
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

JOHN LENNOX

FEDERICO MENEGAZZO

HOWARD SMITH

JAMES WIEGOLD
Groups with finite automorphism classes of subgroups
Rendiconti del Seminario Matematico della Università di Padova,
tome 79 (1988), p. 87-96
<http://www.numdam.org/item?id=RSMUP_1988__79__87_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1988__79__87_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Groups with Finite Automorphism Classes
of Subgroups.

JOHN LENNOX - FEDERICO MENEGAZZO
HOWARD SMITH - JAMES WIEGOLD (*)

1. Introduction.

The automorphism class of a subgroup H of a group G is the orbit
a E Aut G} of H under the action of Aut G. One of the main

aims of [7] was to classify those groups for which the automorphism
classes are boundedly finite, the answer being as follows.

THEOREM A. The following properties of a group G are equivalent.

(i) The automorphism classes of subgroups of G are boundedly finite.

(ii) The automorphism classes of abelian subgroups of G are boundedly
finite.

(iii) Either (a) Aut G is finite,

(*) Indirizzo degli AA.: J. LE-NNOX: Department of Pure Mathematics,
University College, Cardiff CF11XL, Wales; F. MENEGAZZO: Istituto di Algebra
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or (b) there is a direct decomposition G = G1 X Ga, where Gz
is a locally cyclic torsion group, Ga is a finite central
extension of a direct product of f initely many groups
of type for different primes p, and Gl and Ga do
not contain elements of the same prime order.

The problem of determining the groups in which the automor-
phism classes are merely finite was left open in [7 ]. We shall prove
here that the two classes are the same :

THEOREM B. The following properties of a group G are equivalent.

(i ) The automorphism classes of subgroups of G are boundedly finite.

(ii) The automorphism classes of abelian subgroups of G are finite.

(iii) Either (a) G is not periodic and Aut G is finite,
or (b) G is periodic and of the structure described in (iii) (b)

of Theorem A.

To prove this, we need only show that a group with finite auto-
morphism classes of abelian subgroups is of the type mentioned in (iii)
of Theorem B, and then apply Theorem A.

The analogous results for conjugacy of subgroups and of abelian
subgroups are due to B. H. Neumann [6] and Eremin [2]; groups
with finite classes of abelian subgroups are just the centre-by-finite
groups. We shall make much use of this result in our proof, which
is, surprisingly, a good deal harder than that of the Neumann-Eremin
theorem.

By an abus de langage we call the set (X E End G} of endo-

morphic images of a subgroup H of a group G the endomorphism
class of .g; note that endomorphism classes need not be disjoint. The
following theorem is an analogue of Theorems A and B for endo-

morphism classes :

THEOREM C. The following properties o f a group G are equivalent.

(i) The endomorphism classes of subgroups of G are boundedly
finite.

(ii) The endomorphism classes of abelian subgroups of G are finite.

(iii) G is a finite central extension of a direct product of finitely
many groups of type for different primes p.
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Finally, we have the following curious result:

THEOREM D. Let G be a group in which the endomorphism classes
of elements are boundedly f inite. Then G is finite.

This generalizes a theorem of Baer [1] stating that a group is finite
if its endomorphism set is finite. See [7] for groups in which the auto-
morphism classes of elements are boundedly finite. The boundedness
condition in Theorem D is essential, as a glance at the direct product
of infinitely many finite groups of coprime orders shows.

All our methods are elementary and notation standard. We use
without further comment the fact that groups of the type under dis-
cussion are centre-by-finite and thus have finite commutator sub-

groups. Further, if oc is any endomorphism of a group G into the centre
of G such that a2 = 0, then the map 1 + a is an automorphism of G.
[4] is a good reference for facts on abelian groups that we use.

We thank Joachim Neubuser for pointing out a serious error in a
first version of Theorem C.

2. Proof of Theorem B : the periodic case.

In this section, G is a periodic group in which the orbits of abelian
subgroups are finite, and we show that G has the structure defined
in (iii) ( b ) of Theorem A. The proof is accomplished in several stages.

1) G does not have a divisible p-subgroup of rank 2, tor any prime p.

Suppose that G contains a subgroup U X V, where U I"J TT ^~ 
Since G is central-by-finite, U and V are central; and since G’ is finite,

Thus U V’G’ /TTG’ X .R/YG’ for some 1~ c G,
and maps 99 such that UVG’jVG’ -~ V, 1 give rise to endo-
morphisms oc: G --~ Z(G) such that a2 = 0. But

since there are 2No different choices for the complement of U in U X V,
this means that the Aut G-orbit of U is infinite, a contradiction.

2) The reduced part of every p-subgroup of the centre of
G is finite.
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If not, then G jG’ has the same property, y and we can write 
- ~aG’&#x3E; xX/G’, where aG’&#x3E; is a non-trivial cyclic p-group: since

 oo, Z(G) must have an infinite elementary abelian sub-
group Y, because a basic subgroup of an abelian p-group is finite if
and only if it is a direct factor and thus the reduced part is finite. Any
homomorphism 99: - Y, together with the trivial map XfG’ - 1,
gives rise to an endomorphism a of G such that a2 = 0, and -

- ~ac ~ (aG’ )~&#x3E; ; since Y is infinite, a&#x3E; has infinite Aut G-orbit.
A consequence of 1 and 2 is:

3) Every infinite Sylow p-subgroup of Z(G) is of the form 
where Fp is finite.

For every p &#x3E; the Sylow p-subgroups of G are central. We
use this fact to prove:

4) T he subgroup S = Fp : p &#x3E; is a direct factor of G.

Every subgroup is a direct factor of since it is
finite and the reduced part of a Sylow p-subgroup, so that SG’/G’
is a direct factor of GIG’, say G/G’= XLIG’. But then G =

and so that and S is a

direct factor.
The next step is proved in a very similar way to 4 and we omit

the proof.

5) For every p &#x3E; divisible p-subgroup of G is a direct

factor of G.

For our final step, note that S is the direct product of the F1J.

6) Almost all the F 1J are cyclic.
It is enough to show that almost all the F1J with p &#x3E; IG’I are cyclic.

Suppose that infinitely many of them are non-cyclic, so that F1J has
a direct factor of the form ~a~ , b1J: = bp ~ = [a~ , = 

for p lying in an infinite set 11:. Consider an automorphism 99
of G that extends the automorphisms b~ --~ b~ , 
where ( ~,~ , p) = 1. The image of the abelian subgroup A = ~a~ : p E 11:)
under 99 is and it is clear that suitable choices of the

2. give rise to infinitely many Aut G-images of A.

A quick glance now shows that G has the structure required, and
the proof of the periodic case of Theorem B is complete.
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3. Proof of Theorem B : the nonperiodic case.

Throughout this section, G is a non-periodic group in which the
orbits of abelian subgroups are finite and T its periodic part (which
is a subgroup since G is an FO-group). Again we proceed in several
stages to the proof that Aut G is finite.

1) T has no subgroups isomorphic to a Zpoo.

Let A = ~a1, a2 , ...) be such a subgroup, with ai = 1, = ai

for i &#x3E; 1; as before, A is central.
If (G/T)p =1= GIT, take x E G such that (GIT)P. For k &#x3E; 1, set

Xk/T = (G/T)pk; then xXk has maximal order pk in GiXk I so that

C-lXk = X for some subgroup Yk of G. If ak is the endo-

morphism of G defined by = 
I Y’k == 17 then 1 Aut G

and - but this gives the contradiction that x~ has in-

finitely many images under Aut G.
Thus we may assume that is p-divisible. Let be a com-

plement of the quasicyclic subgroup AG’ /G’ in then G = AX,
X = is finite, XI(T n X) is p-divisible and there is a sub-
group with T n X  Y such that X/Y = ...) gz A,
the isomorphism being given by ai == (ci for all i. For a p-adic
integer a, I let ya , be the automorphism of G that is 1 on A and such
that for x E X. Then and
X Ya n A = X n A. We claim that if fl. Indeed, if

XYlX = XYP we have Xya, so that Xv- n A = am~, and
so pm(a - fl) = 0. But then ot = fl, so our claim is justified and ~XY : y E
E Aut G} is infinite; this is not yet a contradiction, since X is non-
abelian if G is. However, a very easy argument now shows that the
abelian subgroup X~, n = IG: is such that (Xn)a if

Lx ~, and this is the required contradiction.

2) Every Sylow p-subgroup of T is finite.

Clearly, since there are no divisible p-subgroups by 1, it is enough
to show that there are no infinite elementary abelian p-subgroups.
By way of contradiction, assume that E is one. Since G’ is finite,
the P-component TpIG’ of TIG’ is not divisible, so that it has a cyclic
direct factor aG’&#x3E; of order pk &#x3E; 1, and of course we may choose a
to be of order ph, Write GIG’=: Then the inter-



92

section Eo = E r1 Z(G) r1 B is still infinite, since B r1 Z(G) is of finite
index; for each the identity map of B extends to an auto-
morphism q?,, of G sending a to az, and again we have the contradiction
that the Aut G-orbit of (a) is infinite.

3) T is finite.

Let m be the set of primes p for which Z(G) has a p-element. Our
task is to show that co is finite, so we assume that it is infinite, and
without loss of generality that the index n of Z(G) in G’~ is coprime to
p, if pEW.

CASE 1. There exist an element g of infinite ord er and an infinite
subset Wo ç (JJ snch that, for every p E wo, g fails to be infinitely p-divisible.

Enumerate the elements of coo in some way, coo = 9 P2 ...~,
and for each Pi E coo define ki to be the largest integer such that x~~; = g
for some x E G. Without loss of generality we may assume that

g E Z(G). Set yo = g, and suppose that y;il - yo . The p2-characteristic,
of y, is again k2, and we choose y. such that - y1. Proceed in
this way; once yo , yl , ... , yr have been chosen, the pr+1-characteristic
of Yr is kr+1, and we choose such that y’+, = yr, where s is short
for By construction, the subgroup Y Yo 7 Yi 1,- 7 Yr 9 is

locally cyclic and torsion-free, and moreover yi 0 Wi for i &#x3E; 0.
Now let ti be an element of order pi in Z(G) such that ~ti&#x3E; Gvl ~

# YG?’ = if one exists, and let (pi be the usual automorphism
induced from a homomorphism GIG", -~ ti&#x3E; with kernel a complement
of containing If no such ti exists, then G = (Ui) X

where (Ui) is the p;-part of G, which is of course the
Sylow pi-subgroup of Z(G) since In that case, let ggi be the

identity on K; and a non-trivial power on (Ui) (which must exist
except in the case Za, and we can ignore this). In both cases,

and and this shows that our sub-

group Y has infinite Aut G-orbit.

CASE 2. Every element o f infinite order is infinitely p-divisible for
almost all p.

Assume first that GIT has infinite rank. Then there is a countable
independent subset of GIT which we may index by elements of

and we can suppose that each x~ is in Z(G). For each

PEW, choose ap E 8fJ(G), the Sylow p-subgroup of G, of maximum
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order, and an integer sp such 1 and p, where the con-

gruences are modulo the exponent of Note that Si)(G) is a direct
factor of G since S~(G) ~1 G’= 1 (p does not divide the index of Z(G)
in G and therefore does not divide IG’I [8]) and is a direct
factor of Let C~ be a complement of in G, and define an
automorphism çp, of G that is the identity on Oil and the power
automorphism on ~S~(G). With X = p E o))y we have X,

and thus X has infinite Aut G-orbit.

Th,aC, we may assume, that GIT has finite rank and is p-divisible
for almost all primes in ro. Choose a prime so that q ( IG’I.

as before, and G/T is q-divisible. Then G = Si)(G) X B,
where B is q-divisible, Z(B) is q-divisible and has no q-
torsion, by 1. (Recall that n = If r is the order of q mod n,
then the mapping a : B - B given by ba = bqr is an automorphism
of B (this because qr =1 mod and a induces an automorphism
on Z(B) ), which clearly extends to an automorphism of G. Every
element of infinite order in B has infinitely many images under 

4 ) every PEW, IG: Gpl is finite.

If is infinite, then IG: GpO’ Qi)1 is infinite, where Q, is the
Sylow p-subgroup of Z(G). Take any subgroup N of index p con-
taining and let 99 be a homomorphism of G into Z(G) with
kernel N. Write Then and,
since there are infinitely many N, there must be infinitely many
X n N since IG:XI I and IG:NI I are (boundedly) finite. Thus there are

infinitely many 

We come now to the final stage of the proof. Let 1~ be a transversal
for Z(G) in G; if K is any subgroup of G containing .R, then 
- Z(G). Set 1~ = Aut G.

For a finite subset .I1 of G, we define the closure H(F) of .F as fol-
lows :

Clearly H(F) is a characteristic subgroup, G/.H(.h’) is torsion-free,
and Z(.8’(.F)) c Z(G). From here on we assume that Aut G is infinite
and find a contradiction.

5) .For every finite subset F of G, Cr(H(F)) has f inite index in .1~,
and Cr(B’(I’) ) r1 Cr(G/.H’(.F’) ) is finite.
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Clearly, S2(.F) : _ ~ f y : ~J u T is a finite
T-invariant set. Thus the kernel g of the restriction T-+ Sym (Q(F))
has finite index; E is the centraliser in 1~ of 

)I E lJ T. To establish the first claim we need to show that

IX: I is finite. Every element cx of .g centralises .H’(.h)/T
and .L, so it induces a homomorphism T r1 Z(L), namely

it is important here to notice that Z(L) since

However, Cr(H(F)) is just the kernel of this map, and thus
has finite index since its image is in T and therefore finite.

Next, Cr(H(F)) r1 Or(GjH(F)) is isomorphic to Hom (G/H(.F’),
Z(H(F)))Hom ( G/.g(.F), Z(G)) via the obvious map. There is no

homomorphism with non-periodic image, else
there would be elements a E G, 0 E Z(H(F)) of infinite order and

y E Cr(.g(.I’) ) r1 Cr( G/H(.F’) ) such that av = ae, and then =

would be an infinite set of images of a~. Thus
Hom (G/H(F), Z(H(F))) is in fact Hom Z(H(F)) n T), which
is finite by 3 and 4.

6) For every finite subset F of G, there exist a cyclic subgroup
C/B’(F) Z(G), and y E Cr(H(F)) such that 

6 

If not, then = for all g E G (since some power
of every element is central) and thus the automorphism group induced
by Cr(H(F)) on G/.g’(.I’) would be just (-1); however, that is im-
possible since n Cr( G/.H’(.F’) )) is infinite.

Next, we define inductively a sequence yl , y2 , ... of elements of r
and a sequence a2, ... of elements of Z(G) as follows :

yi is any non-trivial element of .1~ (other than -1 if G is abelian);

al is any element of Z(G) such that (al);

if and a1, ac2 , ... , an have been chosen, use 6 to choose
such that
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Assume that there is an element g E T such that ; i

which contradicts the choice of an+m . Thus

We are now ready for the final step. Let i, j be integers such that
1  i  j . Then

by 7. On the other hand, ai E X’’s n B’(a1, ... , ai), whereas ari £ ~
0 ..., ai) T by our choice of yi . Thus ai) =1= Xvl n
() H(a1, ..., so that XY~ ~ and X has infinitely many images
under 1~.

4. Proofs of Theorems C and D.

To prove Theorem C, we note that a group G in which the endo-
morphism classes of abelian subgroups are finite must have one of the
structures described in (iii) of Theorem B. Since it is clear that G

cannot be the direct product of infinitely many nontrivial groups,
if it is periodic it must be of the type required in Theorem C.

To show that G is periodic, proceed like this. With n: = ,

the transfer map to the centre is just g - gn [5, 10.1.3]. It follows

that every endomorphism of the abelian group Gn extends to one of G.
If G has an element of infinite order, so does Gn ; if a is such an element,
the endomorphism class of a~ under the powers of the endomorphism
x H x2 of Gn, and thus of its extension to an endomorphism of G, is
infinite.

Conversely, suppose that G is a finite central extension of a direct
product C of groups of type for different primes p, let .g be a sub-
group of G and oc an endomorphism of G. Then Ha CIC is one of bound-
edly finitely many subgroups of G/C, and B’a/B’a r1 C;
but .Ha r1 C ~ (H r1 C)a, and since C is fully invariant and a direct
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product of different (H n C)a is one of boundedly many sub-
groups. Thus is one of boundedly many subgroups, as required.

Finally, we prove Theorem D. Let G be a group in which the

endomorphism classes have cardinal at most k (finite). In particular,
for any elements x, y of G there is an integer r  k such 0(y),
and it follows that G/Z(G) has finite exponent ml, say. Further, G’
is finite since the conjugacy classes of elements are boundedly finite [6],
of order m2 say. Let m be any positive integer divisible by m1 and m2.
For all x, we have for some so

that (xy)~$ = and the map x --~ x~$ is an endomorphism of G.
It follows that G has finite exponent.

Now every periodic group with finite commutator subgroup is

locally finite, and thus it has an infinite abelian subgroup if it is in-
finite. One could refer to [3] for this result, though it is very easy
to prove it directly in our case. Suppose that our group G is infinite
and let A be an infinite abelian subgroup. Then A contains an infinite
elementary abelian p-subgroup P say, whence must have a non-

trivial cyclic direct factor of p-power order. For each a E P,
the map extends to an endomorphism of G, and thus x has
infinite endomorphism class. This contradiction proves that G is

finite, as required.
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