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Nonadmissible Genealogical Trees.

GABRIELLA D’ESTE (*)

In the following, K denotes a field, A denotes the free algebra
K{®y,y ..., ©ny in m>2 non commutative variables, and we always
use the term « module » to mean left module. With these hypotheses,
we fix the definitions and notations used throughout the paper.

First of all, let T, denote the « genealogical » oriented tree com-
pletely determined by the following conditions:

(i) T has countably many vertices {p,:n € N} and countably
many arrows of m different types, denoted by @, ..., Zm.

(ii) There is no arrow with starting point p,, and there is
exactly one arrow with starting point p, for any » > 0.

(iii) For any j =1, ..., m and any n € N, there is exactly one
arrow of type z; with ending point p,.
If m = 2, then T, is of the following form.

- - -~ o
- - - —— -
- - - - - - -

N N NA N
SN s

&, Ty
Do

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universitd di Padova,
via Belzoni 7, 35131 Padova (Italy).
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Next, let M, denote the A-module defined as follows:
(a) The underlying K-vector space of M, is K.

(b) If v is an element of M, of the form v = (k,),cy, and
j=1,..., m, then x,(v) = (k; ,),ex, Where, for any =,

k;n="k; if there is an arrow of the form o > o.
b 43 Dn

If v is an element of M, of the form v = (%,),y, then we denote
by supp (v) the set of all n € N such that &, 0.

For any vertex p of T, we define an element w(p) € A as follows:
first of all w(p,) = 1; secondly, if p = p, and the path along 7, from p
to p, is of the form

0<Xo..0<%0, then w(p) =2, ...2.
_—
Do T arrows »

Keeping the notation of [1], and using terminology suggested
by [2], we say that a sequence W = (I,),ex, With I, € {wy, ..., ¥} for
any n, is a word in the letters @, ..., .

We say that an infinite subtree of 7', of the form

O <— 0 <— 0 <— 0 <—o0,..
Do

is a branch of T'y,. Moreover, if W is the word (I,),., and the branch B
of Ty is of the form

lo Iy ly ls
O <— 0 <—0 <—0 6—0...,

Do

then we say that B is the branch of T, corresponding to W.

Finally, if T is a subtree of 7, obtained by «glueing together
branches of T, », that is with the property that any vertex of 7 belongs
to a branch of T, contained in 7', then we briefly say that 7 is a genea-
logical tree. For any genealogical tree T, we denote by M(T) the A-
submodule of M, defined by the formula

M(T)={ve My: p, is a vertex of T for any = € supp (v)}.
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‘We say that a genealogical tree T is admissible, if soc M(T) is
essential and isomorphic to the simple module A/{(x,, ..., Tmn).

According to this definition, a word W is an admissible word in the
sense of [1] if and only if the branch of T, corresponding to W is an
admissible genealogical tree.

The last two definitions used in the sequel deal with nonadmissible
words. We say that a word W = (I,),cy i a strongly monadmissible
word, if any word U of the form

U= (l—ry XX l-—l? loa ll’ lzy ls; ) 1

with r>1 and I_; € {I,: n € N} for any ¢ =1, ..., r, is a nonadmissible
word. We say that a word W is a weakly nonadmissible word, if W
is neither admissible nor strongly nonadmissible.

In section 1, we show that a genealogical tree T is not admissible
if and only if 7 contains a sequence of distinet vertices (q,),ex Which
are starting points of « connected paths», that is with the property
that w(g.+,) € Aw(g,) for any n. As we shall see, this characterization
of the nonadmissible genealogical trees is the obvious « two-dimen-
sional » version of a characterization, deduced from [1], of the non-
admissible branches of T,. Using this result, we give an example of
a nonadmissible genealogical tree formed by countably many admis-
sible branches.

In section 2, we first determine all the strongly nonadmissible
words. Roughly speaking, we can say that a word is strongly non-
admissible if and only if it is as « chaotic » as might be expected. Next,
we prove that there exist as many as possible admissible words, strongly
nonadmissible words and weakly nonadmissible words. Finally, we
construct an admissible genealogical tree with 2 branches.

In section 3, we investigate the structure of the A-module M(T)
for what is probably the easiest choice of a nonadmissible genealogical
tree, namely that of a tree with exactly one branch corresponding to
a word W of the form W = (x, », z, 2, 2, ...) for some letter . In this
case, M(T) is the direct sum of |M(T)| indecomposable A-modules,
running through all the indecomposable injective K[x]-modules.

A first example of a nonadmissible genealogical tree with all admis-
sible branches was announced at the LMS Durham Symposium on
Representations of Algebras (July 1985), and I would like to thank
the organizers — and in particular Prof. S. Brenner — for the opportunity
of taking part in the meeting.
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1. We begin with a result on words.

LeMMA 1 ([1] Theorem 1). A word W = (I,),en s admissible if
and only if there exists some d € N such that 1, ...lg % 1,_; ... 1, for any
n>d.

Next we formulate a negative version of Lemma 1.

LeMMA 2. A word W = (1,),cx 98 not admissible if and only if there
exists a strictly increasing sequence of natural numbers (d,),ey such that
lo .o lg,,, € Aly ... Uz, for any n.

Using the terminology fixed in the introduction, we can restate
Lemmas 1 and 2 in the following form.

(%*) A branch B of T is admissible if and only if B contains a vertex
¢ 5= p, such that w(p) ¢ Aw(q) for any vertex p of B different
from gq.

(%%) A branch B of T, is not admissible if and only if B contains
a sequence of distinet vertices (¢,),ex sSuch that w(g,+,) € Aw(q,)
for any n.

‘We shall see at the end of this section that the existence of a special
vertex ¢ as in (%) does not characterize the admissible genealogical
trees. However the next theorem shows that the existence of a se-
quence of vertices (¢,).ey @S in (%%) actually characterizes the non-
admissible genealogical trees.

THEOREM 3. Let T be a genealogical tree. Then the following con-
ditions are equivalent:

(i) T is a nonadmissible genealogical tree.

(ii) There exists a sequence (q,)nex 0f distinct vertices of T such
that w(qn+1) € Aw(q,) for any n.

Proor. (i) = (ii). The hypothesis that 7 is a nonadmissible
genealogical tree enables us to find a nonzero vector » € M(T) such
that (1,0,0,0,0,0,...)¢ Av. Consequently, if fe A, then either
f(v) =0 or f(») has infinite support. We claim that, if » € supp (v),
then there exist infinitely many ¢ € supp (v) such that w(p;) € Aw(p,).
Indeed, since w(p,)(v) # 0, it follows that w(p,)(v) has infinite support.
This implies that the set {i e supp (v): w(p,) € Aw(p,)} is infinite, as
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claimed. Hence we may immediately construct, by induction, a se-
quence of distinet vertices (g,),cy 0f T with the property that ¢, e
€{p.;:iesupp (v)} and that w(g.+,) € Aw(q,) for any =. Therefore
(ii) holds.

(ii) = (i). Let (g)nexy be a subsequence of (q,),cy Such that
deg w(q.,,) > 2 deg w(g,) for any n. Next let u be an element of
M(T) such that supp(u) = {i€ N:p, = ¢, for some n}. Then we

may write « as an infinite sum of the form w = > u,, where, for any =,
nEN
the support of u, has exactly one element s, and s, <s; if 1 <j. We

want to show that (1,0,0,0,0,0,...)¢ Au. To see this, fix any fe A
such that f(u) == 0. Evidently we can write f(u) as an infinite sum of
the form f(u) = > f(w,). At this point, let ¢ = min {n € N: f(u,) = 0}

neN
and choose some j>+¢ such that deg w(q;.) > deg f. Then all the vectors

f(u,) with »>j have nonempty and pairwise disjoint supports. Hence
f(w) has infinite support, and so (1,0,0,0,0,0,...)¢ Au. This proves
that 7T is a nonadmissible genealogical tree, as asserted in (i). m

As an immediate consequence of Theorem 3, we obtain the fol-
lowing corollary.

COROLLARY 4. Let T be a genealogical tree formed by finitely many
admissible branches. Then T is an admissible genealogical tree.

The next corollary shows that we cannot weaken the hypotheses
of Corollary 4.

COROLLARY 5. There exists a nonadmissible genealogical tree formed
by countably many admissible branches.

Proor. Let # and y denote two distinct letters from wy, ..., #,,.
Next let (¢,),ey denote the sequence of vertices of 7', defined induc-
tively by the formula

x? ifn=0

w(gn) = {my"w(q,,_l) if n>0.

Finally, for any =, let B, denote the branch of T, uniquely determined
by the following conditions:

(i) q. is a vertex of B,.
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(ii) If »> 0, then any path along B, arriving at ¢, consists
of all arrows denoted by @, while any path along B, arriving at ¢,
congists of all arrows denoted by y.

Hence the branch B, is of the form

0<Zo<fo<Lo<Lo<Lo...,
Do Qo

while, for any » > 0, the branch B, is of the form

o<Zo<Yo..0<%o...0o<%0<%o<%o0....
—_—
Do n arrows an

At this point, let 7' denote the genealogical tree obtained by glueing
together all the branches B,’s. Since (¢,),.x i8 a sequence of vertices
of T satisfying condition (ii) of Theorem 3, it follows that 7' is a non-
admissible genealogical tree. On the other hand, let B be a branch
of T. Then either B = B, for some n, or B = B, where B, is the
following branch of T:

0<fo<Lo<Lo<Yo<YLo....
Do

In both cases, Lemma 1 guarantees that B is an admissible branch.
This completes the proof of the corollary. m

REMARK. We can now justify the observation preceding Theorem 3.
Indeed, let 7 be the genealogical tree constructed in the proof of
Corollary 5, and let g be the vertex of T completely determined by the
property that w(q) = a2y2. We claim that, if p is a vertex of 7' dif-
ferent from ¢, then w(p) ¢ Ax?y®. To see this, we proceed by induction
on the index # of the branch B, containing p. If eithern =0orn =1,
then the assertion is obvious. Hence we may assume that p is a vertex
of the branch B, with »>2, and that the assertion holds for all the
vertices of the branch B,,. Now let (I,),.y denote the word cor-
responding to the branch B,,, and let (I}),.y denote the word cor-
responding to the branch B,. Then, by the inductive hypothesis,
Uilntalntelass = 2292 for any n. On the other hand, by the definition
of B,, we may write

(l:)neNZ (wy Yy oo Yy l07 lly 127 Zs, ) .
n
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This implies that X1 1%, 0% £ a%y? for any ». Hence w(p)¢
¢ Ax?y?, and so the assertion holds for all the vertices of the branch B,,.
Consequently, w(p) ¢ Az?y? for any vertex p of T different from g.
Since 7' is a nonadmissible genealogical tree, we conclude that the
obvious generalization of (%) does not determine all the admissible
genealogical trees.

With the convention that o <— o stands for o <—-o, and that
o <— o gtands for o <~ o, we may visualize the structure of 7T as

follows.

f—, O%—, 0 «..
Y, O <— O oo

)
@
OW—, O <— 0 <— OK O <— O%, O%—, ©

\

[
[

()
5

9o

0F—, 0 <— O¥%—, Ox— OF%—, O%—, O%—, O%—, O &—, O «.

OF—, 0 <— 0 <— O < 0 <— O%—, 0 < O <— O < O ..,
OF—, 0 <— 0 < 0 < 0 < 0 < OK—, 0 <« 0 < o .

\

Of—, O%—, O%—, OK—, OV OK—, OK—, Of—, OX—, O ¢

|

OF—, 0 < 0 < 0 <— 0%—, 0 < 0 < O

A

|

OF—\O‘_O<—O<—°<—O<—-O<—-O<—-O<——O<—O

=
©

2. The next theorem characterizes strongly nonadmissible words.

THEOREM 6. Let W = (l,),cxy be @ word. Then the following con-
ditions are equivalent:

(i) W is a strongly nonadmissible word.
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(ii) If r is a positive integer and w is a monomial of degree r in
the letters {l,: n € N}, then there exists some n such that w =1, ...1,,,,.

PRrOOF. (i) = (ii). Let W be a strongly nonadmissible word, and
assume, contrary to (ii), that there is a monomial w of the form
w=1,..1,, with r>1 and I_;e{l,:ne N} for any i=1,..,r,
such that ws1,...1,1,— for any n. To find a contradiction, let
U = (I,),ey denote the word

U= (lrl;)neNz (l—n ey l-—u lo7 ll’ l27 l37 ).

Then I, ...1_, = l,...l, =w, while U ., ... 1, = ly—giy ... Ly 7% w for
any n>2r— 1. By Lemma 2, this implies that U cannot be a non-
admissible word. Hence W cannot be a strongly nonadmissible word.
This contradiction shows that there is some » such that w =1, ... l,4,—,
and so (ii) holds.

(ii) = (i). Assume that W satisfies condition (ii). Now let U =
= (I)yex be a word of the form

U= (lrlu)neN: (l—ry eeny l—li lo7 lu lz’ l.'n ) 9

with r>1 and I_;€ {l,: n€ N} for any i =1, ..., ». We claim that U
is a nonadmissible word. To see this, let d be a natural number, and
let w denote the monomial w =1, ...1;. Then, by (ii), we can find
some n such that w=1,..1l4s. Since l,...lpya= 1, ... lirray it
follows that w=1,..l; =1, .0 .4 With n -4+ r>r>0. Conse-
quently, by Lemma 1, U is a nonadmissible word, as claimed. Hence (i)
holds, and the theorem is proved. m

The following corollary gives a « quantitative » result on words.

COROLLARY 7. There exist 2% admissible words, strongly nonadmis-
sible words and weakly nonadmissible words.

PrOOF. Let # and y denote two distinect letters from a«, ..., ©,.
We divide the proof in three steps.

Step 1. Let o = (a,),ex be a strictly increasing sequence of positive
integers, and let W, denote the word

W= @y ooy By Yy Ty vy By Yy By eeuy Ly Yy o0n)

Qo a1 L3
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More precisely, let Wu = (1,),cx, Where

y ifn=i+4+ >a; for some ie N
i=0

ly=

x  otherwise .

Now let d = ay + a, + 1; then [, ... l; = x*yx*y. Since « is a strictly
increasing sequence, we have I, ... Iy 5= l,—g ... I, for any n > d. Hence,
by Lemma 1, W, is an admissible word. Since the map o+ W, is
injective, there exist 2% admissible words.

Step 2. As in Step 1, let « = (a,),.y be a strictly increasing se-
quence of positive integers. Next, let a* = (a}),.y e the «periodic »
sequence defined as follows. First of all, if n e N, then afi_, = a,
and 2"'— 2 = min {i € N: a} = a,}; secondly, we choose af = q,.
Assume now, by induction, that, for some n>1, we have already
defined all the elements & with 0<i<2"'— 2. Then we define the
elements af with 271 — 1<i<2"**— 3 by means of the equality
(@hni1_ 1y eeey Banea_g) = (@, ..., @Juii_p). Now let W,. denote the word

War= (@ eeey Ty Yy By covy Ty Yy Ty eeuy Ty Yy .ol)

0 . v
a; ay ay

that is let W, = (1,),cx, Where

y iftn=i43af
i<o

1, =

x  otherwise .

Since 1,l,+; 7 y? for any n, we deduce from Theorem 6 that W,.
cannot be a strongly nonadmissible word. We claim that W,. is not
admissible. Indeed, fix any d € N. Then the definition of «* enables
us to find two natural numbers r and » with r>d and n>1 such that
lo .o ly ... l, = @0y ... yaoir+'—2, Since

(a,;k, ceey a;‘nu_z) = (a/;‘nn_l, ceey a;‘rﬁl_a),

there exists some s > 0 such that I,...1;...1, = I, ... l,4q ... l+,. Con-
sequently 1,...1; =1, ... 14, with s> 0. Hence, by Lemma 1, W,
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is a nonadmissible word. Therefore W,. is a weakly nonadmissible
word. Since the map o* — W,. is injective, we obtain 2% weakly
nonadmissible words.

Step 3. Let o be a sequence of the form ¢ = (w,),ecy, Where w,
runs through all the monomials of positive degree in the letters «
and y. For any n, let d, denote the degree of w,. Next, let

0 it n—0
= dot e+ duy ifn>0,

and let b, =dy+ ... +d,— 1 for any n. Finally, let W, denote
the word (l,),ey defined by glueing together all the monomials w,,
as illustrated in the following picture.

] ] ] . e e

More precisely, let Wy denote the word (I,),.y uniquely determined
by the condition that I, ...l, = w, for any n. Then W, obviously
satisfies condition (ii) of Theorem 6, and so Wy is a strongly nonadmis-
sible word. Since the map o — Wy is injective, there exist 2% strongly
nonadmissible words.

The corollary now follows from Steps 1, 2 and 3. =

Finally, we give an example of a very large admissible genealogical
tree.

COROLLARY 8. There exists an admissible genealogical tree formed
by 2% branches.

Proor. Let T be the genealogical tree obtained by glueing together
all the branches of T, corresponding to the words W, constructed
in Step 1 of the proof of Corollary 7. Hence any W, is of the form

Wo= (@) ey @y Yy By eeey Ty Yy By oeny By oot)

ao a; a3

where « = (a,),cy is a strictly increasing sequence of positive integers.
We claim that T is an admissible genealogical tree. Suppose the con-
trary, and let (¢,),.y be a sequence of vertices of 7' satisfying con-
dition (ii) of Theorem 3. Then we can find two natural numbers ¢



Nonadmissible genealogical trees L81
and j with ¢ > 0 such that w(q,) € Ayx‘yA for any n>j. This implies
that the set

8 = {p:p vertex of T, w(p)e Ayx'y}

is infinite. To see that this is impossible, fix any p € §. Then, by the
definition of 7, there exists a strictly increasing sequence of positive
integers « = (a,),cy such that ¢ = a, for some re N and w(p) =
= g%y ...yx*y. Since r 4 1<, it follows that

Gt e F @, FrF1<i b F i+ =40+ 1).

r+1 D
and so deg w(p)<i(¢ + 1). This means that § is finite, and this is
the desired contradiction. This contradiction shows that T is an
admissible genealogical tree, as claimed. Since 7' has 2% branches,
the corollary is proved. m

REMARK. The above proof shows that the assertion of Corollary 8
holds for m = 2, and so for any m>2. However, if m>3, then it is
even easier t0 construct an admissible genealogical tree with 2Xe
branches. In fact, let 7' be the genealogical tree obtained by glueing
together all the branches B of T, corresponding to words W of the
form W = (1,),ey With Iy, = @, and I, € {w,, ;} for any n > 0. Then
evidently 7' does not satisfy condition (ii) of Theorem 3, and so T
is an admissible genealogical tree with 2% branches.

3. We do not know the structure of an A-module of the form
M(T) with T a nonadmissible genealogical tree. However, the next
proposition shows that, if 7 is a nonadmissible genealogical tree,
then M(T) may be very far from being indecomposable.

PROPOSITION 9. There exists a genealogical tree T such that M(T)
is the direct sum of |M(T)| indecomposable A-modules, runwing through
all the indecomposable injective K[x]-modules.

Proor. Letx be aletter from x,, ..., #,, and let T be the genealogical
tree of the form

0 <o <Xo<2o<Xo<Lo....
Do

More precisely, let 7 be the branch of T, corresponding to the word
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(I)ney With 1, = » for any n. We claim that T satisfies the hypotheses
of Proposition 9. To see this, we divide the proof in three steps.
Throughout the proof, we denote by M the module M(7) and by
t(M) the torsion submodule of M.

Step 1. M is an injective K[x]-module.

ProoF. Let f be an element of K[x] of the form f= '+ a,,-
‘@il 4 ...+ a,x -+ a, for some 7> 0, and let » be a vector of M of
the form v = (k,),cy. Now let ¥ denote the vector o = (k,),cy defined
inductively by the formula

0 if 0<n<i—1,

o = kpi— (ai-—ll_cn—l e+ a’ol_cn—i) if n>4.

Then, for any »>1%, we obtain

Font @iy bony+ oo + Gl =
== (kn—i_ (@i ]Enﬂ + ...+ “o];?n—i)) + ai—llzn—l + ..+ aol-én-i: Eps.
It follows that f(v) =w». Therefore M is a divisible K[x]-module,
and so, by ([3] Theorem 2.8), M is an injective K[x]-module.
Step 2. soct(M)~ P K[x)/(p) with p running through all the
monic and irreducible pol?;nomials of K[x].

Proor. Let f be an element of K[x] of the form f= #* + a,,*
‘@' 4 ... + a,& + a, for some i > 0, and let V, = {v € t(M): f(v) = 0}.
We shall prove that V; is a cyclic K[x]-module isomorphic to K[x]/(f).
To this end, we first note that, if v € V, and v is of the form v =
= (kn)nEN7 then

bnti+ @iyKnrioy + oo + @1 knyy + @k, =0  for any n.
Consequently, for any element (¢, ..., ¢;—;) € K° there exists a unique
element (¢}),.y € V, satisfying ¢} = ¢, for any n =0, ..., ¢ — 1. This

means that the canonical projection n: M — K*, such that

ﬂ((kn)neN) = (Koyeery Kima) for any (k,)pex€ M,
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induces a K-vector space isomorphism between V, and K°’. Next,
let v, denote the element of V, uniquely determined by the condition
that 7(v,) = (0, ..., 0,1). Then {n(2/(v,)):j =0, ..., i — 1} is obviously
a base of the K-vector space K°. This proves that {wi(v,):j =0, ...,
, ©— 1} is a base of the K-vector space V,; hence V, = K[z]v,. Since
dimg (V;) = ¢ and f € anng;(v;), it follows that anngy,(v;) = (f). Thus
V, is isomorphic to K[x]/(f), as claimed. We also note that (M) =
= > V, with f running through all the monic polynomials of K[x]

r
of positive degree. Therefore
(%) [H(M)| = max {|K|, No} = | K (a)]

and soct(M)= > V,= @V,, where p ranges over all the monic

D D
and irreducible polynomials of K[x].

Step 3. M has a decomposition of the form M = (M) P V,, where
Vo is a vector space over K(x) and dimg,\(V,) = |M|.

ProoF. The existence of a K(x)-vector space V, such that M =
= t(M)® V, follows from Step 1 and ([3] Theorem 4.4 and Corollary
to Theorem 2.32). Now let v be the following element of M:

v=(1,9,1,0,0,1,0,0,0,1,0,0,0,0,1,...).

More precisely, let » = (k,),cy, Where

7
. 1 if either n =0 or n= Y j for some i>2,
Cn = i=2

0  otherwise .
We claim that the vectors {#"(v): n € N} are K-linearly independent.
Indeed, suppose, by contradiction, that this is not true. Then, for
some i€ N, we may write #'ti(v) = > t,4/(v) with t,€ K for any
i=0

j=20,..,% On the other hand, by the:, definition of v, we can find
some n such that » 4 ¢ 4 1 e supp (v) and » -+ j ¢ supp (v) for any
j =0,..,4. Consequently = e supp (#+(v)) and = ¢ supp (#/(v)) for
any j = 0, ..., 2. Hence xi+1(v) % Y t;27(v), contrary to the hypothesis.

i=0
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This contradiction shows that the vectors {#"(v): n € N} are K-linearly
independent. Therefore V,+ 0, and we deduce from (x) that

(%) [Vo| = |K(#)| dimg) (Vo) = [((M)| dimg, (Vo) .

To end the proof, we distinguish two cases.

Suppose first that |{(M)| < |M|. Then we clearly have |V,| = |M]|.
Moreover, by (x*), |Vo| = dimg,) (V,). Consequently dimg, (V,) = |M]|,
as desired.

Assume now that |{(M)| = |M|. In the case, we first note that,

by (%), we have
1) | M| = |K|>N,.
Next, let B denote a base of the K(x)-vector space V,, and let E denote

the smallest subfield of K with the property that, if ve $ and v =
= (k,)pex, then k, € E for any n. Then evidently

(2) |E|<max {dimK(x) Vo), No} .

Suppose, by contradiction, that |E| << |K|. Then, by (1), tr deg (K/E),
the transcendence degree of K over E, is infinite. Hence we may
choose a vector v*¥ € M of the form v* = (k}),.y such that

(3) k., is not algebraic over E(K}, ..., k¥) for any =.
To find a contradiction, we write »* in the form v* = v’ 9" with

v'= (kp)pex EUM) and v" = (k,)nexy € Vo. Then there exist f/, '€
€ K[z], of the form

ff=at+ a1 @+ . + a0 + @
and
["=a+ b0+ ... +bx+ b

.
with 4, >0, such that f(v') =0 and f'(0") = > fi(v;) with r>1,
i=1

fi€ K[x] and v, $ for any ¢ = 1, ..., r. Let ¢, ...,_ch denote the coef-
ficients of f,, ..., f,, and let ' denote the following subfield of K:

F = E(ao, eeey a,'_]_, bo’ ceey bi"l’ 01, ceey 0;,,) .



Nonadmissible genealogical trees 85
At this point, the hypothesis that f'(v') = 0 guarantees that
kpei t+ @bl + oo +ak o+ agk,=0 for any n.

Consequently
4) k, € F(ky, ..., k;_,) for any n.

On the other hand, the hypothesis that f'(v") = > fi(v,) implies that
i=1

by + b, ik sy+ oo + 0K+ bk, € F  for any n.

Therefore

(5) k, € F(ky,..., k;_,) for any .

n

Putting (4) and (5) together, we conclude that
(6) K=k, -+ k. € F(kyy ..., ki_yy Koy .oy k;—,)  for any n.

Finally, let F* denote the field F* = F(k¥: ne N). Then (6) implies
that tr deg (F*/F) is finite. Since tr deg (F/E) is obviously finite, it
follows that also tr deg(#*/E) is finite, contrary to the hypothesis
that o* satisfies (3). This contradiction shows that |E|= |K|. By
(1) and (2), this implies that dimgg, (V,) = |M]|.

Combining Steps 1, 2 and 3, we see that the genealogical tree T
satisfies the hypotheses of Proposition 9. =

The A-module M constructed in the proof of Proposition 9 gives
a «concrete » example of an injective cogenerator for the category
of all K[x]-modules. We also note that the indecomposable summands
of M are, in a sense, the « smallest » possible indecomposable summands
of an A-module of the form M(B) with B a branch of T,. In fact, we
have the following corollary.

COROLLARY 10. Let B be a branch of Ty, and let 2 = 2, + ... + Ty
Then M(B), regarded as a K[z]-module, is the direct sum of |M(B)|
injective K[z]-modules.

ProorF. Replace x by z in the proof of Proposition 9. m
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