RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIULIANO BRATTI

Su di un teorema di Hartogs

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 59-70

http://www.numdam.org/item?id=RSMUP 1988 79 59 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Su di un teorema di Hartogs.

GIULIANO BRATTI (*)

0. Il teorema di Hartogs cui il titolo allude è questo:

Sia A un aperto di C^n , $n \geq 2$, e sia K un compatto di A con complementare, $A \sim K$, connesso; ebbene: ogni funzione olomorfa definita su $A \sim K$ ammette un solo prolungamento olomorfo definito su tutto A.

È probabile che la prima estensione di questo teorema sia quella di Francesco Severi, [9], (1); oggi è possibile dare una formulazione generale del teorema di Hartogs, relativamente a fasci soffici (2) di distribuzioni, e di iperfunzioni, che son soluzioni d'un sistema omogeneo di equazioni alle derivate parziali, lineari ed a coefficienti costanti. A tale scopo il mio punto di partenza sarà il Teorema 3 di Gaetano Fichera, [4], pag. 202.

L'oggetto dei successivi paragrafi 1), 2) e 3) è il seguente: 1) enunciato e dimostrazione del teorema di Hartogs per fasci di gruppi; 2) caratterizzazione dei sistemi differenziali lineari, a coefficienti costanti, che hanno soluzioni dell'omogeneo associato prolungabili; 3) versione coomologica dei risultati di 2).

- (*) Indirizzo dell'A.: Seminario Matematico dell'Università, Via Belzoni 7, I-35131 Padova.
- (1) Si veda anche la Nota di G. Fubini: Un teorema sulle equazioni alle derivate parziali di tipo ellittico che generalizza un teorema dell'Hartogs e uno del Severi, sui medesimi Rendiconti di [9].
 - (2) Per altri tipi di estensioni, si veda [5].

Nota. Gli argomenti qui trattati sono già stati oggetto d'una mia conferenza tenuta presso l'I.S.P.J.A.E., Instituto Superior Politecnico « Josè Antonio Echevarria », dell'Avana, Cuba, il 30 di marzo del 1987.

1. X sia uno spazio topologico di Hausdorff, unione numerabile di compatti:

$$X = U_j L_j$$
, $\mathring{L}_j \subset L_{j+1}$,

dove \hat{L}_i è l'interno di L_i .

 \mathcal{F} sia un fascio di gruppi abeliani su X; A sia un aperto connesso di X, H sia la famiglia di tutti i compatti di A, K_A sia una sottofamiglia di H tale che:

- i_1) i compatti di K_A invadono A;
- i_2) per ogni K in K_A il suo complementare $A \sim K$ è connesso.

Identificando $\mathcal{F}(A)$ con $\Gamma(A, \overline{\mathcal{F}})$, dove $\overline{\mathcal{F}}$ è lo spazio étalé associato a \mathcal{F} , si pone

$$\mathcal{F}_H(A) = \{ w \text{ in } \mathcal{F}(A) \colon \text{supp}(w) \text{ sta in } H \}.$$

Sia $P = \|\pi_{i,i}\|$, $1 \le i \le t$ e $1 \le j \le s$, una matrice di morfismi di \mathcal{F} .

DEFINIZIONE 1.
$$\mathcal{F}_P(A) = \{f \text{ in } \mathcal{F}(A)^s : Pf = 0\}.$$

DEFINIZIONE 2. P verifica il fenomeno di Hartogs in A, rispetto alla famiglia K_A e al fascio \mathcal{F} (brevemente $P \in H(A, K_A, \mathcal{F})$), se:

per ogni K in K_A e per ogni f in $\mathcal{F}_P(A \sim K)$ esiste una sola F in $\mathcal{F}_P(A)$ tale che

$$F_{/(A \sim K)} = f(^3).$$

F si dice la P-estensione di f.

LEMMA 1. Le seguenti proposizioni, p_1) e p_2), sono equivalenti:

- p_1) per ogni K in K_A , ogni f in $\mathcal{F}_P(A \sim K)$ che ammetta P-estensioni, ne ammette una sola;
- p_2) se w sta in $\mathcal{F}_H(A)$ s e Pw=0, allora w=0.
- (3) $F_{/(A \sim K)}$ è l'immagine, mediante l'omomorfismo di restrizione $r\colon \mathcal{F}(A) \to \mathcal{F}(A \sim K)$ di F.

DIMOSTRAZIONE.

 p_1) implica p_2): se supp $(w) \subset K$, con K in K_A , e se Pw = 0, lo zero di $\mathcal{F}_P(A \sim K)$ ammetterebbe come P-estensione anche la w.

 p_2) implica p_1): due P-estensioni, F_1 e F_2 , della medesima f in $\mathcal{F}_P(A \sim K)$ darebbero $P(F_1 - F_2) = 0$ e supp $(F_1 - F_2) \subset K$.

A seguito del Lemma 1, si assume, d'ora in poi, che P verifichi questa ipotesi

(I)
$$w \text{ in } \mathcal{F}_{H'}(X)^s \text{ e } Pw = 0 \text{ implies } w = 0,$$

dove H' è la famiglia di tutti i compatti di X.

TEOREMA 1. F sia un fascio soffice (4).

Le seguenti proposizioni, p1) e p2), sono equivalenti:

- p_1) $P \in H(A, K_A, \mathcal{F});$
- p₂) P verifica queste ipotesi:
 - f_1) per ogni w in $\mathcal{F}_H(A)^t$ per cui esiste una f in $\mathcal{F}(A)^s$ tale che

$$Pt = w$$

esiste pure una w' in $\mathcal{F}_H(A)$ s tale che Pw'=w;

 f_2) so K sta in K_A , e $K \subset L_i$, e so la f di $\mathcal{F}_P(X \sim K)$ è tale che $f_{/(X \sim L_i)} = 0$, anche $f_{/(X \sim K)} = 0$.

DIMOSTRAZIONE.

 p_1) implies p_2): per la f_1) si ha: se Pf = w, supp $(w) \subset K$, e K sta in K_A , allora f sta in $\mathcal{F}_P(A \sim K)$; se F è la su P-estensione risulta

$$P(f-F)=w$$
 e $\sup (f-F) \subset K$.

Per la f_2) si ha: poichè $\mathcal{F}_P(X \sim K) \subset \mathcal{F}_P(A \sim K)$, se F è la P-estensione

(4) Si intende che: se Z è un chiuso di A, la restrizione

$$r \colon \mathcal{F}(A) \to \mathcal{F}(Z) = \lim_{A \to \infty} \{\mathcal{F}(A), A \text{ in } F(Z)\}$$

dove F(Z) è il filtro degli intorni aperti di Z, è suriettiva.

della f di $\mathcal{F}_P(X \sim K)$ in A, la G così definita

$$G = \begin{cases} F, & \text{in } A \\ f, & \text{in } X \sim K \end{cases}$$

ha supporto compatto contenuto in L_i e soddisfa l'equazione PG = 0; in virtù dell'ipotesi (I) su P, per cui P non ha radici compatte, risulta G = 0, ovvero $f_{|(X \sim K)} = 0$.

 p_2) implica p_1): sia f in $\mathcal{F}_P(A \sim K)$, e sia K_1 in K_A tale che $K \subset \mathring{K}_1$; ciò è possibile, in virtù delle proprietà della famiglia K_A . Visto che \mathcal{F} è soffice, esiste \bar{f} in $\mathcal{F}(A)$ tale che

$$\bar{f}_{/(A \sim \mathring{K}_1)} = f,$$

siechè per la \bar{f} si ha $P\bar{f} = w$, con supp (w) in K_1 . In virtù dell'ipotesi f_1) esiste una w' in $\mathcal{F}_H(A)^s$ tale che Pw' = w e dunque

$$\bar{f} = w' + h$$

con h in $\mathcal{F}_P(A)$. La h coincide con la \bar{f} , e dunque con la f, in prossimità della frontiera di A, cioè in qualche $A \sim K_2$, con K_2 in K_4 . Posto

$$G = \begin{cases} f - h, & \text{in } A \sim K \\ \text{zero}, & \text{in } X \sim A \end{cases}$$

per la G si ha: G sta in $\mathcal{F}_P(X \sim K)$ e risulta $G_{/(X \sim L_i)} = 0$, per qualche L_i . In virtù dell'ipotesi f_2) risulta $G_{/(X \sim K)} = 0$, ovvero la h è la P-estensione della f.

La dimostrazione è conclusa.

OSSERVAZIONE 1. Se G è un prefascio su X, contenuto in \mathcal{F} , e se P è anche un morfismo di G in G allora è immediato verificare che: $P \in H(A, K_A, \mathcal{F})$ implica $P \in H(A, K_A, G)$ non appena G soddisfi questa ipotesi:

(B)
$$f \text{ in } \mathcal{F}_{P}(A) \cap \mathcal{G}(A \sim K)^{s} \text{ implica } f \text{ in } \mathcal{G}_{P}(A)$$
.

ESEMPIO. Se = \mathfrak{D}' è il fascio delle distribuzioni su $X = R^n$ in base a (1) ogni sottofascio \mathcal{A} , \mathcal{E} , e Γ^a : rispettivamente il fascio delle funzioni analitiche reali, quello delle funzioni di classe C^{∞} , ed il fascio

delle funzioni della d-esima classe di Gvrey, soddisfano la (B), quando P è un operatore differenziale lineare a coefficienti costanti, o un sistema di tali operatori verificanti l'ipotesi (I).

2. In questo paragrafo si applica il teorema precedente ai prefasci di distribuzioni su $X = R^n$, con $P = ||p_{i,j}||$, $1 \le i \le t$ e $1 \le j \le s$, dove i $p_{i,j}$ sono operatori differenziali lineari, a coefficienti costanti.

Sia Q l'algebra dei polinomi in n indeterminate; $P\colon Q^s \to Q^t$ agisca così

$$P(q_1,...,q_s) = \sum\limits_i p_{i,i} q_i\,, \quad 1 \leq i \leq t\,.$$

Posto, seguendo (8),

$$M = \operatorname{cooker}({}^tP) = Q^s/({}^tPQ^t),$$

dove ${}^{t}P$ è la trasposta di P; e posto anche che

$$(1) 0 \leftarrow M \leftarrow Q^s \stackrel{'p}{\leftarrow} Q^t \stackrel{^tp}{\leftarrow} Q^{t_1} \leftarrow \dots$$

sia la risoluzione (finita) di Hilbert di M, considerata la duale della (1), cioè la

$$(2) 0 \to Q^s \xrightarrow{P} Q^t \xrightarrow{P} Q^{t_1} \to$$

indicheremo con $\operatorname{Ext}^p(M,Q)$ il p-esimo gruppo di coomologia della (2).

DEFINIZIONE 3. Il sistema differenziale P si dice determinato se $\operatorname{Ext^0}(M,Q) = \ker(P) = 0$; si dice sovradeterminato se $\operatorname{Ext^0}(M,Q) = \operatorname{Ext^1}(M,Q) = \ker(P_1)/(PQ^s) = 0$.

Sia A un aperto connesso di \mathbb{R}^n che ne contenga l'origine. Sia \mathcal{F} un prefascio di distribuzioni che soddisfi le seguenti ipotesi:

- b_1) $\mathcal{F}(A)$ contiene una successione $n \to u_n$ di distribuzioni a supporto compatto tale che: supp $(u_n) \downarrow \{0\}$ e $\lim_n u_n = \delta$, dove δ è la misura di Dirac, e il limite è calcolato nello spazio delle distribuzioni a supporto compatto δ' ;
- b_2) se w sta in $\mathcal{F}_{H'}(R^n)^t$, se u sta in $\mathcal{E}'(R^n)^s$ e se Pu=w, anche w sta in $\mathcal{F}(R^n)^t$;

 b_3) la sequenza

$$\mathcal{F}(\mathbb{R}^n)^s \xrightarrow{P} \mathcal{F}(\mathbb{R}^n)^t \xrightarrow{P_1} \mathcal{F}(\mathbb{R}^n)^{t_1}$$

è esatta.

Esempi di prefasci che soddisfano le b_1), b_2) e b_3) sono: il fascio δ ed il prefascio delle distribuzioni di ordine finito \mathfrak{D}'_{r} .

Sia Γ_A la famiglia di tutti i compatti convessi di A.

TEOREMA 2. Sia un prefascio di distribuzioni che soddisfa le precedenti ipotesi b_1), b_2) e b_3).

Se $P \in H(A, K_A, \mathcal{F})$ si ha:

- a) P è determinato;
- b) $P \in H(A, K_A \cup \Gamma_A, \mathcal{F});$
- c) P è sovraterminato.

DIMOSTRAZIONE.

a) In virtù dell'ipotesi b_1) risulta $\mathcal{F}_H(A) \neq 0$. Se $(q_1, ..., q_s)$ sta in ker (P), scelta la g in $\mathcal{F}_H(A)$ e posto

$$Z=(q_1g,\ldots,\,q_ss)$$

si ha PZ = 0, che è assurdo in base al Lemma 1.

b) Sia G un elemento di Γ_A , con $G \subset K$ e K in K_A . Se f sta in $\mathcal{F}_P(A \sim G) \cap \mathcal{F}_P(A \sim K)$, esiste una sola F in $\mathcal{F}_P(A)$ tale che $F_{/(A \sim K)} = f$. Ovvio che $(\bar{f} - F)$ stia in $\mathcal{F}_P(A \sim G)$.

Sia $T = \{x \text{ in } R^n : x_n \leq d\}; \text{ sia } G \in T \text{ e siano:}$

$$A' = A \sim G;$$

$$A'_{e} = \{x \text{ in } A': x_{n} > d + e\}, \text{ con } e > 0; e$$

$$G_0 = K \cap \{x \text{ in } A' : x_n \geq d + e\}.$$

Poichè (f-F) sta in $\mathfrak{D}'(A')^s$ ed è nulla, e quindi analitica in $A'_{\epsilon} \sim G_0$, ed inoltre P(f-F)=0 in A', in base a (1) la (f-F) risulta analitica su tutto A'_{ϵ} , e dunque nulla. Al variare di T, la (f-F) risulta nulla

su tutto $A \sim G$, e dunque la F è una P-estensione della f su A:

$$F_{/(A \sim G)} = f$$
.

c) Sia $(q_1, ..., q_t)$ in $\ker(P_1)$. Considerata la successione delle u_n , di cui all'ipotesi b_1), per la successione

$$(q_1u_n, \ldots, q_tu_n)$$

si ha, in base all'ipotesi b_3): esiste $(v_i^n, ..., v_s^n)$ in $\mathcal{F}(\mathbb{R}^n)^s$ tale che

ć

$$\sum_i p_{i,j} v_j^n = q_i u_n, \quad 1 \leq i \leq t;$$

in virtù della f_2) del Teorema 1 (per la validità della quale non è necessario nè che \mathcal{F} sia soffice, nè che sia un fascio), esiste $(w_i^n, ..., w_s^n)$ in $\mathcal{F}_H(A)^s$ per cui si ha, ancora

$$\sum_{i} p_{i,j} w_{j}^{n} = q_{i} u_{n}, \quad 1 \leq i \leq t.$$

Se Δ è un minore di P, d'ordine s, con det $(\Delta) = D \neq 0$ (esiste, visto che P è determinato), risulta $Dw_j^n = R_j(u_n)$, sicchè si può supporre che il supp (w_j^n) sia contenuto nel supp (u_n) . Ora, se f sta in $\mathcal{E}(R^n)$ e se $^tDg = f$, con g in $\mathcal{E}(R^n)$, si ha

$$\lim_{n} \langle w_{j}^{n}, f \rangle = \lim_{n} \langle Dw_{j}^{n}, g \rangle = \lim_{n} \langle R_{j}(u_{n}), g \rangle = \langle R_{j}(\delta), g \rangle,$$

così che la successione delle w_j^n converge, in $\mathcal{E}'(R^n)$, verso la r_j . Ovvio che supp $(r_j)\downarrow\{0\}$, e dunque, con la trasformata di Fourier, si ottiene

$$\sum_{i} p_{i,j}(x) r_j(x) = q_i(x), \quad 1 \leq i \leq t.$$

Ciò dimostra che $PQ^s = \ker(P_1)$, ovvero che $\operatorname{Ext}^1(M,Q) = 0$. La dimostrazione è conclusa.

TEOREMA 3. Sia \mathcal{F} un fascio soffice di distribuzioni, che soddisfa le ipotesi b_1), b_2) e b_3).

Le seguenti proposizioni, p_1) e p_2), sono equivalenti:

- p_1) $P \in H(A, K_A, \mathcal{F});$
- p_2) P soddisfa l'ipotesi f_2) del Teorema 1; inoltre $\operatorname{Ext}^1(M,Q)=0$.

DIMOSTRAZIONE.

- p_1) implica p_2): è conseguenza del Teorema 1 e del Teorema 2.
- p_2) $implica p_1$): basta provare che P soddisfa l'ipotesi f_1) del Teorema 1.

Sia, dunque, w in $\mathcal{F}_H(A)^t$ e sia Pf = w, con f in $\mathcal{F}(A)^s$. Ovvio che w stia in ker (P_1) , sicchè, in base all'ipotesi b_3) si può supporre, direttamente, che la f stia in $\mathcal{F}(R^n)^s$. Sia G_0 la copertura convessa del supp (w); si ha: f sta in $\mathcal{F}_P(R^n \sim G_0)$; in virtù del Coroll. 3 di (8), pag. 394, esiste una F in $\mathfrak{D}'_P(R^n)$ tale che

$$F_{/(\mathbb{R}^n \sim G_0)} = f$$
.

Poichè P(f - F) = w e supp (f - F) è compatto, in virtù dell'ipotesi b_2) si ha che (f - F) sta in $\mathcal{F}(\mathbb{R}^n)$, e dunque anche la F vi sta. Per l'ipotesi f_2), il supp (f - F) deve stare in A.

La dimostrazione è conclusa.

Il prossimo teorema mostra la rilevanza della famiglia di compatti K_A nello studio del fenomeno di Hartogs per il sistema differenziale P.

P sia del tipo $P=\|p_{i,1}\|$, con $i\geq 2$; gli operatori $p_{i,1}$ siano omogenei. Per questo tipo di sistemi differenziali vale il

TEOREMA 4. Le seguenti proposizioni, p_1) e p_2), sono e quivalenti:

- p_1) $P \stackrel{.}{e} ellittico e <math>P \in H(A, K_A, \mathcal{E});$
- p_2) $P \in H(A, H_A, \mathcal{E})$, dove H_A è la famiglia di tutti i compatti di A che hanno complementare connesso.

DIMOSTRAZIONE.

- p_1) implica p_2): l'ellitticità di P implica che è soddisfatta l'ipotesi p_2) del Teorema 1 relativamente alla famiglia p_3 ; che sia soddisfatta anche la p_3 0 dipende da p_3 0 dipende da p_3 1.
- p_2) implica p_1): supponiamo d'aver dimostrato che se P non è ellittico esiste un vertore N=(0,...,0,1) per cui si ha $P_{i,1}(N)=0$,

 $i \geq 2$. Allora si può concludere così: sia K definito da

$$K = \{x \text{ in } A : a \leq |x| \leq b \text{ e } x_n > 0\};$$

scelta la f in $C^{\infty}(\mathbb{R})$ in modo che f(t) > 0, se t > 0, f(t) = 0, se t < 0, per la funzione

$$u(x) = \left\{ egin{array}{ll} f(\langle x,N
angle) \,, & ext{se } |x| \leq a \ & ext{zero} \;, & ext{se } x \in R^n \sim K_1 \end{array}
ight.$$

dove $K_1 = \{x \text{ in } R^n \colon |x| \leq b \text{ e } x_n \geq 0\}$, si ha: u sta in $\mathcal{E}_P(R^n \sim K)$, $u_{/(\mathbb{R}^n \sim L_j)} = 0$, se $L \subset K_1$, ma $u(x) \neq 0$; ciò implica che P non verifica l'ipotesi f_2) relativamente alla famiglia H_A , il che è assurdo. Dunque P deve essere ellittico, sicché soddisfa l'ipotesi f_2) rispetto ad ogni famiglia K_A , ed inoltre, per l'ipotesi, P verifica anche la f_1) del Teorema 1.

Per concludere: se $\deg(p_{i,1}) = n_i \ge 1$; se m è il minimo comune multiplo degli n_i , il polinomio

$$p = \sum_{i} (p_{i,1} \overline{p}_{i,1})^{(m/n_i)},$$

dove $\overline{p}_{i,1}$ è il coniugato di $p_{i,1}$, è somma di quadrati di grado m, e quindi ha come caratteristiche reali solo quelle comuni ad ogni $p_{i,1}$; se P non è ellittico, nemmeno p lo è.

La dimostrazione è conclusa.

OSSERVAZIONE 2.

In base al teorema precedente si ha: se $P=\|D_{x_i}\|,\ 1\leq i\leq n,\ P$ verifica il fenomeno di Hartogs

$$H(R^{n+1}, K_{R^{n+1}}, \mathcal{E})$$
,

dove $K_{\mathbb{R}^{n+1}}$ è la famiglia delle sfere di \mathbb{R}^{n+1} , di centro 0 e raggio qualunque, ma non soddisfa il fenomeno di Hartogs

$$H(R^{n+1},H_{R^{n+1}},\,\delta)$$

poichè P non è ellittico.

3. In base ai risultati di (6) è possibile dare un'interpretazione coomologica dei Teoremi 2 e 3 relativamente ai fasci di iperfunzioni.

Sia A un aperto convesso di \mathbb{R}^n ; sia P una matrice differenziale, e sia \mathcal{B} un fascio soffice di iperfunzioni su \mathbb{R}^n che soddisfa queste ipotesi

- F_1) $\Gamma_*(R^n, \mathcal{B}_P) = 0$, cioè l'equazione Pu = 0 non ha soluzioni, con supporto compatto, in \mathcal{B} ;
- F_2) $H^1(\mathbb{R}^n, \mathfrak{B}_P) = 0.$

TEOREMA 5. Le seguenti proposizioni, p_1), p_2) e p_3), sono equivalenti:

- p_1) $P \in H(A, K_A, \mathcal{B});$
- p_2) P verifica l'ipotesi f_2), relativamente alla famiglia K_A , del Teorema 1; inoltre per ogni G in Γ_A , si ha

$$H^1_{\theta}(A, \mathcal{B}_P) = 0$$
;

 p_3) per ogni K in K_A si ha

$$H^1_{\mathbb{R}}(A, \mathfrak{B}_P) = 0$$
.

DIMOSTRAZIONE.

 p_3) implica p_1): in base al teorema di excisione, e vista l'ipotesi F_1), la sequenza

$$0 \rightarrow H^0(A, \mathcal{B}_P) \rightarrow H^0(A \sim K, \mathcal{B}_P) \rightarrow 0$$

è esatta; dunque $P \in H(A, K_A, \mathcal{B})$.

 p_1) implica p_2): incominciamo col dimostrare che P verifica l'ipotesi f_2) del Teorema 1 relativamente alla famiglia Γ_A .

Sia G_0 in Γ_A ; sia f in $\mathfrak{B}_P(R^n \sim G_0)$ e sia $f_{/(\mathbb{R}^n \sim L_i)} = 0$. Sia F l'iperfunzione su R^n tale che

$$F_{/(\mathbb{R}^n \sim G_0)} = f;$$

ovvio che supp $(F) \subset L_i$ e che se PF = w, supp $(w) \subset G_0$. Dimostriamo che anche supp $(F) \subset G_0$.

Sia $\mathcal{A}(G_0)$ lo spazio delle funzioni analitiche su G_0 e $\mathcal{A}'(G_0)$ il suo duale; se si dimostra che w sta in $P(\mathcal{A}'(G_0))$, che è chiuso in $\mathcal{A}'(G_0)$, per la convessità di G_0 , in virtù della F_1) supp $(F) \subset G_0$. In base al Teorema di Hahn-Banach, se così non fosse, esisterebbe una f in $\mathcal{A}(G_0)$ tale che $\langle w, f \rangle = 1$ e ${}^tPf = 0$. Sia V un intorno convesso, in R^{2n} , sul quale la f si prolunga, nella f_0 , come funzione olomorfa, che ancora soddisfa, su V, l'equazione Pf = 0. Se $S = \{{}^tP, \bar{\delta}\}$, dove $\bar{\delta}$ è il sistema di Cauchy-Riemann, in base al Th. 3 di (8), pag. 305, la restrizione

$$r: \mathcal{C}_s^{\infty}(\mathbb{R}^n) \to \mathcal{C}_s^{\infty}(\mathbb{V})$$

ha immagine densa, così che

$$\langle w,f \rangle = \langle w,f_0 \rangle = \lim_n \langle w,f_n \rangle = \lim_n \langle (PF),f_n \rangle = \lim_n \langle F,{}^tPf_n \rangle = 0$$
, se $\lim f_n = f_0$ in $\mathcal{A}(G_0)$.

Ciò dimostra che $P \in H(A, \Gamma_A, \mathcal{B})$. Ancora in base al teorema di excisione, ed in base all'ipotesi F_2), la sequenza

$$0 \to H^0(A, \mathcal{B}_P) \xrightarrow{a} H^0(A \sim G, \mathcal{B}_P) \xrightarrow{b} H^1_a(A, \mathcal{B}_P) \to 0$$

è esatta per ogni G in Γ_A ; poichè a è suriettiva, deve essere b=0, e dunque $H^1_G(A, \mathcal{B}_P)=0$.

 p_2) implica p_3): sia K un compatto di K_A e sia G in Γ_A con $K \subset G$. Il seguente diagramma commutativo

$$egin{aligned} 0 &
ightarrow H^{0}(A, \ \mathcal{B}_{P}) \stackrel{a}{
ightarrow} H^{0}(A \sim K, \ \mathcal{B}_{P}) \stackrel{b}{
ightarrow} H^{1}_{K}(A, \ \mathcal{B}_{P})
ightarrow 0 \
ightarrow H^{0}(A, \ \mathcal{B}_{P}) \stackrel{a'}{
ightarrow} H^{0}(A \sim G, \ \mathcal{B}_{P})
ightarrow 0 \end{aligned}$$

dove j è l'identità e r è la restrizione canonica, che è iniettiva in virtù dell'ipotesi f_2) (5), è tale che a' è suriettiva e la prima riga è esatta. Ora, se f sta in $H^0(A \sim K, \mathcal{B}_P)$ esiste g in $H^0(A, \mathcal{B}_P)$ tale che

$$a'(j(g)) = r(f),$$

(5) Infatti, se r(f) = 0 posto F = f, in $A \sim K$, e F = 0, in $\mathbb{R}^n \sim A$, risulta che G sta in $\mathfrak{B}_P(\mathbb{R}^n \sim K)$ e $G/\mathbb{R}^n \sim L_j = 0$, se L_j contiene G.

e dunque r(a(g)) = r(f), cioè a(g) = f. Ciò dimostra che la a è suriettiva, quindi b = 0, ovvero $H_{\kappa}^{1}(A, \mathcal{B}_{P}) = 0$.

La dimostrazione è conclusa.

BIBLIOGRAFIA

- [1] J. Boman, Propagation of analyticity of solutions of differential equations, Ark. Math., 5 (1964), pp. 271-279.
- [2] G. Bratti, A proposito di un esempio di Fichera relativo al fenomeno di Hartogs, Rend. Acc. Naz. delle Scienze, Serie V, Vol. X, Parte I, (1986), pp. 241-246.
- [3] L. EHERENPREIS, A new prof and extension of Hartogs theorem, Bull. Amer. Math. Soc., 67 (1961), pp. 507-509.
- [4] G. Fichera, Sul fenomeno di Hartogs per gli operatori lineari alle derivate parziali, Ist. Lomb. (Rend. Sc.), A-117 (1983), pp. 199-211.
- [5] A. Kaneko, Note on continuation of real analytic solutions of partial differential equations with constant coefficients, Proc. Jap. Acad., 51 (1975), pp. 262-265.
- [6] H. Komatsu, Relative cohomology of sheaves of solutions of differential equations, Lect. Notes in Math., 287 (1973), pp. 193-261.
- [7] B. Malgrange, Système differentiels à coefficients constant, Séminare Bourbaki, 15, No. 246, (1962-1963).
- [8] V. P. Palamodov, Linear differential operators with constant coefficients, Springer-Verlag, 1970.
- [9] F. Severi, Una proprietà fondamentale dei campi di olomorfismo di una funzione analitica di una variabile reale e di una variabile complessa, Rend. della Reale Accademia Nazionale dei Lincei, Vol. XV, (1932), pp. 487-490,

Manoscritto pervenuto in redazione il 28 gennaio 1987.