RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

WOJCIECH ZYGMUNT

Product measurability and Scorza-Dragoni's type property

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 301-304

http://www.numdam.org/item?id=RSMUP 1988 79 301 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Product Measurability and Scorza-Dragoni's Type Property.

WOJCIECH ZYGMUNT (*)

Summary - A new proof is given that $f: T \times X \to \mathbb{R}$ is normal integrand if and only if f verifies Scorza-Dragoni's property in the semicontinuous case ».

1. Introduction.

First we recall the notions of measurability and semicontinuity for a real function. So, if (S, Σ) is a measurable space then a function $h \colon S \to \mathbb{R}$, where \mathbb{R} denotes a real line with natural topology, is called Σ -measurable if $h^{-1}(A) \in \Sigma$ for each open subset A of \mathbb{R} . It is well known that $h \colon S \to \mathbb{R}$ is Σ -measurable if and only if $h^{-1}(A) \in \Sigma$ for each closed subset A of \mathbb{R} or $h^{-1}(A_a) \in \Sigma$, $a \in \mathbb{R}$, where A_a may have one of the following forms: (a, ∞) , or $[a, \infty)$, or $(-\infty, a)$ or $(-\infty, a]$. A function $g \colon E \to \mathbb{R}$, where E is a topological space, is called lower semicontinuous « lsc » (resp. uppersemicontinuous « usc ») if the set $g^{-1}((-\infty, a])$ $(g^{-1}([a, \infty)))$ is closed for each $a \in \mathbb{R}$.

Now let (T, \mathcal{A}, μ) be a measure space, where T is a metric compact Hausdorff space and μ a Borel, σ -finite, regular and complete measure defined on a σ -field \mathcal{A} of subsets of T. Let X be a Polish space (i.e. separable, complete, metric) and let $\mathcal{B}(X)$ be the σ -field of Borel sets in X. By $\mathcal{A} \times \mathcal{B}(X)$ we denote the σ -field on $T \times X$ generated by sets $A \times B$ where $A \in \mathcal{A}$, $B \in \mathcal{B}(X)$. Consider a function

(*) Indirizzo dell'A.: Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie-Skłodowskiej 1, 20-031, Lublin (Polonia).

 $f: T \times X \to \mathbb{R}$. We say that f is C_* type (resp. C^* type) if $f(t, \cdot)$ is les (resp. use) for each $t \in T$ and $f(\cdot, x)$ is A-measurable for each $x \in X$.

Furthermore we call $f \colon T \times X \to \mathbb{R}$ Scorza-Dragonian if it satisfies the following condition: «for every $\varepsilon > 0$ there exists a closed subset T_{ε} of T, with $\mu(T \setminus T_{\varepsilon}) < \varepsilon$, such that the restriction of f to the set $T_{\varepsilon} \times X$ is jointly semicontinuous (this condition is analogous to that of Scorza-Dragoni which had been introduced in [SD] for Caratheodory's functions). More precisely we shall say that f has SD_* property (resp. SD^* property) if $f_{|T_* \times X}$ is lsc (resp. usc.).

The properties of Scorza-Dragoniaus have been investigated in [BA] and [Z]. Specially worthy of notice is the paper [BA] in which the author examined in detail the relationship between $\mathcal{A} \times \mathcal{B}(X)$ -measurability and SD_* property. There Bottaro Aruffo showed, among others, that for C_* type functions the $\mathcal{A} \times \mathcal{B}(X)$ -measurability and SD_* property are equivalent. The $\mathcal{A} \times \mathcal{B}(X)$ -measurable and C_* -type function is also called the normal integrand (cf. [BA, Definizione 3.0]).

In the present note, based on [Z], we give another proof of the same fact.

2. The result.

Before stating our main theorem let us introduce some definitions. We say that the function $f\colon T\times X\to \mathbb{R}$ has property Cl if the multifunction $F_A\colon T\to \mathfrak{T}(X)$ ($\mathfrak{T}(X)$ is the family of all subsets of X including the empty set) defined by $F_A(t)=\{x\in X\colon f(t,x)\in A\}$ is weakly \mathcal{A} -measurable for each closed subset A of \mathbb{R} . We recall that a multifunction $F_A\colon T\to \mathfrak{T}(X)$ is weakly \mathcal{A} -measurable if the set $F_A^-(B)=\{t\in T\colon F_A(t)\cap B\neq\emptyset\}$ belongs to \mathcal{A} for each open subset B of X (cf. [H, p. 54]).

The following theorem has been proved in [Z].

THEOREM 1. Let $f: T \times X \to \mathbb{R}$ be C_* type (resp. C^* type). Then f has property SD_* (resp. property SD^*) if and only if f has property Cl.

Now we can establish our main result

THEOREM 2. Let $f: T \times X \to \mathbb{R}$ be C_* type (resp. C^* type). Then f has property SD_* (resp. property SD^*) if and only if f is $A \times B(X)$ -measurable.

PROOF. Let us assume that f has property SD_* (resp. property SD^*) and choose an arbitrary $a \in \mathbb{R}$. Since the interval $(-\infty, a]$ (resp. $[a, \infty)$) is closed in \mathbb{R} , the multifunction $F_{(-\infty,a]}$ (resp. $F_{[a,\infty)}$), by Theorem 1, is weakly \mathcal{A} -measurable. Moreover in view of lower-semicontinuity (resp. uppersemicontinuity) of functions $f(t, \cdot)$, $t \in T$, the multifunction $F_{(-\infty,a]}$ (resp. $F_{[a,\infty)}$) has closed values. Thus by [H, Theorem 3.5] its graph $\operatorname{Gr} F_{(-\infty,a]}$ (resp. $\operatorname{Gr} F_{[a,\infty)}$) belongs to $\mathcal{A} \times \mathcal{B}(X)$.

But

$$egin{aligned} f^{-1}ig((-\infty,a]ig) &= \{(t,x)\in T imes X\colon f(t,x)\leqslant a\} = \ &= \{(t,x)\in T imes X\colon x\in F_{(-\infty,a]}(t)\} = \operatorname{Gr} F_{(-\infty,a]}\in \mathcal{A} imes \mathfrak{B}(X) \end{aligned}$$

(resp. we have $f^{-1}([a,\infty))=\operatorname{Gr} F_{[a,\infty)}$ for f having property SD^*). Conversely, let $f\colon T\times X\to \mathbb{R}$ be $\mathcal{A}\times\mathcal{B}(X)$ -measurable. Then $f^{-1}(A)\in\in\mathcal{A}\times\mathcal{B}(X)$ for each closed $A\subset\mathbb{R}$ and hence, in particular, $f^{-1}(A)\cap\cap T\times B\in\mathcal{A}\times\mathcal{B}(X)$ for each open $B\subset X$. By projection theorem [CV, Theorem III.23] we have $\operatorname{pr}_{T}(f^{-1}(A)\cap T\times B)\in\mathcal{A}$, where pr_{T} denotes the projection map from the product $T\times X$ onto T. Now let us observe that

$$\begin{split} F_{A}^{-}(B) &= \left\{ t \in T \colon F_{A}(t) \cap B \neq \emptyset \right\} = \left\{ t \in T \colon \bigvee_{x \in \mathbb{X}} x \in F_{A}(t) \cap B \right\} = \\ &= \left\{ t \in T \colon \bigvee_{x \in \mathbb{X}} f(t, x) \in A \wedge (t, x) \in T \times B \right\} = \\ &= \left\{ t \in T \colon \bigvee_{x \in \mathbb{X}} (t, x) \in f^{-1}(A) \cap T \times B \right\} = \operatorname{pr}_{T} \left(f^{-1}(A) \cap T \times B \right) \in \mathcal{A} \;. \end{split}$$

So we see that F_A is weakly \mathcal{A} -measurable and this f has property Cl. Therefore by Theorem 1 f has property SD_* (resp. SD^*) which completes the proof of Theorem 2.

REFERENCES

[BA] A. Bottaro Aruffo, Su alcune estensioni del teorema di Scorza-Dragoni, Rend. Accad. Naz. Sci. XL Mem. Mat., 9 (1985), pp. 87-202.

- [CV] C. CASTAING M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Math., no. 580, Springer (1977).
- [H] C. J. HIMMELBERG, Measurable relations, Fund. Math., 87 (1975), pp. 53-71.
- [SD] G. SCORZA DRAGONI, Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, Rend. Sem. Mat. Univ. Padova, 17 (1948), pp. 102-108.
- [Z] W. ZYGMUNT, On the Scorza-Dragoni's type property of the real function semicontinuous to the second variable, Rend. Accad. Naz. Sci. XL Mem. Mat., 11 (1987), pp. 53-63.

Manoscritto pervenuto in redazione il 23 novembre 1987.