RENDICONTI del Seminario Matematico della Università di Padova

JAMES C. BEIDLEMAN

M. PILAR GALLEGO

Conjugate π -normally embedded fitting functors

Rendiconti del Seminario Matematico della Università di Padova, tome 80 (1988), p. 65-82

<a>http://www.numdam.org/item?id=RSMUP_1988__80__65_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 80 (1988)

Conjugate π -Normally Embedded Fitting Functors.

JAMES C. BEIDLEMAN - M. PILAR GALLEGO (*)

1. Introduction.

All groups considered in this paper belong to the class S of all finite soluble groups. A subgroup X of G is p-normally embedded in G if each of its Sylow p-subgroups is a Sylow p-subgroup of a normal subgroup of G. A subgroup X of G is normally embedded in G if it is p-normally embedded for each prime p. If \mathcal{F} is a Fischer class, then the \mathcal{F} -injectors of G are normally embedded (see [10]). Fitting classes whose injectors are normally embedded are called normally embedded Fitting classes. Such Fitting classes have many interesting properties (see for example [7, 11]).

In [3] the concept of Fitting functor is introduced as a map f which assigns to each $G \in S$ a non-empty set f(G) of subgroups of G such that

$$\{\alpha(X)\colon X\in f(G)\}=\{\alpha(G)\cap Y\colon Y\in f(H)\}$$

whenever α is a monomorphism of G into H with $\alpha(G) \leq H$. Motivation for the definition of Fitting functor is provided by injectors and radicals of Fitting classes. A number of properties of Fitting functors are developed in [3, 4, 8]. A Fitting functor f is called *p*-normally embedded provided that f(G) consists of *p*-normally embedded subgroups of G for each $G \in S$. f is said to be normally embedded if f is

(*) Indirizzo degli AA.: J.C. BEIDLEMAN: Dept. of Mathematics, University of Kentucky, Lexington, Kentucky 40506, U.S.A.; M. PILAR GÁLLEGO: Fac. Ciencias Matematicas, Universidad de Zaragoza, 50009 Zaragoza, Spagna.

p-normally embedded for all primes p. Normally embedded Fitting functors are classified in Satz 6.4 and Satz 7.4 of [3].

In this paper we study a generalization of the mentioned concepts which results from considering sets of primes π and Hall π -subgroups instead of prime numbers p and Sylow p-subgroups. We restrict ourselves to those Fitting functors f for which f(G) is a conjugacy class of subgroups of G for all $G \in S$, the so-called conjugate Fitting functors.

Let f be a conjugate Fitting functor, $G \in S$, $V \in f(G)$, $V_{\pi} \in \text{Hall}_{\pi}(V)$ and $V_{\pi} \leq G_{\pi} \in \operatorname{Hall}_{\pi}(G)$. By a result in [8], $V_{\pi} \leq G_{\pi}$ if and only if $V_{\pi} \in \operatorname{Hall}_{\pi}(G_{\mathfrak{L}_{\pi}(f)})$. This result provides motivation for studying conjugate π -normally embedded Fitting functors. In section 3 we obtain a number of properties of conjugate π -normally embedded Fitting functors. For example, f is π -normally embedded if and only if each member of the Lockett section of f is π -normally embedded. Let $\pi = \bigcup \{\pi_i : i \in I\}$. Then f is π -normally embedded if and only if f is π_i -normally embedded and $\mathfrak{L}_{\pi_i}(f) = \mathfrak{L}_{\pi}(f) \mathfrak{S}_{\pi_i}$ for all $i \in I$. Let I be an index set and let $\{\pi(\lambda): \lambda \in I\}$ be a partition of P, the set of all primes. A Fitting functor g is said to be *I*-normally embedded if gis $\pi(\lambda)$ -normally embedded for each $\lambda \in I$. *I*-normally embedded Fitting functors are classified. Moreover, if f is a conjugate *I*-normally embedded Fitting functor, then a description of f_* , the smallest member of the Lockett section of f, is obtained. This answers open question 7 of [4].

Section 4 is devoted to the study of π -normally embedded Fitting classes \mathcal{F} . \mathcal{F} is π -normally embedded if and only if $\mathfrak{L}_{\pi}(\mathcal{F})$ is π -normally embedded. Further, if \mathcal{F} is π -normally embedded, then \mathcal{FS}_{π} , is a dominant Fitting class.

2. Preliminaries.

A Fitting functor is a mapping f which assigns to each group G from S a non-empty set f(G) of subgroups of G such that if G, H belong to S and $\alpha: G \to H$ is a monomorphism with $\alpha(G) \leq H$, then

$$\{\alpha(X)\colon X\in f(G)\}=\{\alpha(G)\cap Y\colon Y\in f(H)\}.$$

For simplicity of notation we write $\alpha(f(G)) = \alpha(G) \cap f(H)$. A Fitting functor f is called *conjugate* provided that f(G) consists of a conjugacy

class of subgroups of G for all $G \in S$. A Fitting functor f is called *p*-normally embedded, p a prime number, provided that f(G) consists of *p*-normally embedded subgroups of G for all $G \in S$. f is said to be normally embedded if it is *p*-normally embedded for each $p \in \mathbf{P}$, **P** is the set of all primes. f is said to be pronormal if the subgroups in f(G) are pronormal in G for all $G \in S$.

If \mathcal{F} is a Fitting class, then $\operatorname{Rad}_{\mathcal{F}}(G) = \{G_{\mathcal{F}}\}\)$ and $\operatorname{Inj}_{\mathcal{F}}(G) = \{X | X \text{ is an } \mathcal{F}\text{-injector of } G\}\)$ define two conjugate Fitting functors: Inj $_{\mathcal{F}}\)$ and $\operatorname{Rad}_{\mathcal{F}}$. If $\mathcal{F} = S_{\pi}$, the class of all π -groups from S, π a set of primes, then we shall write $\operatorname{Hall}_{\pi}\)$ instead $\operatorname{Inj}_{\mathcal{F}}$. Moreover, we denote by $\mathcal{N}\)$ the class of all nilpotent groups from S, and $F(G) = G_{\mathcal{N}}\)$, the Fitting subgroup of G.

In the remainder of this section we present a number of known results which are used in the later two sections of this paper.

PROPOSITION 2.1 ([3]; 3.7 and 3.8). If f is a Fitting functor and π is a set of primes, then the class $\mathfrak{L}_{\pi}(f)$ of groups G such that X has π' -index in G for all X in f(G) is a Fitting class and $\mathfrak{L}_{\pi}(f)\mathfrak{S}_{\pi'} = \mathfrak{L}_{\pi}(f)$.

PROPOSITION 2.2 ([8]; 2.3). Let f be a conjugate Fitting functor, $G \in S$, $X \in f(G)$, $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$ and $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $X_{\pi} \leq G_{\pi}$. Then the following properties are equivalent:

(a) X_{π} is a Hall π -subgroup of some normal subgroup of G.

- (b) $X_{\pi} \leq G_{\pi}$.
- (c) $X_{\pi} \leq G_{\mathfrak{L}_{\pi}(f)}$.
- (d) X_{π} is a Hall π -subgroup of $G_{\mathfrak{L}_{\pi}(f)}$.

New Fitting functors from previously given ones can be obtained using

PROPOSITION 2.3 ([3]; 4.1, 4.7, 4.11 and 4.15). (a) Let f and g be Fitting functors and define $(f \circ g)(G) = \{X : X \in f(Y) \text{ for some } Y \in g(G)\}, G \in S$. Then $f \circ g$ is a Fitting functor. Moreover, if f and g are conjugate, then $f \circ g$ is conjugate.

(b) Let $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a family of pronormal conjugate Fitting functors and define $(\bigwedge_{\lambda \in \Lambda} f_{\lambda})(G) = \{\bigcap_{\lambda \in \Lambda} X_{\lambda} : X_{\lambda} \in f_{\lambda}(G), \text{ there exists a Sylow system}\}$

of G reducing into X_{λ} for all $\lambda \in \Lambda$ }, $G \in S$. Then $\bigwedge_{\lambda \in \Lambda} f_{\lambda}$ is a conjugate Fitting functor. (c) Let f and g be Fitting functors. f and g are said to commute if for each $G \in S$, XY = YX whenever $X \in f(G)$, $Y \in g(G)$ and there is a Sylow system of G reducing into X and Y. By the characteristic of f is meant $\{p \in \mathbb{P}: \text{ there is } G \in S \text{ and } X \in f(G) \text{ such that } p \text{ divides } |X|\}.$

Let $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a family of pronormal conjugate pairwise commuting Fitting functors of disjoint characteristics and define $(\bigvee_{\lambda \in \Lambda} f_{\lambda})(G) =$ $= \{\prod_{\lambda \in \Lambda} X_{\lambda} \colon X_{\lambda} \in f_{\lambda}(G), \text{ there exists a Sylow system of G reducing into } X_{\lambda} \text{ for all } \lambda \in \Lambda\}, G \in S.$ Then $\bigvee f_{\lambda}$ is a pronormal conjugate Fitting functor

Then $\bigvee_{\lambda \in A} f_{\lambda}$ is a pronormal conjugate Fitting functor.

(d) Let f and g be Fitting functors with f conjugate and let π be a set of primes. Define $(f \bigsqcup_{\pi} g)(G) = \{T: \text{there exists } X \in f(G_{\Sigma_{\pi}(f)}), G_{\pi} \in G = \operatorname{Hall}_{\pi}(N_{G}(X))$ such that $T/X \in g(G_{\pi}X/X)\}, G \in S$. (Note that G_{π} in this definition belongs to $\operatorname{Hall}_{\pi}(G)$. This follows from the Frattiniargument).

Then $f \bigsqcup_{n} g$ is a Fitting functor. Moreover, if g is conjugate, then $f \bigsqcup_{n} g$ is conjugate.

Let f and g be Fitting functors. f is said to be strongly contained in g, denoted $f \ll g$, provided that for each $G \in S$, the following conditions hold:

(a) If $X \in f(G)$, then there is a $Y \in g(G)$ such that $X \leq Y$, and

(b) If $W \in g(G)$, then there is a $V \in f(G)$ such that $V \leq W$. (If f and g are conjugate, then (a) and (b) are equivalent.)

A Fitting functor f is called a Lockett functor provided that whenever $G \in S$, $X \in f(G \times G)$, then

$$X = (X \cap (G \times 1)) \times (X \cap (1 \times G)).$$

PROPOSITION 2.4 ([4]; 4.2, 4.4 and 4.6). Let \mathcal{F} be a Fitting class and let f and g be Fitting functors. Then

(a) If \mathcal{F} is a Lockett class, then $\operatorname{Inj}_{\mathcal{F}}$ and $\operatorname{Rad}_{\mathcal{F}}$ are Lockett functors.

(b) If f and g are Lockett functors, then $f \circ g$ is also a Lockett functor.

(c) If f and g are Lockett functors and f is conjugate, then $f \prod_{\pi} g$ is a Lockett functor.

(d) If f is a Lockett functor, then $\mathfrak{L}_{\pi}(f)$ is a Lockett class.

Let f be a conjugate Fitting functor. Define f^* by $f^*(G) = \{\pi_1(T): T \in f(G \times G)\}$ for each $G \in S$. (Here π_1 is the projection of $G \times G$ onto its first coordinate).

PROPOSITION 2.5 ([4]; 6.1, 6.2, 6.3, 6.4 and 6.8). Let f and g be conjugate Fitting functors. Then

- (a) f* is a conjugate Lockett functor.
- (b) f is a Lockett functor if and only if $f = f^*$.
- (c) $f \ll f^*$. If $f \ll g$, then $f^* \ll g^*$.
- (d) Let π be a set of primes. Then $\mathfrak{L}_{\pi}(f)^* = \mathfrak{L}_{\pi}(f^*)$. If f is a Lockett functor, then $(f \bigsqcup_{\pi} g)^* = f \bigsqcup_{\pi} g^*$.

We shall make use of the following lemma.

LEMMA 2.6 ([3]; 4.9). Let $H_1, H_2, ..., H_n$ be subgroups of $G \in S$ of pairwise relatively prime orders. Assume that $H_iH_j = H_jH_i$ for all $i, j \in \{1, 2, ..., n\}$. Let $N_1, N_2, ..., N_n$ be normal subgroups of G. Then $(H_i \cap N_i)(H_j \cap N_j)$ is a subgroup of G for all $i, j \in \{1, 2, ..., n\}$.

3. π -normally embedded Fitting functors.

This section is devoted to the study of conjugate π -normally embedded Fitting functors. A description of such functors is given in (3.3). Let f and g be conjugate π -normally embedded Fitting functors. The members of Locksec (f) are conjugate π -normally embedded Fitting functors as seen in (3.5). Further, (3.6) shows that $f \circ g$ is also such a functor.

Let *I* be an index set and let $\{\pi(\lambda): \lambda \in I\}$ be a partition of the primes. Conjugate *I*-normally embedded Fitting functors are classified in (3.14). Moreover, if *f* is a conjugate *I*-normally embedded

Fitting functor, then (3.17) gives a description of the smallest member f_* of Locksec (f). Such a description answers open question 7 of [4].

DEFINITION 3.1. Let π be a set of primes.

(a) A subgroup X of a group G is said to be π -normally embedded in G if the Hall π -subgroups of X are Hall π -subgroups of a normal subgroup of G.

(b) A Fitting functor f is said to be π -normally embedded provided that for $G \in S$ and $X \in f(G)$, X is π -normally embedded in G.

As a consequence of Proposition 2.2 we obtain the following

REMARK 3.2. Let f be a conjugate Fitting functor.

(a) f is π -normally embedded if and only if for each $G \in S$ and $X_{\pi} \in (\operatorname{Hall}_{\pi} \circ f)(G)$, then $X_{\pi} \in \operatorname{Hall}_{\pi} (G_{\mathfrak{L}_{\pi}(f)})$.

(b) f is π -normally embedded if and only if for each $G \in S$ and $X_{\pi} \in (\operatorname{Hall}_{\pi} \circ f)(G)$, then $X_{\pi} \leq G_{\pi}$, where $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $X_{\pi} \leq G_{\pi}$.

Due to (a) in (3.2), π -normally embedding of conjugate Fitting functors is very much related to the $\mathfrak{L}_{\pi}($)-construction. This can be seen in the following results, a number of which are generalizations of results in [3] and [4] for the case when $\pi = \{p\}$.

PROPOSITION 3.3. Let f be a conjugate Fitting functor and let π be a set of primes. Then

(a) If f is π -normally embedded, then $f \ll \operatorname{Inj}_{\mathfrak{L}_{\pi}(f)}$.

(b) f is π -normally embedded if and only if $f \ll \operatorname{Inj}_{\mathfrak{L}_{\pi}(f),\mathcal{N}} \bigsqcup_{\mathbf{p}} \operatorname{Hall}_{\pi'}$.

(c) Let $\{\pi_i: i \in I\}$ be a collection of sets of primes such that $\pi = \bigcup_{i \in I} \pi_i$. Then f is π -normally embedded if and only if f is π_i -normally embedded and $\mathfrak{L}_{\pi_i}(f) = \mathfrak{L}_{\pi}(f) \mathfrak{S}_{\pi'_i}$ for all $i \in I$.

PROOF. (a) Assume that f is π -normally embedded. Let $G \in S$, $X \in f(G)$ and $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$. Then by part (a) of (3.2), $X_{\pi} \in \operatorname{Hall}_{\pi}(G_{\Gamma_{\pi}(f)})$. Let $X_{\pi'} \in \operatorname{Hall}_{\pi'}(X)$ and $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$ such that $X_{\pi'} \leq G_{\pi'}$. Since $\mathfrak{L}_{\pi}(f) = \mathfrak{L}_{\pi}(f) \mathfrak{S}_{\pi'}$, the $\mathfrak{L}_{\pi}(f)$ -injectors of G have π -index in G and so $G_{\pi'}$ is contained in some $\mathfrak{L}_{\pi}(f)$ -injector of G, say V. It now follows that $X = X_{\pi} X_{\pi'} \leq G_{\Gamma_{\pi}(f)} G_{\pi'} \leq V$ and hence (a) follows. (b) Let $h = \operatorname{Inj}_{\mathfrak{L}_{\pi}(f),\mathcal{N}} \prod_{\mathbf{p}} \operatorname{Hall}_{\pi'}$. By part (d) of (2.3), $h(G) = \{G_{\mathfrak{L}_{\pi}(f),\mathcal{N}} G_{\pi'} \colon G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)\}.$

Assume that f is π -normally embedded. Let $G \in S$, $X \in f(G)$ and $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$. By part (a) of (3.2), $X_{\pi} \leq G_{\mathfrak{L}_{\pi}(f)} \leq G_{\mathfrak{L}_{\pi}(f),\mathcal{N}}$. Let $X_{\pi'} \in \operatorname{Hall}_{\pi'}(X)$ and $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$ such that $X_{\pi'} \leq G_{\pi'}$. Then $X = X_{\pi}X_{\pi'} \leq G_{\mathfrak{L}_{\pi}(f),\mathcal{N}}G_{\pi'}$ and hence $f \ll h$.

Conversely, assume that $f \ll h$. Let $G \in S$, $X \in f(G)$ and $X_{\pi} \in G$ $\in \operatorname{Hall}_{\pi}(X)$. Let $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$ such that $X \leq G_{\Sigma_{\pi}(f),N} G_{\pi'}$. Let $K = G_{\Sigma_{\pi}(f)}$ and let W/K = F(G/K), the Fitting subgroup of G/K. Then $X_{\pi}K/K \leq W/K$ and hence $X_{\pi}K \leq \square W$. Thus $X_{\pi}(X \cap K) =$ $= X \cap X_{\pi}K \in f(X_{\pi}K)$. Since f is conjugate and $|X_{\pi}K: X_{\pi}(X \cap K)|$ is a π' -number, we have $X_{\pi}K \in \Sigma_{\pi}(f)$ and so $X_{\pi}K \leq K$. Thus $X_{\pi} \in G \in \operatorname{Hall}_{\pi}(K)$ since $K \in \Sigma_{\pi}(f)$. Therefore, f is π -normally embedded.

(c) Assume that f is π -normally embedded and let $i \in I$. Since $\pi_i \subseteq \pi$ it follows that $\mathfrak{L}_{\pi}(f) \subseteq \mathfrak{L}_{\pi_i}(f)$. Let $G \in \mathfrak{S}, X \in f(G), X_{\pi_i} \in \operatorname{Hall}_{\pi_i}(X)$ and $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$ such that $X_{\pi_i} \leq X_{\pi}$: Since f is π -normally embedded we have $X_{\pi_i} \leq X_{\pi} \leq G_{\mathfrak{L}_{\pi}(f)} \leq G_{\mathfrak{L}_{\pi_i}(f)}$. This yields that $X_{\pi_i} \in \operatorname{Hall}_{\pi_i}(X \cap G_{\mathfrak{L}_{\pi_i}(f)}) \subseteq \operatorname{Hall}_{\pi_i}(G_{\mathfrak{L}_{\pi_i}(f)})$ and hence f is π_i -normally embedded by (3.2). Moreover,

$$\operatorname{Hall}_{\pi_i} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(f)} = \operatorname{Hall}_{\pi_i} \circ \operatorname{Hall}_{\pi} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(f)} = \operatorname{Hall}_{\pi_i} \circ \operatorname{Hall}_{\pi} \circ f = \operatorname{Hall}_{\pi_i} \circ f$$

Therefore, if $G \in \mathfrak{L}_{\pi_i}(f)$, then $\operatorname{Hall}_{\pi_i}(G) = \operatorname{Hall}_{\pi_i} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(f)}(G)$ and this means that $G \in \mathfrak{L}_{\pi}(f) \, \mathbb{S}_{\pi'_i}$. On the other hand, $\mathfrak{L}_{\pi_i}(f) = \mathfrak{L}_{\pi_i}(f) \, \mathbb{S}_{\pi'_i} \supseteq \mathfrak{L}_{\pi}(f) \, \mathbb{S}_{\pi'_i}$ and it follows that $\mathfrak{L}_{\pi_i}(f) = \mathfrak{L}_{\pi}(f) \, \mathbb{S}_{\pi'_i}$.

Conversely, assume that f is π_i -normally embedded and $L_{\pi_i}(f) =$ = $\mathfrak{L}_{\pi}(f) \mathfrak{S}_{\pi'_i}$ for all $i \in I$. Let $G \in \mathfrak{S}$, $X \in f(G)$ and $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$. We note that

$$\operatorname{Hall}_{\pi_i} \circ f = \operatorname{Hall}_{\pi_i} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi_i}(f)} = \operatorname{Hall}_{\pi_i} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(f)} S_{\pi_i'} = \operatorname{Hall}_{\pi_i} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(f)}.$$

Therefore, the Hall π_i -subgroups of X are contained in $G_{\mathfrak{L}_{\pi}(f)}$ for all $i \in I$. Since $\pi = \bigcup_{i \in I} \pi_i$ it follows that $X_{\pi} \leq G_{\mathfrak{L}_{\pi}(f)}$. Hence $X_{\pi} \in \mathfrak{E}$ $\in \operatorname{Hall}_{\pi}(G_{\mathfrak{L}_{\pi}(f)})$ and so f is π -normally embedded.

EXAMPLES 3.4. (a) Let θ be a set of primes and let $\pi \subseteq \theta$. Then $\operatorname{Hall}_{\theta}$, $\operatorname{Inj}_{S_{\pi}'S_{\pi}}$ and $\operatorname{Inj}_{S_{\pi}S_{\pi'}}$ are π -normally embedded.

(b) A Fitting functor f is called a normal Fitting functor if, for each $G \in S$, f(G) contains only normal subgroups. By ([3]; 7.5) f is a normal Fitting functor if and only if there is a family of Fitting classes $\{\mathfrak{X}_{\lambda}\}_{\lambda \in A}$ such that $f = \bigcup_{\lambda \in A} \operatorname{Rad}_{\mathfrak{X}_{\lambda}}$. These functors are just the **P**-normally embedded Fitting functors. Thus, if π is a set of primes and f is a normal Fitting functor, then f is π -normally embedded.

(c) Let p and q be distinct primes, $\pi = \{p, q\}$, $\mathcal{F} = S_p S_q$ and $f = \operatorname{Inj}_{\mathcal{F}}$. Let $G \in S$. By Proposition 3.2 of [11] it follows that

$$f(G) = \left\{ \left(O_{q'}(G) \cap G_p \right) G_q \colon G_p \in \operatorname{Syl}_p(G), \, G_q \in \operatorname{Syl}_q(G) \\ \text{and} \ \ G_q \leq N_g \left(O_{q'}(G) \cap G_p \right) \right\}.$$

Then f is p-normally embedded and q-normally embedded, $\mathfrak{L}_{q}(f) = \mathfrak{S}$ and $\mathfrak{L}_{p}(f) = \{G: \operatorname{Syl}_{p}(G) = \operatorname{Syl}_{p}(O_{q'}(G))\} = \mathfrak{S}_{q'}\mathfrak{S}_{p'}$. $\mathfrak{L}_{\pi}(f) = \mathfrak{L}_{p}(f)$ and $\mathfrak{L}_{p}(f) = \mathfrak{L}_{\pi}(f)\mathfrak{S}_{p'}$. However

$$\mathfrak{L}_{\pi}(f)\,\mathfrak{S}_{q'}=\,\mathfrak{S}_{q'}\,\mathfrak{S}_{p'}\,\mathfrak{S}_{q'}\neq\mathfrak{S}=\,\mathfrak{L}_{q}(f)$$

and so f is not π -normally embedded by part (c) of (3.3).

Let f be a conjugate Fitting functor. By the Lockett section of f, denoted Locksec (f), is meant

$$\{g: g \text{ is a conjugate Fitting functor and } g^* = f^*\}$$

A number of results of Locksec (*f*) are established in [4]. For example, *f* is *p*-normally embedded if and only if f^* is *p*-normally embedded ([4]; 6.5). We now generalize this result to the case of π -normally embedded Fitting functors.

PROPOSITION 3.5. Let f be a conjugate Fitting functor and let π be a set of primes. Then, f is π -normally embedded if and only if f* is π -normally embedded. Thus, if f is π -normally embedded, then each member of Locksec (f) is π -normally embedded.

PROOF. By part (a) of (2.5) f^* is a conjugate Fitting functor. Since $\mathfrak{L}_{\pi}(f) \mathcal{N} = \mathfrak{L}_{\pi}(f)^* \mathcal{N}$ is a Lockett class and $\mathfrak{L}_{\pi}(f)^* = \mathfrak{L}_{\pi}(f^*)$ by part (d) of (2.5), it follows that

$$h = \mathrm{Inj}_{\mathfrak{L}_{\pi}(f)\mathcal{N}} \bigsqcup_{\mathbf{P}} \mathrm{Hall}_{\pi'} = \mathrm{Inj}_{\mathfrak{L}_{\pi}(f^{*})\mathcal{N}} \bigsqcup_{\mathbf{P}} \mathrm{Hall}_{\pi'}$$

is a Lockett functor. Thus $h^* = h$ by part (b) of (2.5).

Assume that f is π -normally embedded. Then $f \ll h$ by part (b) of (3.3) and hence $f^* \ll h^* = h$ by part (c) of (2.5). Due to part (b) of (3.3) again, f^* is π -normally embedded.

Conversely, assume that f^* is π -normally embedded. Then $f^* \ll h$ by part (b) of (3.3). Since $f \ll f^*$ by part (c) of (2.5), it follows that $f \ll h$ and so f is π -normally embedded.

The next four results are concerned about the constructions in (2.3) being π -normally embedded.

PROPOSITION 3.6. Let f and g be conjugate Fitting functors, π a set of primes and $G \in S$. If $Y \in g(G)$, $X \in f(Y)$, X is π -normally embedded in Y and Y is π -normally embedded in G, then X is π -normally embedded in G. In particular, if f and g are π -normally embedded, then $f \circ g$ is π -normally embedded.

PROOF. Let L denote the $\mathfrak{L}_{\pi}(g)$ -radical of G. Then $Y \cap L \in g(L)$ and, by the Frattini-argument, there exists $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $G_{\pi} \leq N_{G}(Y \cap L)$. Hence $G_{\pi} \cap Y \cap L \in \operatorname{Hall}_{\pi}(Y \cap L) \subseteq \operatorname{Hall}_{\pi}(L)$ since $L \in \mathfrak{L}_{\pi}(g)$, and so $G_{\pi} \cap L \leq Y$. Since Y is π -normally embedded in G, $\operatorname{Hall}_{\pi}(Y) \subseteq \operatorname{Hall}_{\pi}(L)$ by (2.2). Therefore, $G_{\pi} \cap L \in \operatorname{Hall}_{\pi}(Y)$.

Let $X_{\pi} \in \text{Hall}_{\pi}(X)$. Then there exists $y \in Y$ such that $X_{\pi} \leq \leq (G_{\pi} \cap L)^{y}$. Since $X \in f(Y)$ and X is π -normally embedded in Y, it follows by (2.2) that

$$X_{\pi} = (G_{\pi} \cap L)^{\mathtt{v}} \cap Y_{\mathfrak{L}_{\pi}(f)} = (G_{\pi} \cap L \cap Y_{\mathfrak{L}_{\pi}(f)})^{\mathtt{v}} = (G_{\pi} \cap (L \cap Y)_{\mathfrak{L}_{\pi}(f)})^{\mathtt{v}} \,.$$

Since the $\mathfrak{L}_{\pi}(f)$ -radical of $L \cap Y$ is a characteristic subgroup of $L \cap Y$ and $Y \cap L \trianglelefteq (Y \cap L) G_{\pi}$, it follows that G_{π} normalizes $(L \cap Y)_{\mathfrak{L}_{\pi}(f)}$. This means that $X_{\pi} \oiint G_{\pi}^{y}$. By part (a) of (2.3) $f \circ g$ is a conjugate Fitting functor. Hence by (2.2) $X_{\pi} \in \operatorname{Hall}_{\pi} (G_{\mathfrak{L}_{\pi}(f \circ g)})$ and so X_{π} is π -normally embedded. This completes the proof.

LEMMA 3.7. Let $G \in S$, $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ and X, Y subgroups of G such that $X \cap G_{\pi} \in \operatorname{Hall}_{\pi}(X)$, $Y \cap G_{\pi} \in \operatorname{Hall}_{\pi}(Y)$ and X, Y π -normally embedded in G. Then

(a) $X \cap Y \cap G_{\pi} \in \operatorname{Hall}_{\pi} (X \cap Y)$ and $X \cap Y$ is π -normally embedded.

(b) If $XY \leq G$, then $XY \cap G_{\pi} \in \operatorname{Hall}_{\pi}(XY)$ and XY is π -normally embedded.

PROOF. Since X and Y are π -normally embedded in G, there exist normal subgroups M and N of G such that $X \cap G_{\pi} = M \cap G_{\pi}$ and $Y \cap G_{\pi} = N \cap G_{\pi}$.

(a) Let $Z \in \operatorname{Hall}_{\pi} (X \cap Y)$ such that $X \cap Y \cap G_{\pi} \leq Z$. Then there exist $x \in X$ and $y \in Y$ such that $Z \leq (X \cap G_{\pi})^* \leq M$ and $Z \leq (Y \cap G_{\pi})^* \leq N$. Thus $M \cap N \cap G_{\pi} = X \cap Y \cap G_{\pi} \leq Z \leq M \cap N$ and Z is a π -group. Hence $X \cap Y \cap G_{\pi} = Z \in \operatorname{Hall}_{\pi} (X \cap Y) \cap$ $\cap \operatorname{Hall}_{\pi} (M \cap N)$. Since $M \cap N \leq G$, it follows that $X \cap Y$ is π -normally embedded.

(b) $(X \cap G_{\pi})(Y \cap G_{\pi}) = (M \cap G_{\pi})(N \cap G_{\pi}) = MN \cap G_{\pi}$ is a subgroup of $XY \cap G_{\pi} \leq XY$. Thus $(X \cap G_{\pi})(Y \cap G_{\pi}) \in \text{Hall}_{\pi}(XY)$ and $XY \cap G_{\pi} = (X \cap G_{\pi})(Y \cap G_{\pi}) \in \text{Hall}_{\pi}(XY) \cap \text{Hall}_{\pi}(MN)$. Therefore, XY is π -normally embedded.

As a consequence of parts (b) and (c) of (2.3) and (3.7), we obtain the following result.

PROPOSITION 3.8. Let $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a family of pronormal conjugate Fitting functors, and π a set of primes.

(a) If the functors in $\{f_{\lambda}\}_{\lambda \in \Lambda}$ are π -normally embedded, then $\bigwedge_{\lambda \in \Lambda} f_{\lambda}$ is a π -normally embedded conjugate Fitting functor.

(b) If the functors in $\{f_{\lambda}\}_{\lambda \in \Lambda}$ are π -normally embedded functors of pairwise disjoint characteristics and pairwise commuting, then $\bigvee f_{\lambda}$ is a π -normally embedded conjugate Fitting functor.

PROPOSITION 3.9. Let f, g be conjugate Fitting functors and let θ , π be sets of primes. Then

(a) If $\pi \subseteq \theta$ and g is π -normally embedded, then $f \bigsqcup_{\theta} g$ is π -normally embedded.

(b) If $\pi \subseteq \theta'$ and f is π -normally embedded, then $f \bigsqcup_{\theta} g$ is π -normally embedded.

PROOF. Let $G \in S$, $T \in (f \bigsqcup_{\theta} g)(G)$. Then there exist $X \in f(G_{\mathfrak{L}_{\theta}(f)})$ and $G_{\theta} \in \operatorname{Hall}_{\theta}(G)$ such that $G_{\theta} \leq N_{g}(X)$ and $T/X \in g(G_{\theta}X/X)$.

(a) Assume that $\pi \subseteq \theta$ and g is π -normally embedded. Let $T_{\pi} \in \operatorname{Hall}_{\pi}(T)$. Then there exists $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $T_{\pi} \leq G_{\pi} \in \operatorname{Hall}_{\pi}(G_{\theta}X)$. Since $T_{\pi}X/X \in \operatorname{Hall}_{\pi}(T/X)$, $G_{\pi}X/X \in \operatorname{Hall}_{\pi}(G_{\theta}X/X)$

and g is π -normally embedded, it follows that $T_{\pi}X \cong G_{\pi}X$. Moreover, $T_{\pi} = T \cap G_{\pi} \ge X \cap G_{\pi}$ so that $T_{\pi} = T_{\pi}(X \cap G_{\pi}) = T_{\pi}X \cap G_{\pi} \cong G_{\pi}$. Because of part (b) of (3.2) $f \bigsqcup_{\alpha} g$ is π -normally embedded.

(b) Assume that $\pi \subseteq \theta'$ and f is π -normally embedded. Then $\operatorname{Hall}_{\pi}(T) = \operatorname{Hall}_{\pi}(X)$. Let $X_{\pi} \in \operatorname{Hall}_{\pi}(X)$ and let $M = G_{\mathcal{L}_{\theta}(f)}$. By part (a) of (3.2), $X_{\pi} \in \operatorname{Hall}_{\pi}(M_{\mathcal{L}_{\pi}(f)})$. Therefore, $f \bigsqcup_{\theta} g$ is π -normally embedded. This completes the proof.

Let I be an index set such that

(a) P = ∪_{λ∈I} π(λ), π(λ) a non-empty set of primes,
(b) π(λ₁) ∩ π(λ₂) = Ø whenever λ₁ ≠ λ₂.

DEFINITION 3.10. A Fitting functor f is said to be *I*-normally embedded if f is $\pi(\lambda)$ -normally embedded for each $\lambda \in I$.

REMARKS 3.11. (a) For $I = \mathbb{P}$ and $\pi(p) = \{p\}$ one has in (3.10) the definition of normally embedded Fitting functor.

(b) If f is a conjugate Fitting functor, then it follows from part (c) of (3.3) that f is I-normally embedded if and only if, for each $\lambda \in I$ and each $p \in \pi(\lambda)$, f is p-normally embedded and $\mathcal{L}_p(f) = \mathcal{L}_{\pi(\lambda)} \mathcal{S}_{p'}$. In particular, if f is I-normally embedded, then f is normally embedded.

DEFINITION 3.12. Let $G \in S$ and, for each $\lambda \in I$, let $N(\lambda) \leq G$. A collection of subgroups $\{H(\lambda): \lambda \in I\}$ is called an *I-Sylow system* associated with $\{N(\lambda): \lambda \in I\}$ if the following holds:

- (a) $H(\lambda) \in \operatorname{Hall}_{\pi(\lambda)}(N(\lambda)), \ \lambda \in I$
- (b) $H(\lambda_1)H(\lambda_2) = H(\lambda_2)H(\lambda_1), \ \lambda_1, \ \lambda_2 \in I.$

We note that for $I = \mathbb{P}$ and $\pi(p) = \{p\}$, (3.12) is the concept of generalized Sylow system due to Fischer (see [5]).

LEMMA 3.13. Let $G \in S$ and let $\{N(\lambda) : \lambda \in I\}$ be a collection of normal subgroups of G. Then

(a) There is an I-Sylow system of G associated with the normal subgroups $\{N(\lambda): \lambda \in I\}$ of G.

(b) Any two such systems are conjugate.

(c) Let $\{H(\lambda): \lambda \in I\}$ be an I-Sylow system associated with $\{N(\lambda): \lambda \in I\}$ and let $D \leq G$. Then $\{H(\lambda) \cap D: \lambda \in I\}$ is an I-Sylow system of D associated with the normal subgroups $\{N(\lambda) \cap D: \lambda \in I\}$ of D.

PROOF. (a) Let Σ be a Sylow system of G, $\lambda \in I$ and $H(\lambda) = S_{\pi(\lambda)} \cap N(\lambda)$ with $S_{\pi(\lambda)}$ the Hall $\pi(\lambda)$ -subgroup of G in Σ . Then $H(\lambda) \in G$ Hall $_{\pi(\lambda)}(N(\lambda))$. Let $\lambda, \mu \in I$. Then $S_{\pi(\lambda)}S_{\pi(\mu)} = S_{\pi(\mu)}S_{\pi(\lambda)}$ and it follows from (2.6) that $H(\lambda)H(\mu) = H(\mu)H(\lambda)$. This shows that $\{H(\lambda): \lambda \in I\}$ is an *I*-Sylow system of G associated with $\{N(\lambda): \lambda \in I\}$.

(b) Let $G \in S$ and $\{H(\lambda): \lambda \in I\}$ be an *I*-Sylow system of *G* associated with the normal subgroups $\{N(\lambda): \lambda \in I\}$ of *G*. Since *G* is a finite group and $\{\pi(\lambda): \lambda \in I\}$ is a partition of **P**, there is a finite set $\{\lambda_1, ..., \lambda_n\} \subseteq I$ such that all the prime divisors of the order of *G* belong to $\bigcup_{i=1}^{n} \pi(\lambda_i)$. Let $H = H(\lambda_1) ... H(\lambda_n) \leq G$. It is clear that $H(\lambda_i) \in G$ Hall_{$\pi(\lambda_i)$} (*H*) for all $i \in \{1, ..., n\}$. By a result of section 3 of **P**. Hall [9], $H(\lambda_i)$, $1 \leq i \leq n$, is part of a Sylow system of *H*. Therefore, there exists a Sylow system Σ of *G* such that $H(\lambda_i) = G_{\pi(\lambda_i)} \cap H$, $G_{\pi(\lambda_i)} \in \Sigma \ 1 \leq i \leq n$. Thus $H(\lambda) \leq G_{\pi(\lambda)}$ where $G_{\pi(\lambda)} \in \Sigma$ for all $\lambda \in I$, and so $H(\lambda) = G_{\pi(\lambda)} \cap N(\lambda)$ for all $\lambda \in I$.

So we have proved that each *I*-Sylow system of *G* associated with $\{N(\lambda): \lambda \in I\}$ has the form $\{G_{\pi(\lambda)} \cap N(\lambda): \lambda \in I, G_{\pi(\lambda)} \in \Sigma\}$ for some Sylow system Σ of *G*. The result follows from the conjugacy of the Sylow systems of *G*.

(c) This follows from (2.6).

The next theorem characterizes conjugate *I*-normally embedded Fitting functors.

THEOREM 3.14. (a) Let $\{\mathfrak{X}(\lambda): \lambda \in I\}$ be a family of Fitting classes. Then $f = \bigvee_{\lambda \in I} (\operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{\mathfrak{X}(\lambda)})$ is a conjugate I-normally embedded Fitting functor and $\mathfrak{L}_{\pi(\lambda)}(f) = \mathfrak{X}(\lambda) \mathfrak{S}_{\pi(\lambda)}$, for each $\lambda \in I$.

(b) If f is a conjugate I-normally embedded Fitting functor, then $f = \bigvee_{\lambda \in I} (\operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi(\lambda)}(f)}).$

PROOF. (a) For each $G \in S$, let

 $f(G) = \left\{ \prod_{\lambda \in I} H(\lambda) \colon \{H(\lambda)\}_{\lambda \in I} \text{ is an } I\text{-Sylow system of } G \\ \text{associated with } \{G_{\mathfrak{X}(\lambda)}\}_{\lambda \in I} \right\}.$

By (3.13) f is a conjugate *I*-normally embedded Fitting functor. It is clear that $\operatorname{Hall}_{\pi(\lambda)} \circ f = \operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{\mathfrak{X}(\lambda)}$ and that $\mathfrak{L}_{\pi(\lambda)}(f) = \mathfrak{L}_{\pi(\lambda)}(\operatorname{Rad}_{\mathfrak{X}(\lambda)}) = \mathfrak{X}(\lambda) \, \mathfrak{S}_{\pi(\lambda)'}$. Further it follows that $f = \bigvee_{\lambda \in I} (\operatorname{Hall}_{\pi(\lambda)} \circ \circ \operatorname{Rad}_{\mathfrak{X}(\lambda)})$.

(b) As f and $\bigvee (\operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{\mathfrak{X}(\lambda)})$ are conjugate Fitting functors, the result follows from part (a) of (3.2).

By part (b) of (3.11) and Satz 7.4 of [3] we obtain the following theorem.

THEOREM 3.15. Let f be an I-normally embedded Fitting functor. Then f is the union of conjugate I-normally embedded Fitting functors.

Let f be a conjugate *I*-normally embedded Fitting functor. By (3.5) each member of Locksec (f) is also a conjugate *I*-normally embedded Fitting functor. Since f is a conjugate normally embedded functor, it follows from part (a) of (7.7) and (7.9) of [4] that Locksec (f) has an element f_* such that $f_* \ll g$ for all $g \in$ Locksec (f). Open question 7 of [4] is to give a description of f_* . In Theorem 3.17 such a description is presented. We first establish the next routine lemma.

LEMMA 3.16. Let f and g be conjugate I-normally embedded Fitting functors. Then $f \ll g$ if and only if $\mathfrak{L}_{\pi(\lambda)}(f) \subseteq \mathfrak{L}_{\pi(\lambda)}(g)$ for each $\lambda \in I$.

PROOF. Assume that $L_{\pi(\lambda)}(f) \subseteq \mathfrak{L}_{\pi(\lambda)}(g)$ for each $\lambda \in I$. By (3.14) we conclude that $f \ll g$.

Conversely, assume that $f \ll g$. Let $\lambda \in I$ and let $G \in \mathcal{L}_{\pi(\lambda)}(f)$. Let $V \in f(G)$ and let $V_{\pi(\lambda)} \in \operatorname{Hall}_{\pi(\lambda)}(V)$. Then $V_{\pi(\lambda)} \in \operatorname{Hall}_{\pi(\lambda)}(G)$. Since $f \ll g$, there exists $U \in g(G)$ such that $V \leq U$ and hence $V_{\pi(\lambda)} \in \operatorname{Hall}_{\pi(\lambda)}(U)$. This means that $\mathcal{L}_{\pi(\lambda)}(f) \subseteq \mathcal{L}_{\pi(\lambda)}(g)$ for each $\lambda \in I$.

THEOREM 3.17. Let f be a conjugate I-normally embedded Fitting functor. Then $f_* = \bigvee_{\lambda \in I} (\operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{(\mathfrak{L}_{\pi(\lambda)}(f))_*}).$

PROOF. For each $\lambda \in I$, let $\mathfrak{X}(\lambda) = (\mathfrak{L}_{\pi(\lambda)}(f))_*$ and let $h = \bigvee_{\lambda \in I} (\operatorname{Hall}_{\pi(\lambda)} \circ \operatorname{Rad}_{\mathfrak{X}(\lambda)})$. By part (a) of (3.14) h is a conjugate *I*-normally embedded Fitting functor and $\mathfrak{L}_{\pi(\lambda)}(h) = \mathfrak{X}(\lambda) \, \mathfrak{S}_{\pi(\lambda)'}$ for each $\lambda \in I$. By part (d) of (2.5) we have

$$\mathfrak{L}_{\pi(\lambda)}(h^*) = \mathfrak{L}_{\pi(\lambda)}(h)^* = \mathfrak{X}(\lambda)^* \, \mathbb{S}_{\pi(\lambda)'} = = (\mathfrak{L}_{\pi(\lambda)}(f))^* \, \mathbb{S}_{\pi(\lambda)'} = \mathfrak{L}_{\pi(\lambda)}(f^*) \, \mathbb{S}_{\pi(\lambda)'} = \mathfrak{L}_{\pi(\lambda)}(f^*)$$

for each $\lambda \in I$. By (3.14) it follows that $h^* = f^*$ and hence $h \in E$ Locksec (f).

Let $g \in \text{Locksec}(f)$. By part (d) of (2.5), we see that $(\mathfrak{L}_{\pi(\lambda)}(g))^* = \mathfrak{L}_{\pi(\lambda)}(g^*) = \mathfrak{L}_{\pi(\lambda)}(f^*) = \mathfrak{L}_{\pi(\lambda)}(f)^*$ and hence $\mathfrak{X}(\lambda) = (\mathfrak{L}_{\pi(\lambda)}(f))_* \subseteq \mathfrak{L}_{\pi(\lambda)}(g)$ for each $\lambda \in I$. Thus $\mathfrak{L}_{\pi(\lambda)}(h) = \mathfrak{X}(\lambda) \mathfrak{S}_{\pi(\lambda)'} \subseteq \mathfrak{L}_{\pi(\lambda)}(g) \mathfrak{S}_{\pi(\lambda)'} = \mathfrak{L}_{\pi(\lambda)}(g)$ for each $\lambda \in I$. By (3.16) $h \ll g$ for all $g \in \text{Locksec}(f)$ and hence $f_* = h$. This completes the proof.

Using the description of f_* in (3.17), it follows that $f_* = f \circ \text{Rad}$ where $f = \text{Hall}_{\pi}$. This answers the test case in problem 7 of [4].

4. π -normally embedded Fitting classes.

Let π be a set of primes. A Fitting class \mathcal{F} is said to be π -normally embedded provided that $\operatorname{Inj}_{\mathcal{F}}$ is a π -normally embedded Fitting functor. In this section we generalize a number of known results for $\pi = \{p\}$ (see [7]). For example, we show in (4.2) that a Fitting class \mathcal{F} is π -normally embedded if and only if $\mathfrak{L}_{\pi}(\mathcal{F})$ is a π -normally embedded Fitting class.

PROPOSITION 4.1. Let \mathcal{F} be a π -normally embedded Fitting class. Then

(a) If $G \in S$, then $G_{\mathfrak{L}_{\pi}(\mathcal{F})}G_{\pi'}$ is an $\mathfrak{L}_{\pi}(\mathcal{F})$ -injector of G where $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$.

(b) $\mathcal{F}S_{\pi}$, is a dominant Fitting class.

PROOF. (a) Let V be an \mathcal{F} -injector of G, $V_{\pi} \in \operatorname{Hall}_{\pi}(V)$ and $V_{\pi'} \in \operatorname{Hall}_{\pi'}(V)$. Further, let $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ and $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$ such that $V_{\pi} \leq G_{\pi}$ and $V_{\pi'} \leq G_{\pi'}$. Since $\operatorname{Inj}_{\mathcal{F}}$ is π -normally embedded, $V_{\pi} = G_{\pi} \cap G_{\Gamma_{\pi}(\mathcal{F})}$. Therefore,

$$VG_{\pi'} = V_{\pi}G_{\pi'} = (G_{\pi} \cap G_{\mathfrak{L}_{\pi}(\mathcal{F})})G_{\pi'} = G_{\mathfrak{L}_{\pi}(\mathcal{F})}G_{\pi'}$$

is a subgroup of G. By Proposition 4.4 of [11], $G_{\mathfrak{L}_{\pi}(\mathcal{F})}G_{\pi'}$ is an $\mathfrak{L}_{\pi}(\mathcal{F})$ -injector of G.

(b) Since $\operatorname{Inj}_{\mathscr{F}}$ is π -normally embedded, it follows from (3.9) that $\operatorname{Inj}_{\mathscr{F}S_{\pi'}} = \operatorname{Inj}_{\mathscr{F}} \prod_{\pi'} \operatorname{Inj}_{S_{\pi'}}$ is π -normally embedded. Hence we may assume that $\mathscr{F} = \mathscr{F}S_{\pi'}$.

Let $G \in S$ and $H \leq G$ such that $G_{\mathcal{F}} \leq H \in \mathcal{F}$. We show that H is a subgroup of an \mathcal{F} -injector of G. Let $F/G_{\mathcal{F}}$ be the Fitting subgroup

of $G/G_{\mathcal{F}}$. Since $\mathcal{F}S_{\pi'} = \mathcal{F}$, and $F/G_{\mathcal{F}} \in \mathcal{N}$, we have $F/G_{\mathcal{F}} \in S_{\pi}$. Moreover $H \cap F/G_{\mathcal{F}} \supseteq \subseteq G/G_{\mathcal{F}}$ and so $H \cap F \supseteq \subseteq G$. $H \cap F \supseteq H$ and so $H \cap F \in \mathcal{F}$. Therefore $H \cap F = G_{\mathcal{F}}$ which is an \mathcal{F} -injector of F. By Lemma 4 of [6], H is an \mathcal{F} -injector of HF. Let $P \in \operatorname{Hall}_{\pi}(HF)$ and $H_{\pi} \in \operatorname{Hall}_{\pi}(H)$ such that $H_{\pi} \leq P$. By part (b) of (3.2), we have $H_{\pi} \supseteq P$ and so $H_{\pi} G_{\mathcal{F}}/G_{\mathcal{F}} \supseteq PG_{\mathcal{F}}/G_{\mathcal{F}}$. Since $PG_{\mathcal{F}}/G_{\mathcal{F}} \in \operatorname{Hall}_{\pi}(HF/G_{\mathcal{F}})$ and $F/G_{\mathcal{F}} \in S_{\pi}, F/G_{\mathcal{F}} \supseteq PG_{\mathcal{F}}/G_{\mathcal{F}}$. This means that

$$[H_{\pi}G_{\mathfrak{F}}/G_{\mathfrak{F}}, F/G_{\mathfrak{F}}] \leq (H_{\pi}G_{\mathfrak{F}} \cap F)/G_{\mathfrak{F}} \leq (H \cap F)/G_{\mathfrak{F}} = G_{\mathfrak{F}}/G_{\mathfrak{F}} \ .$$

and hence $H_{\pi}G_{\mathcal{F}}/G_{\mathcal{F}}$ centralizes $F/G_{\mathcal{F}}$. Therefore, $H_{\pi} \leq F \cap H = G_{\mathcal{F}}$ and it follows that $H \leq G_{\mathcal{F}}G_{\pi'}$ for some $G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)$. Since $\mathcal{F}S_{\pi'} = \mathcal{F}$, $\mathfrak{L}_{\pi}(\mathcal{F}) = \mathcal{F}$ by Proposition 3.1 of [11]. By (a) $G_{\mathcal{F}}G_{\pi'}$ is an \mathcal{F} -injector of G and so the proof is complete.

THEOREM 4.2. Let \mathcal{F} be a Fitting class and π a set of primes. Then \mathcal{F} is π -normally embedded if and only if $\mathfrak{L}_{\pi}(\mathcal{F})$ is π -normally embedded.

PROOF. Assume that \mathcal{F} is π -normally embedded. Then, by part (a) of (4.1), $\operatorname{Inj}_{\mathfrak{L}_{\pi}(\mathcal{F})}(G) = \{G_{\mathfrak{L}_{\pi}(\mathcal{F})}G_{\pi'}: G_{\pi'} \in \operatorname{Hall}_{\pi'}(G)\}$ and so $\mathfrak{L}_{\pi}(\mathcal{F})$ is π -normally embedded.

Conversely, assume that $\mathfrak{L}_{\pi}(\mathcal{F})$ is π -normally embedded. By part (b) of (4.1) $\mathfrak{L}_{\pi}(\mathcal{F}) \mathfrak{S}_{\pi'} = \mathfrak{L}_{\pi}(\mathcal{F})$ is dominant. Let V be an \mathcal{F} -injector of G. Since V is an \mathcal{F} -injector of $G_{\mathfrak{L}_{\pi}(\mathcal{F})}V$, it follows that $G_{\mathfrak{L}_{\pi}(\mathcal{F})}V \in \mathfrak{L}_{\pi}(\mathcal{F})$. Hence $\mathcal{F} \ll \mathfrak{L}_{\pi}(\mathcal{F})$ since $\mathfrak{L}_{\pi}(\mathcal{F})$ is dominant. This means that $\operatorname{Hall}_{\pi^{\circ}} \circ \operatorname{Inj}_{\mathcal{F}} = \operatorname{Hall}_{\pi^{\circ}} \operatorname{Inj}_{\mathfrak{L}_{\pi}(\mathcal{F})}$, and since $\mathfrak{L}_{\pi}(\mathcal{F})$ is π -normally embedded and $\mathfrak{L}_{\pi}(\mathfrak{L}_{\pi}(\mathcal{F})) = \mathfrak{L}_{\pi}(\mathcal{F})$, we have

$$\operatorname{Hall}_{\pi} \circ \operatorname{Inj}_{\mathcal{F}} = \operatorname{Hall}_{\pi} \circ \operatorname{Inj}_{\mathfrak{L}_{\pi}(\mathcal{F})} = \operatorname{Hall}_{\pi} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(\mathcal{F})}.$$

Therefore, \mathcal{F} is π -normally embedded.

The next proposition gives three necessary conditions for \mathcal{F} to be π -normally embedded. Note that, in the case $\pi = \{p\}$, they are all satisfied for every \mathcal{F} .

PROPOSITION 4.3. Let F be a Fitting class, π a set of primes and consider the following properties

- (a) \mathcal{F} is π -normally embedded.
- (b) $\mathfrak{L}_{p}(\mathcal{F}) = \mathfrak{L}_{\pi}(\mathcal{F}) \mathfrak{S}_{p'}$ for all $p \in \pi$.

- (c) The groups in FS_{π} have normal F-injectors.
- (d) $\mathcal{F} \subseteq S_{\pi'}$ or $S_{\pi} \subseteq \mathcal{F}^*$.

Then (a) implies (b), (b) implies (c) and (c) implies (d).

PROOF. (a) \Rightarrow (b). This is due to part (c) of (3.3).

 $(b) \Rightarrow (c)$. Suppose for a contradiction that G is a group of minimal order such that $G \in \mathcal{FS}_{\pi}$ and an \mathcal{F} -injector of G is not a normal subgroup of G. Let us consider Theorem 1.1 of [1] for $\mathfrak{X} = \mathcal{F}$ and $\mathfrak{Y} = \mathfrak{S}$. The subgroups \mathcal{S} in the proof of this theorem contain $G_{\mathcal{F}}$ and hence $S/G_{\mathcal{F}} \in S_{\pi}$. Therefore, the arguments on the minimality of G are valid here and it follows that G = MV where M is the unique maximal normal subgroup of G, $V \in \operatorname{Inj}_{\mathcal{F}}(G)$, $M \cap V = G_{\mathcal{F}}$, $M/G_{\mathcal{F}}$ is a nontrivial q-group and |G:M| = p where p and q are distinct prime numbers. Since $G \in \mathcal{FS}_{\pi}$, we have $p, q \in \pi$ and $G_{\mathfrak{L}_{\pi}(\mathcal{F})} \in \mathcal{FS}_{\pi} \cap$ $\cap \mathfrak{L}_{\pi}(\mathcal{F}) = \mathcal{F}$. Thus $G_{\mathfrak{L}_{\pi}(\mathcal{F})} = G_{\mathcal{F}}$ and so $G \notin \mathfrak{L}_{\pi}(\mathcal{F}) \mathfrak{S}_{p'}, p \in \pi$. But Vhas q-index in G and consequently $G \in \mathfrak{L}_{p}(\mathcal{F})$, contradiction.

 $(c) \Rightarrow (d)$. Assume that the groups in $\mathcal{F}S_{\pi}$ have normal \mathcal{F} -injectors. In particular, the groups in S_{π} have normal \mathcal{F} -injectors. Since $\operatorname{Inj}_{\mathcal{F}\cap S_{\pi}} = \operatorname{Inj}_{\mathcal{F}}\circ \operatorname{Hall}_{\pi}$, we have that $\mathcal{F}\cap S_{\pi}$ is strictly normal in S_{π} . By Theorem 4.7 of [2], it follows that $\mathcal{F}\cap S_{\pi} = \{1\}$ or $(\mathcal{F}\cap S_{\pi})^* = S_{\pi}$. This means that $\mathcal{F} \subseteq S_{\pi'}$ or $S_{\pi} \subseteq \mathcal{F}^*$.

In the next example it is shown that (d) does not imply (c).

EXAMPLE 4.4. Let $\pi = \{2, 3\}$ and let $\mathcal{F} = S_{\pi}S_{3'}$. Let $G = C_{5} \setminus (C_{3} \setminus C_{2})$ where C_{p} is the cyclic group of order p. Then $O_{\pi}(G) = 1$, $G \in S_{\pi}S_{3'}S_{\pi} = \mathcal{F}S_{\pi}$ and $\operatorname{Inj}_{\mathcal{F}}(G) = \operatorname{Hall}_{3'}(G)$. Thus G does not have normal \mathcal{F} -injectors and $S_{\pi} \subseteq \mathcal{F}$.

The next result is used to establish another equivalent property to (2.2) in the case $f = \text{Inj}_{\mathcal{F}}$, \mathcal{F} a Fitting class.

LEMMA 4.5. Let \mathcal{F} be a Fitting class and π a set of primes. Then $\operatorname{Rad}_{\mathcal{F}} \circ \operatorname{Inj}_{\mathcal{F}S_{\pi}} = \operatorname{Inj}_{\mathcal{F}} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(\mathcal{F})}$.

PROOF. Let us write $f = \operatorname{Rad}_{\mathcal{F}} \circ \operatorname{Inj}_{\mathcal{F}S_{\pi}}$ and $g = \operatorname{Inj}_{\mathcal{F}} \circ \operatorname{Rad}_{\mathfrak{L}_{\pi}(\mathcal{F})}$: Let $G \in S$ and $H_{\mathcal{F}} \in f(G)$ where $H \in \operatorname{Inj}_{\mathcal{F}S_{\pi}}(G)$. By Proposition 3.2 of [11] there exist $W \in g(G)$ and $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $G_{\pi} \leq N_{g}(W)$ and $H = WG_{\pi}$. Since $W \leq H$, it follows that $W \leq H_{\mathcal{F}}$ and so $H_{\mathcal{F}} = WG_{\pi} \cap$ $\cap H_{\mathcal{F}} = W(G_{\pi} \cap H_{\mathcal{F}})$. Hence we have that $H_{\mathcal{F}} \cap G_{\pi} \in \operatorname{Hall}_{\pi}(H_{\mathcal{F}})$, $H_{\mathcal{F}} \cap G_{\pi} \leq G_{\pi}$ and $H_{\mathcal{F}} \in f(G)$ and so, by (2.2), $H_{\mathcal{F}} \cap G_{\pi} \leq G_{\mathfrak{L}_{\pi}(f)}$. Moreover, by part (b) of Proposition 4.4 of [3],

$$\mathfrak{L}_{\pi}(f) = \mathfrak{Y}(\mathfrak{F}\mathfrak{S}_{\pi}, \mathfrak{F}\mathfrak{S}_{\pi'}) \cap \mathfrak{L}_{\pi}(\mathfrak{F}\mathfrak{S}_{\pi}) = \mathfrak{Y}(\mathfrak{F}\mathfrak{S}_{\pi}, \mathfrak{F}) = \mathfrak{L}_{\pi}(\mathfrak{F}).$$

Therefore, $W \leq H_{\mathcal{F}} = W(H_{\mathcal{F}} \cap G_{\pi}) \leq G_{\mathfrak{L}_{\pi}(\mathcal{F})}$ and since W is an \mathcal{F} -injector of $G_{\mathfrak{L}_{\pi}(\mathcal{F})}$, it follows that $W = H_{\mathcal{F}} \in f(G) \cap g(G)$. Since f and g are conjugate Fitting functors, the result follows.

Let V be an \mathcal{F} -injector of G. Then $V \cap G_{\mathfrak{l}_{\pi}(\mathcal{F})}$ is an \mathcal{F} -injector of $G_{\mathfrak{l}_{\pi}(\mathcal{F})}$ and, by the Frattini-argument, the Hall π -subgroups of $N_{\mathfrak{g}}(V \cap G_{\mathfrak{l}_{\pi}(\mathcal{F})})$ are Hall π -subgroups of G. Since $V \leq N_{\mathfrak{g}}(V \cap G_{\mathfrak{l}_{\pi}(\mathcal{F})})$, if $V_{\pi} \in \operatorname{Hall}_{\pi}(V)$, then there exists $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $V_{\pi} \leq G_{\pi}$ and $G_{\pi} \leq N_{\mathfrak{g}}(V \cap G_{\mathfrak{l}_{\pi}(\mathcal{F})})$. Under these circumstances we have

PROPOSITION 4.6. The following are equivalent

- (a) V is π -normally embedded in G
- (b) $V_{\pi} \trianglelefteq \trianglelefteq G_{\pi}$ and $V_{\pi}(V \cap G_{\Gamma_{\pi}(\mathcal{F})}) \in \mathcal{F}$.

PROOF. Assume that V is π -normally embedded in G and let L denote the $\mathfrak{L}_{\pi}(\mathcal{F})$ -radical of G. Then by (2.2) $V_{\pi} \leq G_{\pi}$ and $V_{\pi} \leq L$, so $V_{\pi}(V \cap L) = V \cap L \in \mathcal{F}$.

Conversely, let $V_{\pi} \leq \underline{\subseteq} G_{\pi}$ and $V_{\pi}(V \cap L) \in \mathcal{F}$. Then $V_{\pi}(V \cap L) \leq \underline{\subseteq} \leq \underline{\subseteq} G_{\pi}(V \cap L)$ which is an $\mathcal{F}S_{\pi}$ -injector of G by Proposition (3.2) of [11]. Hence the \mathcal{F} -radical of $G_{\pi}(V \cap L)$ contains $V_{\pi}(V \cap L)$. By (4.5), $V_{\pi}(V \cap L) \leq L$ and so $V_{\pi} \leq L$. From (2.2) we conclude that V is π -normally embedded.

Let \mathcal{F} be a Fitting class and π a set of primes. \mathcal{F} is said to satisfy condition α provided that for all $G \in S$, $V_{\pi} \in \operatorname{Hall}_{\pi} \circ \operatorname{Inj}_{\mathcal{F}}(G)$, there exists $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$ such that $V_{\pi} \leq d_{\pi} = G_{\pi}$ and $V_{\pi}G_{\mathcal{F}} \in \mathcal{F}$.

COROLLARY 4.7. Let π be a set of primes and let \mathcal{F} be a Fitting class satisfying condition α . Then \mathcal{F} is π -normally embedded.

PROOF. Assume that \mathcal{F} satisfies condition α and let G be of minimal order such that V_{π} is not normal in G_{π} for some $V_{\pi} \leq G_{\pi}$, $G_{\pi} \in \operatorname{Hall}_{\pi}(G)$, $V_{\pi} \in \operatorname{Hall}_{\pi}(V)$, and $V \in \operatorname{Inj}_{\mathcal{F}}(G)$. Let L denote the $\mathfrak{L}_{\pi}(\mathcal{F})$ -radical of G. V is an \mathcal{F} -injector of $N_{g}(V \cap L)$ and $N_{g}(V \cap L)$ has π' -index in G. Therefore, by minimality of G, $G = N_{g}(V \cap L)$ and hence $G_{\mathcal{F}} = V \cap L$. This contradicts the hypothesis of (4.6) and consequently \mathcal{F} is π -normally embedded.

REFERENCES

- J. C. BEIDLEMAN B. BREWSTER, Strict normality in Fitting classes I, J. Algebra, 51 (1978), pp. 211-217.
- [2] J. C. BEIDLEMAN B. BREWSTER, Strict normality in Fitting classes III, Comm. in Algebra, 10 (7) (1982), pp. 741-766.
- [3] J. C. BEIDLEMAN B. BREWSTER P. HAUCK, Fittingfunktoren in endlichen auflösbaren Gruppen I, Math. Z., 182 (1983), pp. 359-384.
- [4] J. C. BEIDLEMAN B. BREWSTER P. HAUCK, Fitting functors in finite solvable groups II, Math. Proc. Camb. Phil. Soc., 101 (1987), pp. 37-55.
- [5] G. CHAMBERS, p-normally embedded subgroups of finite soluble groups, J. Algebra, 16 (1970), pp. 442-455.
- [6] R. S. DARK, Some examples in the theory of injectors of finite soluble groups, Math. Z., 127 (1972), pp. 145-156.
- K. DOERK M. PORTA, Über Vertauschbarkeit, normale Einbettung und Dominanz bei Fittingklassen endlicher auflösbarer Gruppen, Arch. Math., 35 (1980), pp. 319-327.
- [8] M. P. GÁLLEGO, The radical of the Fitting class defined by a Fitting functor and a set of primes, Arch. Math., 48 (1987), pp. 36-39.
- [9] P. HALL, On the Sylow systems of a soluble group, Proc. London Math. Soc., 43 (1937), pp. 316-323.
- [10] B. HARTLEY, On Fischer's dualization of formation theory, Proc. London Math. Soc., 19 (3) (1969), pp. 193-207.
- [11] F. P. LOCKETT, On the theory of Fitting classes of finite soluble groups, Math. Z., 131 (1973), pp. 103-115.

Manoscritto pervenuto in redazione il 29 giugno 1987.