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On the Convolution in the Space D",

STEVAN PIiLreovié (*)

SuMMARY. - We investigate the convolution and the Fourier transformation
in the space of Beurling ultradistributions D;#»). We give some simple
conditions on a convolutor 8 for the solvability and the hypoelipticity
of a convolution equation S% U = V in D7

1. The space D,¥?) introduced in [3] is a subspace of the space
of Beurling ultradistributions ([2]). This is a natural generalization
of the Schwartz space D;. and we investigated them in [3] in con-
nection with the Hilbert transformation of ultradistributions. With
suitable assumptions on the sequence M,, we determined in [4]
elements of D;H) as boundary values of certain holomorphic functions.

In [3] some questions on the convolution in DM occured. This
was the motivation for our investigations of the convolution in D; ).
The Fourier transformation maps D/¥» into a subspace of Li,. So
by proving the exchange formula we obtain simple conditions for the
solvability and the hypoelipticity of a convolution equation in D; M=),

2. Our notation is the same as in [2]. Let M,, pe N, = N U {0}
be a sequence of positive numbers such that

(M.1) Mi<M, ,\M,.,, peR;

(*) Indirizzo dell’A.: Institute of Mathematics, University of Novi Sad,
21000 Novi Sad, Dr. Ilije Djuridiéa 4, Yugoslavia.
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(M.2) There are constants A and H such that

M,<AH? min {M,M,_}, peN,;

0<a<y

(M.3) There is a constant 4 such that

Z Mq—l/Mq<ApMm/M9+l ’ pe N.

a=p+1

We assumed in [3] instead of (M.2) and (M.3) the weaker conditions:
(M.2)" and (M.3)". (All these conditions were analysed in [2].) The
reason for that is the structural theorem for D, M#» which we need
for the full characterization of the convolution in D M.

The associated function M is defined by

M,p?
M(p) = sup {log —2 } >0.
(Q) p{ g _M,, 7 Q

PeN,

From [2, Proposition 3.6] it follows
(1) 2M(o)<M(Hp) +1logAM, (A and H are from (M.2)).

The space of Beurling ultradistributions is defined ([2]) as the
strong dual of the space

DX = injlim projlim DXz
meN nef

where
D = {p e C; supp ¢ C K(m), |@[mn< oo},

0® = 0=(R9)is the space of smooth functions on R, K(m) is the
closed ball with the center at zero and with the radius m > 0,

][ gy
tploe = sup ("] (=t ).

x€K(m)
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The space DX js defined ([3]) as follows:

Dl o> 2. _ lal”‘P(a)Hz h
35 = @ € nL’yh((p)_a%ﬂT ooy, >0,

H# = projlim DXz .
aeRN

The space DY) is an FG-space (Gelfand space, see [1]) and
DAM) e D) <> Dy ([3])
where « A <> B» means that 4 is a dense subspace of B and the in-

clusion mapping is continuous. (D, is well-known Schwartz space.)
The Fourier transformation of an fe L? is defined by

4 4
(F.0)(&) = 1A1 .m. f .[f (z) exp (i <z, &) dwy, ..., dx,,

£e é)ftq<<'77, =&+ ...+ wqfa) )

where l.i.m. means the square-mean limit. Since we shall use in the
paper the Fourier transformations of tempered distributions and of
D M»)-ultradistributions, we indicate these transformations by &,
and 5, respectively. It is well-known that for fe L2c 8, F,f = F.f.

Obviously, the sequence of norms y,, k€ RN, on D is equivalent
to the following one:

5 Kl gty el (£(F, :
Puly) = sup {%} = (2n)—«/2§g£{ (e i :P G| }

ke Ny(E* =&y ...y £59).
This implies that D is isomorphic to the space D{Y?) = F (D))
in which we transport the convergence structure from D).
The inverse Fourier transformation of an fe L2 is defined by

(F2'NE) = 2n)(Fof)(—§), EeRe.

Clearly, ¥, * is an isomorphism of D{¥?) onto D). This implies that
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the adjoint mappings
Fu D},.M") - g)}l(.Mp) , g‘;{l g)}l(.l!lp) - D}.(aM’)
are isomorphisms. One can easily prove that for fe L2
Fuf=F.f and F3f= F,f.

Similarly, we define F,: DM — DM and F;': DM — DM,
Let f€ D) and ¢ € D). We have:

(2) <37;11f7 3"2<P>=<f,<P>=<~7Mf, 3751‘7’)-

Let
o oy aqg |2 0 \» A
D _‘Dl ..._Dq —( -a;l) ...(’L a—xa) .

An operator of the form P(D) = Y asD", ax are complex numbers,

xeN?
is called the ultradifferential operator of class (M,) if there are L > 0
and ¢ > 0 such that
(3) |aa] <CLI*| Ms), aeRE ([2]).

It was proved in [4] that the mapping ¢ > P(D)gp from D{¥»)
into DY) is continuous. We have

F(P(D)p)(§) = P(§) Fuo(p)(§), &R,
We proved in [4] the following structural theorem: fe D> iff

there exist an ultradifferential operator of class (M,), P(D), and an
F € L2 such that

4) f=PD)F.
By (2) and (4) we have

(5) (Fufl)(§) = PENFF)E), &EeRe.

Thus, we see that F,f is a funetion from L2 :
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For the analytic function P({) = z axt*, ¢ €7, (aq satisty (3))
we have *eng

| lo]
©  eoi=epsp {EE e orn, e,

where C, = (C/M,). Z (L/L)"*! and L, > L.

0650

3. Let fe DM and pe DY»); we define

(f * @)(@) = f(@), p(x—1))>, xR

Let us put yp(r) = (f * ¢)(x), x € R?, and assume that fis of the form (4).
We have

PROPOSITION 1. For any a€ Ny, ¢ is bounded and continuous.
Moreover, for any k> 0

Tl () (g
b = a0
xeR ||
xeN?

ProoF. For any € R? we have

Y (a) = {f(t), (@ —1)) = (F(t), P(— D) (v —1)) =

= [F@)P(—D)(p=@—1) ds.
Re

Since P(D) ¢! e L2, the first part of the assertion follows.
Using (6), for v € R, x € Ny, we have

klel
<Pl | (p(p)¢<«>) s>n2<

<0 = M nFnz lexp (M(Ls[])) E(Fop)(E)]e -

Thus by (1) we have

sup {~— [ m>|} Olexp (M(L[E]) + MEIED)Fap)E)a<

a:e?lﬂ

< Collexp (M((L: + ©)E)(F9)(®) s
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where C and C, are suitable constants. Since the sequence of norms

vi(p) = |exp (M(kIE))(Fop) (&), keR,

is equivalent to the sequence y,, k € R ([4, Proposition 2.1]), the second
assertion of the proposition follows.

If @, p € DI, then Fy(p * p) = (F2@)(Fop) ([5]). (In this case *
is the ordinary convolution.)

PrOPOSITION 2. Let fe DM and ¢ € D). Then

Ff* @) &) = (FuNE)(Fo@)(&), EeRe.

PrOOF. We assume that f is of the form (4). We have

(f* @)(@) = (P(D)F (1), p(x —1)) = <F(1), P(— D)p(x —1)) =

=[Ft)P—D)gp(e—1) @t = (¥ % P(D)g)(@).
Re

since F € L* and P(D)pe L2, from the remark given before Propo-
sition 2 and (5), the assertion follows.

4. Let ge DM such that for every @e D), gx e DM,
Then we call g the convolution-operator or convolutor. The space
of all convolutors is denoted by Oy(D; M), D M) or in short, by
04¥?, (Note that we do not assume the continuity of the mapping
@ —> g% @, in DM, This will be proved in Proposition 5.)

Proposition 2 implies.
PrOPOSITION 3. Let g€ O/¥?) and ¢ € DH». Then
F(g* @)(&) = (Fug)E)TF2@)(&), EcRe.

PROPOSITION 4. A ge D)2 is from O M») iff there exists k>0
such that

(7) (Fug) exp (— M(k|-])) e L=
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ProoF. From (7) it follows that for any ¢ € DY and any « e NI

Fulg * @) = (Fug) Fi(pW) € L2
and

Fulg * @) = Fo(g * ) = (Fug)(—16)*(F,9) .

Let r> 0. From (7) and (1) we obtain

sup {
aeNd

N

S G CIC e |
<Clexp (M(ré])) exp (M (klél)) Fop) (&) o
<Cllexp (M((r + k)IE]))(Fo@)(E)]s -

( )"2} 275)—-«/2

Thus, we have proved

(8) 79 * @) <Crpilp), @e DI,

Conversely, let g € 942 and ¢ be an arbitrary element from DY),
Since F.(g * @) = (3'“Mg)($’2<p) and v,(g * ¢) < oo for every k> 0, we
have

(9) 1(Fxg) exp(M(kl']))(T2<p)||2< oo for every k>0.

It can be proved by (9) that F,g is from Lg,. Namely, for any
open ball K (m), L*(K(m )) can be embedded into D{¥# in a natural way:

. ) v on 1%(1%) ()
L} K(m)) ey > = 0 on 9%"\1%( ) & D

Since the condition
[H(&)p(&) |z @my)< oo  for every e L(K(m)),

implies HeL“’(If(m)), we obtain that F,¢g¢€ Lpg,.

Let us prove (7) by proving that g does not belong to O ¥») if (7)
does not hold.

If (7) does not hold there exists a sequence a; such that a, > 1,
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a;,,> a;+ 1 and

[(Fug)(@)lexp (— M(jlE))>i it [E|e4;c (a,, ap)

with mes 4;=1¢,>0, jeN.
Put

;texp(—M(j|&)), |&é|ed;, jeM,
%<5>={3’ (—2GieD), el

elsewhere

and o =-21 y;. Since exp (——- M(|1;'|)) decreases monotonically faster
Plen

than any power of 1/|§| when, |£| —co, one can prove that y e D{¥»
and that (F,g)y does not belong to D{¥»,

The proof is completed.

From (8) directly follows:

PrOPOSITION 5. If g€ O,%%) then the mapping

prrgxp from DE? into DH?

is continuous.
The last assertion enables us to define the convolution of an
fe DM and a g€ O¥7) in a usual way:

Kfeeg,@> =<f, g* 9> Where §(z) = g(—a), z€R.

ProrosITION 6. If fe D M) and g€ O Y7 then,

Fu(fve9) = (Fuf)(Fug) .

Proor. For y e D we have

(Fulf29), v) = firg, Fopd =<fy §% Foyp) =
=< Fuf, Fz (G * Fop)> = {(Fuf)(), 20) Fo(§ % Fap)(— &) =
= {(Fu(&), 2n)(Fug)(&)(Fo(F:9))(—&)> =
= {(FuN(&), (Fug)(&)p(8)) .

This implies the assertion.
If g and f are from O ¥») then f<x g e O M7,
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This follows from the definition of O /¥ and the fact that

(fg)*p=f(gxe) =f*x(g*g), @eDF.
Properties of the convolution are given in the next
PROPOSITION 7. Let g, h€ O %2) and fe D).
() gh=hxg;
(i) (f41g)<th = fex(g<h).
ProoF. (i) We have
Gahy @y =<g, hx ) = (g% (h*))(0);
hsrg, @> = (h* (Fx¢))(0) .
Proposition 3 implies that (h * (7% ¢))() = (9 * (k * ¢))(2), ze Re.
(ii) Since
(g ey, @y = <y (g3 h) % @) = <f(@), (g )(®), pl@ + 1)) =
= (1), <g(0), htw), gl + t—a)D) =
= {f(@), <g(), (k% @)@ + 0>y = (f(a), §* (hx g)(@) ,
and '

Uf S g) Sk, @> = ((f41g), k% @)> = <f, §* (h %)),

the assertion is proved.

5. Observe the convolution equation in D;M»):
(10) SaU="V,

where 8€ O ) and Ve DM are known ultradistributions and
U e D7 is the unknown one.

Denote by 0% the space of all convolutors 8 € 9 ¥ for which
Fu8 is a smooth function which has the analytic continuation onto

the whole €.
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ProposrTioN 8. Let S Of%”. The sufficient condition that the
equation (10) is solvable in DM for any V € DM?) is the following one:

There exist C > 0 and k> 0 such that

(4

(11) (FuB)O)|> —F——=, CLe@r.
| | exp (M (k|z]))
Proor. Assume that (11) holds. Put
_(FuV)(E) .
“O =FeE <R

From (5) it follows that for some ultradifferential operator P of class
(M,) and some v € L?

P .
u(E)—————~($MS)(§)v(§), EeRe.

Let Py(&) = P(&)[(FulB)(&), £€ Re. From [2, Proposizion 4.5] it
follows that P,(D) is an ultradifferential operator of class (M,). Thus,
by (5) again, we obtain that the solution of (10) is

U= P,(D)F7'v.

PROPOSITION 9. Let S€ O M?). Then the necessary condition for
the solvability of (10) for any V € DM is the following one:
There exist C >0, D> 0 and k> 0 such that

(12) (FuB)(&)]|>C exp (— M(k[E])), |§>D.

PROOF. Assume that (10) is solvable for any V € D, M» but (12)
does not hold. This implies that there exists a sequence of sets 4,,
jeN, such that mes 4; =¢; >0, 4;c(a;, a;;41) &, > 1, a;,>a; + 1,
jeN and

[(FuS) (&) < exp (— M(j2[€])), |Ele4,, jeR.
As in the proof of Proposition 4, put

{ &t exp (— M(jlé])), |€led,, je,
v, =
0 elsewhere
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and

Clearly v e D/ but
o) (FuS) ¢ DG .

Thus, for such V= F3'(v) and S the solution of (10) does not exist
in DM,

6. We say that equation (10) satisfies the hypoelipticity condi-
tion if the existence of the solution U e D, of (10) and V € D{¥»
imply that Ue D{¥»). In this case we say that U is the hypoeliptic
solution of (10).

PROPOSITION 10. Let 8 € O/¥2). Equation (10) is hypoeliptic iff (12)
holds.

Proor. Let ¢(§) = 1 for |£|<D -+ 1 and §(§) = 0 for |§| > D + 1.
This is an element of D{».
Put

L 1)
PO =G0

‘We have
|P(£)| < Cexp M(k[E]), &eRe.
Obviously, P = ;' P e 0¥ and

S&P=0—vw, where y = F"Yp).
Since
U=U%0=VEP+ Uy
one can easily prove that Ue DM,
By the same arguments as in the second part of the proof of

Proposition 9 one can prove that if (10) is hypoeliptic then (12) holds
for 8.
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Added in proof. Proposition 4 implies that (F,8) (£) = s(&) exp [ M(k|&])],
& e R, for some k> 0 and some s € L*, and from (4) we have (F,V)(&) =
= P(&)v(§), £ € R, where P is an ultradifferential operator of class (M,) and
v € L2 So, by using the Fourier transformation we have:

«(10) is solvable in D,¥») if the equation su — v has a solution weL2».
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