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Weight of a Compactification
and Generating Sets of Functions (*).

A. CATERINO - M. C. VIPERA (**)

Introduction.

As usual, let C* (~) be the ring of bounded continuous real func-
tions on any Tychonoff space X. The embeddings of X in real cubes,
defined by subfamilies of C*(X), give one of the standard methods
for the construction and comparison of compactifications of ~. It
is well known that every compactification of X can be so generated.

In this context, one faces two natural problems: to characterize
subsets of 0*(X) which give embeddings, hence which generate com-
pactifications ; to establish whether two given subsets of C* (X ) gen-
erate equivalent compactifications.

These problems have already been studied by many authors, y see,
in particular [5], [1], [2], [3]. In this paper some new answers are

given to those questions.
In § 1 preliminary definitions and notations are established, y and

some previous results are recalled.
§ 2 contains a proof of the following statement: a subset F of C*(X )

generates a compactification if and only if the subring generated
by .h separates points from closed sets. A further result presented
there is the following: if two subsets F and G of C*(X) generate the
same subring or have a common closure with respect to uniform con-

(*) This work has been partially supported by research funds of the
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(**) Indirizzo degli AA.: Dipartimento di Matematica, University di

Perugia, Via Vanvitelli 1, 06100 Perugia (Italy).



38

vergence topology, then, if F generates a compactification aX, G
also does. Moreover, we show that all the subsets of C*(X) which
generate any fixed compactification have the same density character
(in the uniform convergence topology).

The last result of this section asserts that, if all generating subsets
of aX are infinite, then every generating set has a generating subset
of cardinality equal to the minimum among cardinalities of all gen-
erating sets.

§ 3 deals with cardinality of «determining sets of functions.

Following [1], we say that a set of functions F determines aX if aX
is the smallest compactification of X to which every element of F
extends. In the paper quoted above, it is shown that the least car-
dinality of determining sets of functions for aX is not greater than
w(exX - X), 7 the equality holding if X is locally compact. There an

example is also given of a compactification aX determined by a finite
set but such that w ( aX - X) = c. The authors make the conjecture
that, if a compactification can be determined by a countable set of
functions, then the weight of the remainder cannot exceed c.

We present a sufficient condition in order that the smallest car-
dinality of determining sets of aX be equal to (and therefore
to X)). We also give an example of a space X such that the
Stone-Cech compactification of X, is determined by a single func-
tion, while w(f3X - X) &#x3E; c.

In § 4, using generating sets as a tool, we study lattice properties
of the set of compactifications having the same weight as X.
A proof is given of the fact that gw(X) is upper complete if and only
if it is equal to .g(X), the set of all compactifications of X. Then con-
ditions are given for a subset of to have a least upper bound
in Finally, we prove that is a lattice if and only if

.K(X) is. It is to be noted that sufficient conditions for to be
a lattice are given in [4], [9], [10].

I. Definitions and symbols.

By term space, we shall mean Tychonoff space. All compact-
ifications are assumed to be T2-compactifications.

Let us fix terminology and symbols, in accordance with [5], [1], [2].
.K(X) denotes the set of compactifications of X (up to homeomorphism
leaving X pointwise fixed).
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If axe K(X), we set

1 continuous extension of /1 .

For each let I f be any closed interval containing f (.X ).
Let Fe C* (X ) and let e,: X be the diagonal map. We shall

f EF

say that F generates the compactification aX if e~ is an embedding
and = o-rxe It is known that Ca generates aX and that if F
generates aX then F c Ca : Moreover, if aX, yX E K(X) then 
if and only if Ca c Cy ; if .I’, G c C* (X ) generate respectively aX and yX,
then F c G implies (where  means the usual partial order
in K(X)).

As in [1], we say that a subset .F of C*(X)  determines » aX if
aX = min ~yX E KX)): F Clearly « F generates aX » implies
 .F determines aX &#x3E;&#x3E;, but the converse does not hold: for instance
if .X is locally compact and f is constant then {f} determines the one-
point compactification.

2. Sets of functions generating a given compactification.

As it is well known, any subset of C* (X) which separates points
from closed sets generates a compactification, but, in general, the
converse does not hold. In fact, a subset of C*(X) generates a com-
pactification if and only if it generates a subring which separates
points from closed sets. We present, in the following, a proof of this
statement.

If F c C* (X ), 7 ~.F~ will denote the (non unitary) subring of C* (X )
generated by F.

LEMMA 2.1. Let X be a compact space and .F c C* (X ) . Then F

separates points of X if and only if (F) separates points from closed
sets.

PROOF. Let F be a subset of 0*(X) which separates points of X,
A a closed set of .X and For every y E A, let /’1/ E F be
such that and let U~ be an open neighbourhood of y
such that i = 1, ... 7 n} is a subfamily of
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which still covers A, we set, for every

Euclidean distance. ]

and pilqi E Q such that If we set

we have, for all 

Hence, g2 also separates zo from Â and, if ; J
and separates Xo from A.

Conversely, it is clear that if F does not separate points of X, nor
~.F~ does.

Now, let X be any (Tychonoff) space. For the proof of the fol-
lowing theorem, it is useful to recall the following known facts: if

«X E K(X) then the extension map is a ring-isomorphism
between Ca and C(aX); F c 001, generates aX if and only if F(X =

= {j~:/~-F} separates points of aX (see [2]).

THEOREM 2.2. Let Then F generates a compact-
ification if and only if (F) separates points from closed sets of X.

PROOF. If F generates aX, then separates points of aX. By
lemma 2.1 (F«) = separates points from closed subsets of aX
and hence F~ separates points from closed subsets of X.
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Conversely, if ~’~ separates points from closed subsets of X, then
.I’~ generates a compactification aX. Therefore = sep-
arates points of ocX and hence .Fa separates points of aX as well. We
conclude that F generates aX.

We observe that, when F contains sufficiently many constants,
theorem 2.2 can be obtained from Stone-Weierstrass theorem (see [2],
th. 3.1 ) .

In [1] the authors give some conditions for subsets of C*(X ) to
determine the same compactification.

This is the case when two subsets generate the same subring, or
have the same closure with respect to the uniform convergence topo-
logy. These results are consequences of the fact that every Ca is a
closed ring.
We are going to prove an analogous result at the level of « gen-

eration » instead of « determination » of compactifications.

COROLLARY 2.3. Let .F, G c C* (X ) . If F generates aX and .F’~ _

= (G), then G generates 

PROOF. It is a direct consequence of theorem 2.2.

From now on, we shall consider C*(X) endowed with the uniform
convergence topology, with respect to which Ca and are na-

turally homeomorphic.

THEOREM 2.4. Let G c C*(X ). If F = G and F generates aX,
then G generates aX.

PROOF. It will be sufficient to show that, if .~’ generates then
F generates aX. Since ~ is a ring, one has .F’~ c F~ c (F). By
2.2, separates points from closed sets, then .F’~, being dense
in F~, also separates points from closed sets. Applying again 2.2,
we get that F generates aX.

We find it convenient to slightly modify the notations and de-
finitions adopted in [1 ], § 4, for the following cardinal invariants.

If E K(X), we set = min F c C*(X), .1~ determi-
nes aX~ + = min If c C*(X), .I’ generates + No
and .F’ generates aX and .F separates
points from closed sets} + Ko . The equalities between these cardinal
invariants, which appear in the following lemma, are essentially
known (see also [1 ], th. 4.2). Therefore, we shall give only some hints
for their proof.
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By w( Y) and d( Y) we mean the weight and density character of Y,
respectively.

LEMMA 2.5. Let aX E K(X), then

PROOF. The first equality is a consequence of theorem 2.2. The
second one follows from the well known fact that every space of weight
m can be embedded in a real m-cube. Finally w(aX) = d(Ca) follows
from Stone-Weierstrass theorem.

PROPOSITION 2.6. Let Fe C*(X) generate aX. Then d(F) = d(Ca).

PROOF. Since Ca is a metric space, then Let G be
a dense subset of .I’. Then, by 2.4, G generates aX. Therefore lal +
-E- = d(C,), hence d(F»d(Oa).

PROPOSITION 2.7. Let F c C* (X ) . If F generates aX, then there
exists such that G generates aX and IGI -~- No = Fur-

thermore, if .I’ also separates points from closed sets, then G can be
chosen such that it separates points from closed sets.

PROOF. From 2.6 and 2.5, d(.F) = E(aX), hence .~’ contains a dense
subset G with ~G~ + No = E(aX). From 2.4, G generates aX. If F

separates points from closed sets, then so does G, being dense in F
(in this case 2.4 is not necessary).

3. About cardinality of « determining » sets of functions.

We recall that « generating » implies « determining », hence clearly
= Let us remark that one can have a strict

inequality: e.g. if X is locally compact and c~X is the one point com-
pactification, = No but = w(X). Now we want
to give a condition on aX granting that = 

LEMMA 3.1 ([6], 3.5F). If then there exists yX E K(X)
such that yX aX and w(yX) = w(X).
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THEOREM 3.2. If aX E K(X) and &#x3E; w(X) then 6(L%X) ==
= 

PROOF. Let us suppose that F c Ca determines aX and that +
+ No  From 3.1, there exists yX  aX such that w(yX) 

Then, from 2.5, there exists G c Cv such that G separates
points from closed subsets of X and IGI -~-- Ko  w(aX). Since CY c Ca
one has F ~J G c Ca and ~J G[ + N,  If kX is the com-

pactification generated by one has w(kX)  w(aX). Then

kX  aX, against the assumption that .F’ determines aX, because
F c Ck.

COROLLARY 3.3. If F c C* (X ) determines aX and &#x3E; w(X)
then:

b ) there exists G c .F’ which determines aX and such that IG +

PROOF. It is similar to the proof of 2.6 and 2.7.

In [1] it is proved that X) with the equality
holding if X is locally compact (th. 4.2). It is clear that, from the-
orem 3.2, it follows that the assumption &#x3E; w(X) implies
8(aX) = w(aX - X). The conjecture made in [1], that ~o
should imply X ) c c, gets a negative answer, as it is shown

by the following example.

EXAMPLE 3.4. Let A be the collection of all the open subsets
of R containing 0, and let Y = {A - F: A e  c}. The col-

lection Y has the finite intersection property, therefore there exists
an ultrafilter ’tL -3 Y. For every U E ’lL one has = c, otherwise
R - U E Y c flL; moreover ’IL is clearly a free ultrafilter. It is known
that U can’t have a filter base of cardinality c (see [7], 4G.2). Now
put Y = (R, ~), where í is the following topology: every x 0 0 is

open, while the neighbourhoods of 0 are all the sets of the kind U V {01
with r is finer than the standard topology, and since every
closed set not containing 0 is also open, Y is normal. Moreover

w( Y) &#x3E; c because 0 cannot have a local base of cardinality  c (other-
wise ’11 should have such a base). Since Y is a Tychonoff space, it is
known that there exists a space X such that f3X - X is homeomorphic
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to Y and is C*-embedded in ~8X (see [5], Cor. 4.18). Let
be a homeomorphism, j : Y -+ R the identity and

k: R -+ R a bounded embedding. Then is

injective. Therefore g has an extension, h, to Put f = Then

fB = h has g as restriction to flX - X. Then fB separates points of
flX - X, which implies that {f} determines ~3X (see [1 ], th 2.1). Then
it turns out = ~o, while X) = w(Y) &#x3E; c.

Note that, in the example above, = w(X) (see Th. 3.2).

4. Compactifications which do not increase the weight.

We set = w(X)}. It is known that
0 (see also lemma 3.1); if = then is the

family of all metric compactifications of X. In this section we study
some lattice properties of 
We recall that is a complete upper semi-lattice: if c

cK(X), then u C«, generates the least upper bound of It
follows that is a complete lattice if and only if K(X) has a least
element, that is, if and only if X is locally compact. In [4], [9], [10]
some sufficient conditions are given for to be a lattice. 

,

Given a subset Y of Kw(X), we can consider the least upper bound
(or the greatest lower bound) of T in K(X) and the least upper bound
(resp. the greatest lower bound) of Y in We denote by sup
and inf Y respectively the least upper bound and the greatest lower
bound of Y in K(X).

It is known that if and then yX E Kw(X)
(see, for example, [6], th. 3.1.22). This fact implies the next lemma.

LEMMA 4.1. Let Y c K,,,(X). Y has a least upper bound in 
if and only if 

PROPOSITION 4.2. If m = w(X) then is an m-complete
upper semi-lattice.

PROOF. Let c gw(X), with IJI Applying lemma 2.5,
for every j E J choose F j c C* (X ) , of cardinality m, generating aj X.
Then because u Fj has cardinality m and
generates 

PROPOSITION 4.3. Sup ~X.
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PROOF. Let yX = sup and let F c C*(X) be a family of
cardinality w(X), which separates points from closed subsets of X.
For every g E 0*(X), .h u {g} generates a compactification E 

and one has Since g is arbitrary in C* f X ), it follows

Cy = C*(X), that is, yX = f3X.

COROLLARY 4.4. ~(J~) is a complete upper semi lattice if and only
if = K(X).

For instance, the condition of corollary 4.4 is satisfied if is the

space of ordinals [0, (t)i[. Another example, y with X not locally com-
pact, is given in § 3, Ex. 3.4. However, if w(X) = ~o and X is not
compact, then K"w(X) is not a complete upper semi lattice, because
~X is not metrizable. More generally, one has the following

PROPOSITION 4.5. If X contains a C*-embedded discrete subset
with cardinality m = w(X), then = 2m. Therefore is
not a complete upper semi lattice.

PROOF. Easy consequence of [6], th. 3.6.11.

Now we give some conditions insuring that a subfamily :F of 
has a least upper bound in 

THEOREM 4.6. Let Y = c The following are equiv-
alent :

c) there exists 9 c 5;" such that and sup 9 = sup 5;-.

PROOF. a) ~ b) This is a consequence of 2.5 and 2.6, since V Caf
generates sup Y.

b) ~ c) Let F be dense in U Ca3 with ITI _ w(X). For every
let Y be such that f E By 2.6, .1~ generates sup Y,

then V Oajl generates sup Y as well.

c) =&#x3E; a) Follows from 4.2.

Now, in order to establish the conditions under which is

a lower semi-lattice (hence a lattice), we start with the following:
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LEMMA 4.7. Let has a greatest lower bound in
if and only if Y is bounded below in K()).

PROOF. Immediate consequence of the fact that is a complete
upper semi lattice (see also remark preceding lemma 4.1).

THEOREM 4.8. (a) is a lattice if and only if K(X) is.

(b) is a complete lower semi lattice if and only if .X is
locally compact.

PROOF. (a) Let Kw(X) be a lattice and let 

From 3.1 there exist "2 X E Kw(X) such that = 1, 2.
Then inf is a lower bound for which, therefore,
has a greatest lower bound in K(X).

The converse follows from 4.7 and 4.2.

(b) If gw(X) is a complete lower semilattice, then 
is also minK(X), and this implies that X is locally compact. The

converse follows from 4.7.

LEMMA 4.9 [Shirota]. Let X be first countable. Then K(X) is a
lattice if and only if X is locally compact.

COROLLARY 4.10. If X is first countable, then is a lattice
if and only if X is locally compact.
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