P) \nsubseteq P$ and f is power central valued in $R / P\}$
$\mathscr{Q}_{4}=\{P: d(P) \nsubseteq P$ and f is not power central valued in $R / P\}$
in addition, let $I_{i}=\cap P$ for $P \in \mathscr{Q}_{i} i=1, \ldots, 4$.
Since R is semisimple $I_{1} I_{2} I_{3} I_{4} \subseteq I_{1} \cap I_{2} \cap I_{3} \cap I_{4}=0$.
Since R is prime we must have that at least one among I_{1}, I_{2}, I_{3} or I_{4} is zero. However $I_{1} \neq 0$, otherwise $d(R) \subseteq I_{1}=0$, a contradiction. If $I_{2}=0$ then R is a subdirect product of primitive rings on which d induces a nonzero derivation d^{\prime} satisfying all the hypotheses of Lemma 6. Then f is power central valued on R / P, for each $P \in \mathscr{Q}_{2}$, and so by [4, Lemma 6] R / P satisfies $S_{n+2}\left(x_{1}, \ldots, x_{n+2}\right)$.

Therefore if $I_{2}=0$ then R satisfies $S_{n+2}\left(x_{1}, \ldots, x_{n+2}\right)$.
We also remark that if $P \in \mathscr{Q}_{3}$ then, as above, R / P satisfies S_{n+2}. Hence, if $I_{3}=0$ then R satisfies also this identity.

Finally we claim that $\mathscr{Q}_{4}=\emptyset$.
Let $P \in \mathscr{Q}_{4}$, and let $P^{\prime}=\left\{x \in P: d^{i}(x) \in P, \forall i \geqslant 1\right\}$. By Lemma 7 R / P^{\prime} is a prime ring, char. $R / P^{\prime} \neq 2$ and $T\left(R / P^{\prime}\right)=Z\left(R / P^{\prime}\right)$. Moreover d induces on $R^{\prime}=R / P^{\prime}$ a non zero derivation d which also satisfies $d\left(f\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right)^{m}\right)=0$ for all r_{i}^{\prime} in R^{\prime} for some $m=m\left(r_{i}^{\prime}, \ldots, r_{n}^{\prime}\right) \geqslant 1$.

We remark again that $f\left(x_{1}, \ldots, x_{n}\right)$ is nil valued on the nonzero ideal $\boldsymbol{P} / \boldsymbol{P}^{\prime}$ of $\boldsymbol{R}^{\prime}=\boldsymbol{R} / \boldsymbol{P}^{\prime}$. If \boldsymbol{R}^{\prime} is with no nonzero nil right ideals
then $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial identity for P / P^{\prime} and so for R^{\prime} (see [5]).

Of course, this implies that $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial identity for R / P, a contradiction since $P \in \mathscr{Q}_{4}$.

Therefore R^{\prime} has a nonzero nil right ideal and so $J\left(R^{\prime}\right) \neq 0$. But, in this case, by Lemma $3 R^{\prime}$ is commutative, and this is also a contradiction.

As a result R satisfies the standard identity S_{n+2} and $R^{\prime \prime}=R_{z}=$ $=\left\{r z^{-1}: r \in R, 0 \neq z \in Z(R)\right\}$ is a central simple algebra finite dimensional over F, the quotient field of $Z(R)$.

At it is well known, dextends uniquely to a derivation on $R^{\prime \prime}$ (which we shall also denote by d) as follows:

$$
d\left(r z^{-1}\right)=d(r) z^{-1}-r d(z) z^{-2} \quad \forall r \in R, 0 \neq z \in Z(R)
$$

If R does not satisfies f then there exist $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)$ is not nilpotent [5]. If $0 \neq z \in Z(R)$ there is an $m \geqslant 1$ such that $d\left(f\left(z r_{1}, r_{2}, \ldots, r_{n}\right)^{m}\right)=0$ and $d\left(f\left(r_{1}, \ldots, r_{n}\right)^{m}\right)=0$. Hence, we have $0=d\left(f\left(z r_{1}, r_{2}, \ldots, r_{n}\right)^{m}\right)=d\left(z^{m} f\left(r_{1}, \ldots, r_{n}\right)^{m}\right)=d\left(z^{m}\right) f\left(r_{1}, \ldots, r_{n}\right)^{m}$ and so $d\left(z^{m}\right)=0$.

As a result, if $s_{i}=r_{i} z_{i}^{-1} \in R^{\prime \prime}$ there is an $m=m\left(s_{i}\right) \geqslant 1$ such that

$$
d\left(f\left(r_{i}\right)^{m}\right)=0 \quad \text { and } \quad d\left(z^{m}\right)=0
$$

where $z=z_{1} \ldots z_{n}$, hence $d\left(f\left(s_{1}, \ldots, s_{n}\right)^{m}\right)=0$.
Therefore by Lemma $6 f\left(x_{1}, \ldots, x_{n}\right)$ is power central valued in $R^{\prime \prime}$ and we are done. Moreover, if $d(Z(R)) \neq 0$ and f is not a polynomial identity for R we obtain, as above, $d\left(z^{m}\right)=0$ for all $z \in Z(R)$. Of course this implies that $Z(R)$ is infinite of characteristic $p \neq 0$. This completes the proof.

Of some independent interest is the special case when $f(x, y)=$ $=x y-y x$. In particolar, we do not need any extra assumptions regarding the behavior of f on $p \times p$ matrices. We state this result as:

Corollary. Let R be a prime ring with no nonzero nil right ideals, char $R \neq 2$. Let d be a nonzero derivation on R such that for every $x, y \in R$ there exists $m=m(x, y) \geqslant 1$ with $d\left((x y-y x)^{m}\right)=0$. Then R satisfies $\mathbb{S}_{4}\left(x_{1}, \ldots, x_{4}\right)$.

We conclude this paper with an easy application of this result to Lie ideals. This extend to arbitrary derivations a result of [3].

Proof of Theorem 2. Since char $R \neq 2$ and U is a non central Lie ideal of R, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq[I, I] \subseteq U$.

Let $I^{\prime}=\left\{x \in I: d^{i}(x) \in I, \forall i \geqslant 1\right\}, I^{\prime}$ is an ideal of R invariant under d. Moreover, by hypothesis, for every $x, y \in I$ some power of $(x y-y x)$ lies in I^{\prime}. Since R has no nonzero nil right ideals and R is not commutative we must have $I^{\prime} \neq 0$. Then I^{\prime} is a prime ring with a nonzero derivation d satisfying all the hypothesis of the Corollary, and so I^{\prime} satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. Since R is prime, R also satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

REFERENCES

[1] J. Bergen - A. Giambruno, f-radical extensions of rings, Rend. Sem. Mat. Univ. Padova, 77 (1987), pp. 125-133.
[2] J. Bergen - I. N. Herstein - J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259-267.
[3] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259.
[4] B. Felzenswalb - A. Giambruno, Centralizers and multilinear polynomials in non-commutative rings, J. London Math. Soc., 19 (1979), pp. 417-428.
[5] B. Felzenswalb - A. Giambruno, Periodic and nil polynomials in rings, Canad. Math. Bull., 23 (1980), pp. 473-476.
[6] B. Felzenswalb - A. Giambruno, A commutativity theorem for rings with derivations, Pacific J. Math., 102 (1982), pp. 41-45.
[7] A. Giambruno, Rings f-radicals over P.I. subrings, Rend. Mat., (1), 13, VI (1980), pp. 105-113.
[8] I. N. Herstein, Rings with Involution, Univ. Chicago Press, Chicago, 1976.
[9] I. N. Herstein, A theorem on invariant subrings, J. Algebra, 83 (1983), pp. 26-32.
[10] I. N. Herstein - C. Procesi - M. Schacher, Algebraic valued functions on non-commutative rings, J. Algebra, 36 (1975), pp. 128-150.

Manoscritto pervenuto in redazione il 30 maggio 1988.

