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C-Uniform Distribution of Entire Functions.

MICHAEL DRMOTA - ROBERT F. TICHY (*)

SUMMARY - It is proved that under certain conditions on the growth of the
entire function f(z) the curve f(t) (for real t) is uniformly distributed
modulo 1 in the complex plane. The same is valid for two-dimensional
flows f (s + it). Furthermore two uniformly distributed functions, the

exponential function f(t) = exp [at] and the WeierstraB a-function f(t) =
- Q(t) (not satisfying the growth condition) are investigated.

1. Introduction.

A continuous function f : [0, oo) -* Rd is said to be uniformly dis-
tributed modulo 1 (for short: u.d.) if

holds for all boxes I = [a,, bl] X ... X [ad, [0,1)d; xI is the charac-
teristic function of I and its Lebesgue = f(t) -
- [f (t)] denotes the componentwise fractional part of f(t). If {f(t)}
is interpreted as a particle’s motion on the d-dimensional torus 
definition (1.1) means that the ratio of the particle’s stay in any box
to the whole time converges to the volume of the box. A quantitative

(*) Indirizzo degli AA.: Technical University of Vienna, Dept. of Mathe-
matics, Wiedner Hauptstral3e 8-10, 1040 Vienna, Austria.
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measure for the convergence in (1.1) is the discrepancy

It is well known that f (t) is u.d. if and only if tends to 0 (for
T -* oo) ; cf. [4]. By a famous criterion due to H. Weyl [10] (1.1) is
equivalent to

for all integral lattice points where (.; ) denotes the usual
inner product in 

As general references for the theory of uniformly distributed func-
tions we propose the monographs by E. Hlawka [5] and by L. Kuipers
and H. Niederreiter [6].

In this article we study the distribution behaviour of an (in general
complex valued) entire function f (t) considered as a mapping
[0, oo) - R2. If all coefficients fn of the Taylor expansion of f (z) are
real we consider f as a function [0, oo) -+ R.

In the special case (for Satz 8 of E. Hlawka [4] im-
mediately yields

since f (t) is in this case an increasing and convex function (for 
In section 2 we are interested in entire functions f of very small growth;
more precisely we assume

where M(r) = max We will prove: If f is of type (1.5) and
|z|r

has real Taylor coefficients, then is u.d. in R. An analogon for
complex f n is an immediate consequence of this result. We remark
that similar theorems (with 4/3 instead of 3/2) for the uniform dis-
tribution of sequences are due to G. Rauzy [7], G. Rhin [8] and
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R. C. Baker [1], [2]. The examples of G. Rauzy [7] and R. C. Baker [1]
show also in the case of uniformly distributed functions that the con-
stant 3 /2 cannot be replaced by a constant c &#x3E; 2.

In section 3 we discuss the exponential function exp [at] (a E C)
and the Weierstrass c-function and give estimates for the discrepancy.
In the final section 4 we extend the previous results to the case of two-
dimensional flows f(s ---~- it).

2. Entire functions of very small growth.

THEOREM 1. Let f (z) be ac (non constant) entire f unction satis f ying
(1.5) such that all Taylor coefficients of f are real. Then f (t) (considered
as a f unction [0, oo) ~ R) is u.d.

COROLLARY 1. Let f(z) be an entire f unetion satis f ying (1.5 ) such
that either the quotient Re (fn) is irrational for some Taylor coef-
ficient fn with or there are two Taylor coefficients f n, fm (1  m  n)
with Re (f,,,)/Im (fm) =1= Re (fn). T hen f(t) (considered as a f unc-
tion [0, 00) ~ 1~2) is u.d.

PROOF OF COROLLARY 1. We apply Theorem 1 to the function

Then Weyl’s criterion (1.3) immediately yields the result of the cor-
ollary.

REMARK 1. In the case of uniformly distributed sequences R. C.
Baker [2] has shown that, in general, there is no estimate for the

discrepancy of entire functions satisfying (1.5). Since we use similar

techniques for the proof of Theorem 1 as have been used for sequences
it is not possible to obtain a general estimate for the discrepancy by
this method. Nevertheless estimates can be proved for special func-
tions, compare (1.4).

PROOF OF THEOREM 1. We will apply Weyl’s criterion and set
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As in [7] we make use of increasing sequences (nk), (Pk), (Qk) tending
to infinity and satisfying  Q,, for sufficiently large k (for details
see Lemma 1). In Lemma 3 we will prove that

holds for every E &#x3E; 0, for all sufficiently large and all T c
Pk . Choosing e, k such that (2.1) holds and C = C(e) = 

we obtain by induction

Trivially (2.2) is valid for k = ko: Assume that (2.2) holds for some
k &#x3E; ko .. If then with 
and (2.1) combined with the assumption yields

Thus (2.2) is proved for all e&#x3E; 0 and all 
we derive from (2.2) for every s &#x3E; 0

hence f (t) is u.d.
In the following we give a detailed definition of the above sequence

(nk), (Pk), (Q,) and establish some essential properties. From con-

dition (1.5) we obtain by Cauchy’s inequality

for some c &#x3E; 3 denote the Taylor coefficients of f). If f is a non
constant polynomial estimate (1.4) can be applied; hence f is u.d.
in this case. In the following we assume that f n # 0 for infinitely
many n. Set no = min ~n : f n ~ 0}. If nk is defined set
and
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and define

(By (2.3) the sequences (rnk) and (nk) are well-defined.) Furthermore
we set

LEMMA 1.

The proof of (i) to (vii) can be given by verbally the same arguments
as in [7]. Properties (viii), (ix), (x) are immediate consequences of the
former ones.

In order to show (2.1) we make use of the following lemma.
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LEMMA 2. Let be a poly-
nomial of degree N with real coefficients. Then for all A  B

PROOF. Using the substitution for N ~ 2 we have to
prove

for any and a polynomial q(u) = b1 uN-1-E-.... + bN.
Applying Theorem 3.4.1 of R. P. Boas [3] we have for

every .g &#x3E; 0 and all u E ~S, where the set S is the union of at most
(N - 1) intervals and its measure is  12Kl/(N-l).

Therefore there are at most N intervals (contained in [a, fl]) where
q is monotone and Iq’l &#x3E; g. Hence the second mean value theorem

yields on such an interval I

Combining this with the trivial bound

and choosing g = N yields (2.6). Thus the proof of Lemma 2 is

finished, since the case N = ~1 is trivial.
To complete the proof of Theorem 1 it remains to show estimate

(2.1). This is worked out in the following Lemma.

LEMMA 3. For every e&#x3E;0 and sufficiently large k &#x3E; ko(E) we have
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PROOF. Set

By Lemma 1 (i) 1 we obtain for 

therefore

for t E [0, Hence by Taylor’s formula and i

for We have

Therefore we get by Lemma 1 and (2.8)

Thus, applying Lemma 1 (ix) and (x), the proof of Lemma 3 is com-
plete.

3. Some special entire functions.

As a first example (not satisfying (1.5)) we want to consider the
entire function
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If Im (a) = 0 we can apply Satz 8 of [4] and obtain estimate (1.4)
for the discrepancy In the case Im (a) ~ 0 we will apply the
inequality of Erd6s-Turan (for complex functions) f(t) = fl(t) + 

(H an arbitrary positive integer)

with an absolute constant c&#x3E;0; note that llhll Ihal).
We set a = a + ifl and obtain for some y

In order to estimate the integrals in (3.2) we apply the second mean
value theorem on at most IPTI/(2n) + 2 intervals Ii where g(t) is strictly
monotone and

(for an s &#x3E; 0 which is chosen later). Observe that the length of the
remaining intervals in [0, T] is Hence we have

Applying (3.2) and choosing and H = [Ti] yields

In the following we consider the Weierstrass or-function. Let 
be a lattice in the complex plane generated by two positive real

numbers CO2. Then is an entire function and can be defined by
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which is real valued for real z. We also assume that the real constant

(cf. [9]) is positive. In order to establish an estimate for the dis-

crepancy of t E [0, oo) we use the functional equation

We consider intervals J, = (k + 1) col], k = 0, 1, 2, .... Since
the p-function has at most two zeroes in Jk, the Weierstrass C-function
(with ~’_ - p) has at most 3 zeroes in Jk (note that all involved func-
tions are real under the above assumptions). Since ~(t) = 
O’(t) consists of at most 4 strictly monotone pieces on Jk . Applying
(3.7), the inequality of Erd6s-Turan and the second mean value theorem,
we obtain as in the previous example

4. Two dimensional flows.

It is also of some intrest to consider the distribution behaviour of
two dimensional flows f (z), z = s + it. Generalizing definition (1.1)
we call such a (complex valued) flow u.d. (mod 1) if

holds for all two dimensional intervals 19 [0, 1)2; note that S, T tend
independently to infinity. By similar arguments as in section 2 the
following result can be established.

THEOREM 2. Let f(z) be an non constant entire function satisfying (1.5)
such that f n is real or the quotient Re (tn ) /Im ( f n ) is irrational for almost
all Then the flow f(s + it) is u. d. mod 1.
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REMARK 2. For some applications it might be useful to consider
a two dimensional flow as u.d. mod 1 if

holds for all [0, 1]2. Obviously, Theorem 2 is true for this notion
of uniform distribution, too.
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