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Nonadmissible Genealogical Trees.

GABRIELLA D’ESTE (*)

In the following, .g denotes a field, A denotes the free algebra
.Kx1, ... , xm) in m&#x3E;2 non commutative variables, and we always
use the term « module » to mean left module. With these hypotheses,
we fix the definitions and notations used throughout the paper.

First of all, let Too denote the « genealogical » oriented tree com-
pletely determined by the following conditions:

(i) Too has countably many vertices (pn : n E N~ and countably
many arrows of m different types, denoted by xl, ... , xm .

(ii) There is no arrow with starting point ~o, 7 and there is

exactly one arrow with starting point pn for any n &#x3E; 0.

(iii) For any j = 1, ... , m and any n E N, there is exactly one
arrow of type xj with ending point pn .

If m = 2, then Too is of the following form.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Padova,
via Belzoni 7, 35131 Padova (Italy).
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Next, let Moo denote the A-module defined as follows:

(a) The underlying K-vector space of Moo is KN.

(b) If v is an element of Moo of the form v = I and

i == 1,..., 9 M, then ~(~) = where, for any n,

if there is an arrow of the form

If v is an element of Moo of the form v = (kn)neN’ then we denote
by supp (v) the set of all n E N such that 0.

For any vertex p of Too, we define an element w(p) E A as follows:
first of all w(po) = 1; se.condly, po and the path along Too from p
to po is of the form

Keeping the notation of [1], and using terminology suggested
by [2], we say that a sequence W = (1.),,,c-N, with ln E ... , for

any n, is a word in the letters ~iy..., xm :
We say that an infinite subtree of Too of the form

is a branch of Too. Moreover, if yY is the word (1.).c-, and the branch B
of Too is of the form

then we say that B is the branch of Too corresponding to W.
Finally, if T is a subtree of Too obtained by «glueing together

branches of Too », that is with the property that any vertex of T belongs
to a branch of Too contained in T, then we briefly say that T is a genea-
logical tree. For any genealogical tree T, we denote by M(T) the A-
submodule of defined by the formula

is a vertex of T for any n E supp (v)~ .
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We say that a genealogical tree T is admissible, if soc is
essential and isomorphic to the simple module .A./(Xl’ ..., xm~.

According to this definition, a word W is an admissible word in the
sense of [1] if and only if the branch of Too corresponding to yY is an
admissible genealogical tree.

The last two definitions used in the sequel deal with nonadmissible
words. We say that a word W = is a strongly nonadmissible
word, if any word IJ of the form

with r &#x3E; 1 and E E N~ for any i = 1, ... , r, is a nonadmissible
word. We say that a word yV’ is a weakly nonadmissible word, if W
is neither admissible nor strongly nonadmissible.

In section 1, we show that a genealogical tree T is not admissible
if and only if T contains a sequence of distinct vertices (qn)neN which
are starting points of « connected paths », that is with the property
that E Aw(qn) for any n. As we shall see, this characterization
of the nonadmissible genealogical trees is the obvious « two-dimen-
sional ~ version of a characterization, deduced from [1], of the non-
admissible branches of Too. Using this result, we give an example of
a nonadmissible genealogical tree formed by countably many admis-
sible branches.

In section 2, we first determine all the strongly nonadmissible
words. Roughly speaking, we can say that a word is strongly non-
admissible if and only if it is as «chaotic» as might be expected. Next,
we prove that there exist as many as possible admissible words, strongly
nonadmissible words and weakly nonadmissible words. Finally, we
construct an admissible genealogical tree with 2No branches.

In section 3, we investigate the structure of the A-module M(T)
for what is probably the easiest choice of a nonadmissible genealogical
tree, namely that of a tree with exactly one branch corresponding to
a word W of the form W = (x, x, x, x, x, ... ) for some letter x. In this

case, is the direct sum of IM(T)I indecomposable A-modules,
running through all the indecomposable injective 

A first example of a nonadmissible genealogical tree with all admis-
sible branches was announced at the LMS Durham Symposium on
Representations of Algebras (July 1985), and I would like to thank
the organizers - and in particular Prof. S. Brenner - for the opportunity
of taking part in the meeting.
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1. We begin with a result on words.

LEMMA 1 ( [1] Theorem 1~. A word W = is admissible if
and only if there exists some d E N such that 11 ... Id =1= 1,,-,l ... ln f or any
n &#x3E; d.

Next we formulate a negative version of Lemma 1.

LEMMA 2. A word W = (1,,).C-N is not admissible if and only i f there
exists a strictly increasing sequence of natural numbers (dn)neN such that
11 ... ldn+l E Alo ... ldn for any n.

Using the terminology fixed in the introduction, we can restate
Lemmas 1 and 2 in the following form.

(* ) A branch B of Too is admissible if and only if B contains a vertex
q ~ po such that Aw(q) for any vertex p of B different
from q. ,

(**) A branch B of Too is not admissible if and only if B contains
a sequence of distinct vertices (qn)neN such that E .Aw(qn)
f or any n.

We shall see at the end of this section that the existence of a special
vertex q as in (*) does not characterize the admissible genealogical
trees. However the next theorem shows that the existence of a se-

quence of vertices (qn)neN as in (**) actually characterizes the non-
admissible genealogical trees.

THEOREM 3. Let T be a genealogical tree. Then the following con-
ditions are equivalent:

(i) T is a nonadmissible genealogical tree.

(ii) There exists a sequence (qn)neN of distinct vertices of T such
that E for any n.

PROOF. (i) ~ (ii). The hypothesis that T is a nonadmissible

genealogical tree enables us to find a nonzero vector v E M(T) such
that (1, 0, 0, 0, 0, 0, ...) ft Av. Consequently, if f E A, then either

f(v) = 0 or f(v) has infinite support. We claim that, if n E supp (v),
then there exist infinitely many i E supp (v) such that w(pi) E 
Indeed, since w(Pn)(v) =F 0, it follows that w(Pn)(v) has infinite support.
This implies that the set {i E supp (v) : w(pi) E is infinite, as
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claimed. Hence we may immediately construct, by induction, a se-
quence of distinct vertices of T with the property that qn E
E i E supp (v)} and that E Aw(qn) for any n. Therefore

(ii) holds.

(ii) ~ (i). Let be a subsequence of such that

deg &#x3E; 2 deg w(q’) for any n. Next let u be an element of

.M(T) such that for some Then we

may write u as an infinite sum of the form where, for any n,

the support of ’Un has exactly one element sn and si  si if i  j. We
want to show that (1, 0, 0, 0, 0, 0, ... ) ~ Au. To see this, fig any f E A
such that 0. Evidently we can write f(u) as an infinite sum of
the form At this point, let i = min {n E N : ~ 0}
and choose such that deg ~,v(q’ ) &#x3E; deg f . Then all the vectors

with n &#x3E; j have nonempty and pairwise disjoint supports. Hence
f (u) has infinite support, and so (1, 0, 0, 0, 0, 0, ...) f# Au. This proves
that T is a nonadmissible genealogical tree, as asserted in (i).

As an immediate consequence of Theorem 3, we obtain the fol-
lowing corollary.

COROLLARY 4. Let T be a genealogical tree formed by finitely many
admissible branches. Then T is an admissible genealogical tree.

The next corollary shows that we cannot weaken the hypotheses
of Corollary 4.

COROLLARY 5. There exists a nonadmissible genealogical tree formed
by countably many admissible branches.

PROOF. Let x and y denote two distinct letters from xl, ... , 
Next let (qn)nEN denote the sequence of vertices of Too defined induc-
tively by the formula

Finally, for any n, let Bn denote the branch of Too uniquely determined
by the following conditions:

(i) q~ is a vertex of Bn .
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(ii) If n &#x3E; 0, then any path along Bn arriving at qn consists
of all arrows denoted by x, while any path along Bo arriving at qo
consists of all arrows denoted by y.

Hence the branch Bo is of the form

while, for any n &#x3E; 0, the branch Bn is of the form

At this point, let T denote the genealogical tree obtained by glueing
together all the branches Bn’s. Since is a sequence of vertices
of T satisfying condition (ii) of Theorem 3, it follows that T is a non-
admissible genealogical tree. On the other hand, let B be a branch
of T. Then either B = Bn for some n, or B = where ~oo is the
following branch of T:

In both cases, Lemma 1 guarantees that B is an admissible branch.
This completes the proof of the corollary.

REMARK. We can now justify the observation preceding Theorem 3.
Indeed, let T be the genealogical tree constructed in the proof of
Corollary 5, and let q be the vertex of T completely determined by the
property that w(q) = x2 y2. We claim that, if p is a vertex of T dif-
ferent from q, then To see this, we proceed by induction
on the index n of the branch Bn containing p. If either n = 0 or n = 1,
then the assertion is obvious. Hence we may assume that p is a vertex
of the branch Bn with n &#x3E; 2, and that the assertion holds for all the
vertices of the branch B,,-,,. Now let (In)neN denote the word cor-
responding to the branch B.,,-l , and let (l:)neN denote the word cor-
responding to the branch B. Then, by the inductive hypothesis, y

=1= x2 y2 for any n. On the other hand, by the definition
of Bn, we may write
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This implies that 1* =1= x2 y2 for any n. Hence 
and so the assertion holds for all the vertices of the branch Bn .

Consequently, y w(p) 0 Ax2 y2 for any vertex p of T different from q.
Since T is a nonadmissible genealogical tree, we conclude that the
obvious generalization of (*) does not determine all the admissible

genealogical trees.
With the convention that o -2013, o stands for o ~- x- o, and that

o -- o stands for o ~ 0, we may visualize the structure of T as
follows.

2. The next theorem characterizes strongly nonadmissible words.

THEOREM 6. Let W = (1.),,C-N be a word. Then the following con-
ditions are equivalent:

( i ) W is a strongly nonadmissible word.
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(ii) I f r is a positive integer and w is a monomial o f degree r in
the letters n E N}, then there exists some n such that w = ln ... 

PROOF. (i) ~ (ii). Let W be a strongly nonadmissible word, and
assume, contrary to (ii), that there is a monomial w of the form

w = t_r ... Z_1, with r &#x3E; 1 and f or any i = 1, ... , r,
such that w =1= 1,, ... 1.+,-, for any n. To find a contradiction, let
U = (I,’ ).c-N denote the word 

’

Then Zo ... = ~... 1-1 = w, while = In-2r+l ~ ~ · Zn-r =A w for
any n &#x3E; 2r - 1. By Lemma 2, this implies that U cannot be a non-
admissible word. Hence W cannot be a strongly nonadmissible word.
This contradiction shows that there is some n such that w = tn ... 7

and so (ii) holds.

(ii) =&#x3E; (i). Assume that W’ satisfies condition (ii). Now let U =
= (In’)nc-,v be a word of the form

with and Lz e for any i = 1, ... , r. We claim that U
is a nonadmissible word. To see this, let d be a natural number, and
let w denote the monomial w ... Then, by ( ii ) , we can find
some n such that ~?==~...~+~. Since f it

follows that w = to ... Zd = Zn+r ~ ~ ~ with n + r ~ r &#x3E; 0. Conse-

quently, by Lemma 1, U is a nonadmissible word, as claimed. Hence (i)
holds, y and the theorem is proved.

The following corollary gives a « quantitative » result on words.

COROLLARY 7. There exist 2~~ admissible words, strongly nonadmis-
sible words and weakly nonadmissible words.

PROOF. Let x and y denote two distinct letters from ...y Xm.

We divide the proof in three steps.

Step 1. Let (X = be a strictly increasing sequence of positive
integers, and let Wa denote the word
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More precisely, let where

Now let d = ao + al + 1; then 1, = xa° yxal y. Since cx is a strictly
increasing sequence, we have lo ... Za ~ In-d ... ln for any n &#x3E; d. Hence, y
by Lemma 1, Wa is an admissible word. Since the map x t2013~ is

injective, there exist 2No admissible words.

Step 2. As in Step 1, let a = (an)neN be a strictly increasing se-
quence of positive integers. Next, let x* == (a:)neN be the « periodic »
sequence defined as follows. First of all, if n E N, then ain+1-2 = an
and 2 n+1- 2 = min {i E N : a* = an}; secondly, y we choose ai = ao .
Assume now, by induction, that, for some we have already
defined all the elements a* with 2. Then we define the
elements a* with 2n+1- 1 ~ 2 c 2n+2 - 3 by means of the equality

Now let Wa* denote the word

that is let , where

y2 for any n, we deduce from Theorem 6 that Wa*
cannot be a strongly nonadmissible word. We claim that Wa* is not
admissible. Indeed, fix any d E N. Then the definition of a* enables
us to find two natural numbers r and n with r &#x3E; d and such that

there exists some s &#x3E; 0 such that lo ... ld ... lr ... ZS+d ... e Con-

sequently = l ... with s &#x3E; 0. Hence, by Lemma 1, Wa*
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is a nonadmissible word. Therefore W«. is a weakly nonadmissible
word. Since the map 0153* H W’a* is injective, we obtain 2No weakly
nonadmissible words.

Step 3. Let f1 be a sequence of the form f1 = where wn
runs through all the monomials of positive degree in the letters x
and y. For any n, let dn denote the degree of wn . Next, let

and let bn = do + ... + don. - 1 for any n. Finally, y let denote

the word defined by glueing together all the monomials 
as illustrated in the following picture.

More precisely, y let Wa denote the word uniquely determined
by the condition that = Wn for any n. Then obviously
satisfies condition (ii) of Theorem 6, and so Wa is a strongly nonadmis-
sible word. Since the map a H is injective, there exist 2No strongly
nonadmissible words.

The corollary now follows from Steps 1, 2 and 3.

Finally, we give an example of a very large admissible genealogical
tree.

COROLLARY 8. There exists an admissible genealogical tree formed
by 2No branches.

PROOF. Let T be the genealogical tree obtained by glueing together
all the branches of Too corresponding to the words Wa constructed
in Step 1 of the proof of Corollary 7. Hence any Wa is of the form

where a = (an)neN is a strictly increasing sequence of positive integers.
We claim that T is an admissible genealogical tree. Suppose the con-
trary, and let (qn)neN be a sequence of vertices of T satisfying con-
dition (ii) of Theorem 3. Then we can find two natural numbers i
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and j with i &#x3E; 0 such that E Ayxi yA for any n ~ j. This implies
that the set

is infinite. To see that this is impossible, fix any Then, by the
definition of T, there exists a strictly increasing sequence of positive
integers (X = (an)nEN such that i = ar for some r E N and w(p) _

Since r + 1 c i, it follows that

and so + 1). This means that 8 is finite, and this is
the desired contradiction. This contradiction shows that T is an
admissible genealogical tree, as claimed. Since T has 2No branches,
the corollary is proved.

REMARK. The above proof shows that the assertion of Corollary 8
holds for m = 2, and so for any m &#x3E; 2. However, if m ~ 3, then it is
even easier to construct an admissible genealogical tree with 2No
branches. In fact, let T be the genealogical tree obtained by glueing
together all the branches B of Too corresponding to words W of the
form W = (In)neN with lo = X3 and tn E for any n &#x3E; 0. Then

evidently T does not satisfy condition (ii) of Theorem 3, and so T
is an admissible genealogical tree with 2No branches.

3. We do not know the structure of an A-module of the form

M(T) with T a nonadmissible genealogical tree. However, the next
proposition shows that, if T is a nonadmissible genealogical tree,
then M(T) may be very far from being indecomposable.

PROPOSITION 9. There exists a genealogical tree T such that M(T)
is the direct sum of [ indecomposable A-modules, running through
all the indecomposable injective K[x]-modules.

PROOF. Let x be a letter from xl, ... , xm, and let T be the genealogical
tree of the form

More precisely, let T be the branch of Too corresponding to the word
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with In = x for any n. We claim that T satisfies the hypotheses
of Proposition 9. To see this, we divide the proof in three steps.
Throughout the proof, we denote by M the module M(T ) and by
t(M) the torsion submodule of M.

Step 1. M is an injective g[x]-modute.

PROOF. Let f be an element of of the form f = xi + ai-,,.
.0153i-l + ... + air + ao for some I &#x3E; 0, and let v be a vector of M of
the form v = (kflJneN. Now let v denote the vector v = (kn)neN defined
inductively by the formula

Then, for any n ~ i, we obtain

It follows that = v. Therefore M is a divisible K[r]-module,
and so, by ([3] Theorem 2.8), .l~ is an injective -K[x]-module.

Step 2. with p running through all the

monic and irreducible polynomials of .g[x].

PROOF. Let f be an element of K[x] of the form f = xi + 
. xi-1 + ... -E- a1x + ao for some i &#x3E; 0, and let Yf = {v E t(.M) : f(v) = 01.
We shall prove that Vy is a cyclic g[xJ-module isomorphic to 
To this end, we first note that, if v E V¡ and v is of the form v =
- then

Consequently, for any element (co, ..., c;-i) there exists a unique
element E V’f satisfying c* = cn for any n = 0, ..., i - 1. This
means that the canonical projection a: 7 such that
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induces a K-vector space isomorphism between V., and K’. Next,
let VI denote the element of Y f uniquely determined by the condition
that _ (0, ..., 0, 1). Then = 0, ... , i - 1~ is obviously
a base of the K-vector space .Ki. This proves that = 0, ... ,

, i - 1 ~ is a base of the K-vector space Vy ; hence Y f = Since

dimx (Vf) = i and f E it follows that annK[x3 (Vf) = ( f ). Thus
Vy is isomorphic to g[x]/( f ), as claimed. We also note that t(M) =

with f running through all the monic polynomials of K[r]
f

of positive degree. Therefore

and where p ranges over all the monic

and irreducible polynomials of X [x].

Step 3. M has a decomposition of the form M = t(M) E8 Yo, where
Vo is a vector space over K(r) and i

PROOF. The existence of a K(r)-vector space V’o such that M =
= Vo follows from Step 1 and ([3] Theorem 4.4 and Corollary
to Theorem 2.32). Now let v be the following element of M:

More precisely, let v = I where

I ~

We claim that the vectors E NJ are K-linearly independent.
Indeed, suppose, by contradiction, that this is not true. Then, for

some i E N, we may write with tj E .K for any

j = 0, ... 7 i. On the other hand, by the definition of v, we can find
some n such that n -E- i + 1 e supp (v) and n supp (v) for any
j = 0, ... , i. Consequently n E supp and n 0 supp for

any j = 0, ... , i. Hence contrary to the hypothesis.
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This contradiction shows that the vectors are K-linearly
independent. Therefore TTo ~ 0, and we deduce from (*) that

To end the proof, we distinguish two cases.
Suppose first that It(M)1  Then we clearly have I

Moreover, by = dimK(x) ( Yo). Consequently (
as desired.

Assume now that It(M)1 == In the case, we first note that,
by (*), we have

Next, let 93 denote a base of the K(r)-vector space Vo, and let E denote
the smallest subfield of g with the property that, if v E $ and v =
= (knJneN’ then E for any n. Then evidently

Suppose, by contradiction, that I E  Then, by (1), tr deg (g/.E),
the transcendence degree of K over E, is infinite. Hence we may
choose a vector v* E if of the form v* _ (k:)neN such that

is not algebraic over for any n .

To find a contradiction, we write v* in the form v* = w’+ v" with
and · Then there exist f’, f" E

e .g[x], of the form

and

with i, j &#x3E; 0, such that f ’ (v’ ) = 0 and

f e K[x] and vi E $ for any i = 1, ... , r. Let C1, ..., Ch denote the coef-
ficients of /iy ... , f r, and let .~’ denote the following subfield of K:
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At this point, the hypothesis that f’ (v’ ) = 0 guarantees that

Consequently

On the other hand, the hypothesis that implies that

Therefore

Putting (4) and (5) together, we conclude that

Finally, let .F’* denote the field F* = 14’(kn : n E N). Then (6) implies
that tr deg (.F’*/I’) is finite. Since tr deg (F/E) is obviously finite, it

follows that also tr deg (F*/E) is finite, contrary to the hypothesis
that v* satisfies (3). This contradiction shows that JEJ _ IKI. By
(1) and (2), this implies that dimK(x) (Vo) = IMI. -

Combining Steps 1, 2 and 3, we see that the genealogical tree T
satisfies the hypotheses of Proposition 9.

The A-module lVl constructed in the proof of Proposition 9 gives
a « concrete» example of an injective cogenerator for the category
of all We also note that the indecomposable summands
of M are, in a sense, the « smallest » possible indecomposable summands
of an A-module of the form M(B) with B a branch of Too. In fact, we
have the following corollary.

COROLLARY 10. Let B be a branch of Too and let z = x, + ... + xm .
Then M(B), regarded as a K[z]-module, is the direct sum of 
injective g[z)-modutes.

PROOF. Replace x by z in the proof of Proposition 9.
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