
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

H. PAHLINGS
Some sporadic groups as Galois groups
Rendiconti del Seminario Matematico della Università di Padova,
tome 79 (1988), p. 97-107
<http://www.numdam.org/item?id=RSMUP_1988__79__97_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1988__79__97_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Some Sporadic Groups as Galois Groups.

H. PAHLINGS (*)

In recent years a large number of finite simple groups have been
proved to be Galois groups over the field Q(t) or Qab(t) of rational func-
tions over Q or its maximal abelian extension Qa6 (see e.g. [1], [4], [5],
[7], [8], [11]). In [6] Matzat studies the problem for composite groups
(see also [7]). He defines a GAR-realization of a finite group G with
trivial center Z ( G ) for an algebraic function field K = k(tl, ... , tr ) of
finite transcendence degree over k to be a regular field extension 
with Galois group G with two additional properties:

(A) Aut has a subgroup A = Aut (G) and .g is the fixed
field of the group corresponding to Inn (G).

Any regular field extension with kR = ... , t~.) is

a rational function field over k. (Here k is the algebraic closure of k
and NA is the fixed field of A. ) Matzat shows (see [6]) that if all the
composition factors of a finite group G have GAR-realizations over
k(t), k a Hilbert field (just as Q or Qab) then G can be realized as a
Galois group over 1~. He also shows ([6], Satz 6) that

a ) the sporadic simple groups y ~22? Ji, J2, HS, Sz,
ON, 1 Co2 , Col , ~23? F5, F3, .I’2 , 91 have GAR -realizations
over Q(t) and

b) all sporadic simple groups with the possible exceptions He,
and J4 have GAR-realizations over Qab(t).

The purpose of this note is to prove

(*) Indirizzo dell’A.: Lehrstuhl D fur Mathematik, Templergraben 64,
5100 Aachen (Germania Fed.).
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THEOREM. The sporadic simple groups He, and J4 have GAR-
realizations over Q(t).

By extending the field of constants with ~ab one obtains from the
GAR-realizations over Q(t) GAR-realizations over Qab(t). Thus every
sporadic simple group has a GAR-realization over Qab(t) and so, in
particular, is a Galois group over Qab.

The method of proof is quite similar to that of [5]. For conjugacy
classes 01, ... , Cn of a finite group C let a class structure be

be the number of orbits of Inn (G) on

and

The point is, that n(C) (usually called « normalized structure con-

stant &#x3E;&#x3E;) can be computed from the character table of G :

where (zi, ..., = Irr (G) is the set of complex irreducible charac-
ters of G, gj E OJ’ and is the centralizer of as usual. Obviously
li(£)  n(~.) and in order to compute l’(£), which is relevant to the problem
at hand one usually invokes information on the maximal subgroups
of G. A special case of a theorem of Matzat and Thompson ([5], [11])
says, that if a finite group G with Z(G) _ ~1~ has a rational class
structure £ (i.e. a class structure with all conjugacy classes Ci rational)
with = 1, then there is a regular field extension NfQ(t) with
Galois group G. Hence the Theorem follows from the following Lemma
as in [6].

LEMMA. a) For the rational class structure C = (2B, 6C, 30~) of
Aut (He) one has li(C) = n(~) = 1.

b ) For the rational class structure

one has li(C) = = 1.
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c) For the rational class structure £ = ( 2A, 4 C, 11.A ) of J4 one
has =1.

Here we use the notation of the ATLAS [2]; in particular 2B, 6 C,
30A are rational conjugacy classes in Aut (He) = 2 of elements of
order 2, 6 and 30, respectively. From the Lemma and the result of
Matzat and Thompson cited above it follows that there is a regular
field extension NfQ(t) with Galois group Aut (He) (or Aut (.F’i22) ). The
fixed field of Inn (He) (resp. F~,~‘1 is a rational function field.
So one obtains a GAR-realization of He (resp. Fi22), since condition (R)
is fulfilled by [6], Bemerkung 4.

PROOF. a) Let G = Aut (He) and (2B, 2C, 30A). From the
character table of G (see e.g. [2]) it follows that n ( ~ ) = 1.

Let g, E 2B and g2 E 6C be such that glg2 E 30A, so (g1, g2, 
and let U = 91 g2~.

We will show that U = G, thereby proving that = n(C).
The maximal subgroups of G with order divisible by 30 are (cf. [2])
.He and

The first two subgroups in this list have relatively small indices in G
(2058 and 8330, respectively); so it is very easy to find the corresponding
permutation characters (the CAS-system, cf. [10], does this automat-
ically). One finds that the permutation characters vanish on the
class 30A, so that U cannot be contained in one of these subgroups.
Also 52 484 has no elements of order 15, because the 3-Sylow sub-
groups of GL(2, 5) have regular orbits on the non-zero vectors of the
standard module.

In order to exclude U ~ 3 ~ S~ X 2 and

the character tables of these groups are computed and the fusion of
these groups into G is determined as in [10]. The character tables
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of these groups are included in the appendix. The relevant parts of
the fusions are

and

Using the character tables one finds that

and

Hence U cannot be contained in 3 ~ S~ X 2 or (SsxSs):2 either, y so
U = G.

b) We consider the rational class structure C = (2A, 18E, 42A )
of G = Aut (14’i22 ) , again refering to the ATLAS [2] for the notation
of the classes (in the notation of the CAS-library, cf. [10], it would
be (2A, 18D, 42A)). From the character table one computes n(C) = 1.

Let g, E 2A and g2 E 18D be such that glg2 E 42A and U = g2~.
Again we have to show that U = G.

The maximal subgroups of Aut (Fi22) with orders divisible by 7
are (cf. [2], and a list of corrections and additions to [2] issued by the
authors)

and, of course, 
The groups PSU(6, 2), G2(3), M22 and PSp(6, 2) have no elements

of order 21. So U cannot be contained in one of the corresponding
extensions.
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The subgroup contains elements of 2A and 42A
but none of the class 18E, as the permutation character shows. Of

course, it is not feasible to list all candidates for a permutation character
of G of this degree (1 647 360). So at first the fusion of S3 3)
into G was determined as in [10], and hence the permutation character
of this subgroup. This gives very strong restrictions for the irreducible
constituents of the permutation character of so

that this can easily be found. The character table of .H = PSO+(8, 2) :
: ~3 X 2 is known (see e.g. [9]) and it is not difficult to obtain the fusion
of H into G. One finds that 18E n H and 42A n H are contained in
the normal subgroup N = PSO+ (8, 2 ) : A3 X 2, whereas 2A n N 0.
Hence U 6H and so U = G.

c) Let £ be the rational class structure (2A, 4C, 11A) of G = J4
in the notation of the ATLAS [2] or the CAS-library, cf. [10]. From
the charactertable one computes = 2 .

Any maximal subgroup of J, with order divisible by 11 is con-

jugate to one of the following (cf. [2], and the list of corrections and
additions to [2] issued by the authors):

has no elements of order 4. The subgroups Hi , H4, or H5 contain
no elements of the class 4C of J4 . This is so, since in J4 the elements
of 4C are not squares of elements, whereas all elements of order 4
in HI, H4, and H5 are, in fact, squares as can be seen from the pow-
ermaps in the character tables, cf. [2]. It is quite obvious that in H,,
a product of an involution with an element of order 4 does not have
order 11. Furthermore 211:M24 does not contain elements of the

class 11A. This can be seen e.g. by computing the only candidate
for a permutation character of degree 173 067 389 (which is the index
of H6 in J,) of J4; this character vanishes on the class 11A. Actually
it is not even necessary to compute this permutation character 0,
for a glance at the character table of J4 shows that all possible con-
stituents of 0 have non-negative values at 118, so that 211 : M~~ must
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contain 11B and, since all elements of order 11 are conjugate in f

not 11A. 
’

The character table of H7 has been computed by B. Fischer [3]
together with the fusion into J4: The relevant part of the fusion is

of N7 fuse into 2A of 

of N7 fuse into 4C of J4,

of B’7 fuses into 11.A of J4.

Computing the structure constants of g7 one finds that n(Cl, C2,
C3) = 0 for all conjugacy classes 01, C2, C3 of H? fusing into 2A, 4e,
11A of J4, respectively, except for

(2H corresponds to the outer involution class 2B of Ma2:2, and 4 ZT
to the class 4C.)

Altogether this shows that the number of triples (x, y, z) with
x E 2A, y E 4C, xy = z-1 in J, which generate a proper sub-
group of J’4 is at most (in fact equal to) l1J41. This implies ta(E) = 1,
since J4 has trivial center.

REMARK. J, is not rigid in the sense of Thompson [11], y that is
contains no class structure C with = = 1. If C = C2, 63)
is a class structure in J, with n(t) = 1, and x E Ci, y ~ C., xy E Cg
then (s, y) is a dihedral group and x, 
2ii:M,,.

Acknowledgement. Thanks are due to Prof. B. Fischer for sending
me character tables of some maximal subgroups of J4 (including
2~’.Mz2~) and to the Deutsche Forschungsgemeinschaft for fi-
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