RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

STEVAN PILIPOVIĆ On the convolution in the space $\mathcal{D}_{I^2}^{\prime(M_p)}$

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 25-36

http://www.numdam.org/item?id=RSMUP_1988__79__25_0

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Convolution in the Space $\mathfrak{D}_{L^2}^{\prime(M_p)}$.

STEVAN PILIPOVIĆ (*)

Summary. - We investigate the convolution and the Fourier transformation in the space of Beurling ultradistributions $\mathfrak{D}_L^{(Mp)}$. We give some simple conditions on a convolutor S for the solvability and the hypoelipticity of a convolution equation S*U=V in $\mathfrak{D}_L^{(Mp)}$.

1. The space $\mathfrak{D}'_{L^1}^{(M_p)}$ introduced in [3] is a subspace of the space of Beurling ultradistributions ([2]). This is a natural generalization of the Schwartz space \mathfrak{D}'_{L^1} and we investigated them in [3] in connection with the Hilbert transformation of ultradistributions. With suitable assumptions on the sequence M_p , we determined in [4] elements of $\mathfrak{D}'_{L^1}^{(M_p)}$ as boundary values of certain holomorphic functions.

In [3] some questions on the convolution in $\mathfrak{D}_{L^1}^{\prime(M_p)}$ occured. This was the motivation for our investigations of the convolution in $\mathfrak{D}_{L^1}^{\prime(M_p)}$. The Fourier transformation maps $\mathfrak{D}_{L^1}^{\prime(M_p)}$ into a subspace of L^2_{loc} . So by proving the exchange formula we obtain simple conditions for the solvability and the hypoelipticity of a convolution equation in $\mathfrak{D}_{L^2}^{\prime(M_p)}$.

2. Our notation is the same as in [2]. Let M_p , $p \in \mathfrak{R}_0 = \mathfrak{R} \cup \{0\}$ be a sequence of positive numbers such that

$$(\mathrm{M}.1) \hspace{1cm} M_{\mathfrak{p}}^2 \leqslant M_{\mathfrak{p}-1} M_{\mathfrak{p}+1} \; , \hspace{0.5cm} p \in \mathfrak{N} \; ;$$

(*) Indirizzo dell'A.: Institute of Mathematics, University of Novi Sad, 21000 Novi Sad, Dr. Ilije Djuričića 4, Yugoslavia.

This material is based on work supported by the U.S.-Yugoslav Joint Fund for Scientific and Technological Cooperation, in cooperation with the NSF under grant (JFP) 544.

(M.2) There are constants A and H such that

$$M_{p} \leqslant AH^{p} \min_{0 \leqslant q \leqslant p} \left\{ M_{q} M_{p-q} \right\}, \quad p \in \mathfrak{R}_{0};$$

(M.3) There is a constant A such that

$$\sum_{q=p+1}^{\infty} M_{q-1}/M_{q} \! \leqslant \! Ap\, M_{p}/M_{p+1} \; , \qquad p \in \mathfrak{R} \; .$$

We assumed in [3] instead of (M.2) and (M.3) the weaker conditions: (M.2)' and (M.3)'. (All these conditions were analysed in [2].) The reason for that is the structural theorem for $\mathcal{D}_{L^1}^{\prime(M_p)}$ which we need for the full characterization of the convolution in $\mathcal{D}_{L^1}^{\prime(M_p)}$.

The associated function M is defined by

$$M(\varrho) = \sup_{p \in \mathfrak{N}_0} \left\{ \log rac{M_0 \varrho^p}{M_p}
ight\}, \quad \varrho > 0 \; .$$

From [2, Proposition 3.6] it follows

(1)
$$2M(\varrho) \leqslant M(H\varrho) + \log AM_0$$
 (A and H are from (M.2)).

The space of Beurling ultradistributions is defined ([2]) as the strong dual of the space

$$\mathfrak{D}^{(M_p)} = \mathop{\mathrm{inj\,lim}}_{m \in \mathfrak{N}} \, \mathop{\mathrm{proj\,lim}}_{n \in \mathfrak{N}} \, \mathfrak{D}^{(M_p)}_{m,n}$$

where

$$\mathfrak{D}_{m,n}^{(M_p)} = \left\{ \varphi \in C^{\infty}; \text{ supp } \varphi \subset K(m), \|\varphi\|_{m,n} < \infty \right\},\,$$

 $C^{\infty} = C^{\infty}(\Re^q)$ is the space of smooth functions on \Re^q , K(m) is the closed ball with the center at zero and with the radius m > 0,

$$\|\varphi\|_{m,n} = \sup_{\substack{lpha \in \mathfrak{N}_q^q \ x \in K(m)}} \left\{ \frac{n^{|lpha|}|arphi^{(lpha)}(x)|}{M^{|lpha|}} \right\} \quad (|lpha| = lpha_1 + ... + lpha_q).$$

The space $\mathfrak{D}_{L^{2}}^{(M_{p})}$ is defined ([3]) as follows:

$$\begin{split} \mathfrak{D}_{\mathtt{Z}^{\bullet},h}^{(\mathtt{M}_{p})} &= \left\{ \varphi \in C^{\infty} \cap L^{2}; \; \gamma_{h}(\varphi) = \sum_{\alpha \in \mathfrak{N}_{0}^{q}} \frac{h^{|\alpha|} \|\varphi^{(\alpha)}\|_{2}}{M_{|\alpha|}} < \infty \right\}, \quad h > 0 \;, \\ \mathfrak{D}_{\mathtt{Z}^{\bullet},h}^{(\mathtt{M}_{p})} &= \operatorname*{projlim}_{\alpha \in \mathfrak{N}} \, \mathfrak{D}_{\mathtt{Z}^{\bullet},h}^{(\mathtt{M}_{p})}. \end{split}$$

The space $\mathfrak{D}_{L^{2}}^{(M_{p})}$ is an FG-space (Gelfand space, see [1]) and

$$\mathfrak{D}^{(M_p)} \hookrightarrow \mathfrak{D}_{L^2}^{(M_p)} \hookrightarrow \mathfrak{D}_{L^2} ([3])$$

where $A \hookrightarrow B$ means that A is a dense subspace of B and the inclusion mapping is continuous. (\mathfrak{D}_{L^2} is well-known Schwartz space.) The Fourier transformation of an $f \in L^2$ is defined by

$$(\mathcal{F}_2 f)(\xi) = ext{l.i.m.} \int_{-A}^{A} \int_{-A}^{A} f(x) \exp \left(i \langle x, \xi \rangle\right) dx_1, ..., dx_q,$$
 $\xi \in \Re^q(\langle x, \xi \rangle = x_1 \xi_1 + ... + x_q \xi_q),$

where l.i.m. means the square-mean limit. Since we shall use in the paper the Fourier transformations of tempered distributions and of $\mathfrak{D}_{L^{2}}^{\prime(M_{p})}$ -ultradistributions, we indicate these transformations by \mathcal{F}_{t} and \mathcal{F}_{M} , respectively. It is well-known that for $f \in L^{2} \subset S'$, $\mathcal{F}_{2}f = \mathcal{F}_{t}f$.

Obviously, the sequence of norms γ_k , $k \in \Re$, on $\mathfrak{D}_{L^2}^{(M_p)}$ is equivalent to the following one:

$$\begin{split} \tilde{\gamma}_k(\varphi) &= \sup_{\alpha \in \mathfrak{N}_0^q} \left\{ \frac{k^{|\alpha|} \|\varphi^{(\alpha)}\|_2}{M_{(\alpha)}} \right\} = (2\pi)^{-q/2} \sup_{\alpha \in \mathfrak{N}_0} \left\{ \frac{k^{|\alpha|} \|\left(\xi^\alpha(\mathcal{F}_2\varphi)(\xi)\right)\|_2}{M_{|\alpha|}} \right\}. \\ & k \in \mathfrak{N}_0(\xi^\alpha = \xi_1^{\alpha_1}, \dots, \xi_n^{\alpha_q}). \end{split}$$

This implies that $\mathfrak{D}_{L^{\mathbf{1}}}^{(M_p)}$ is isomorphic to the space $D_{L^{\mathbf{1}}}^{(M_p)}=\mathcal{F}_2(\mathfrak{D}_{L^{\mathbf{1}}}^{(M_p)})$ in which we transport the convergence structure from $\mathfrak{D}_{L^{\mathbf{1}}}^{(M_p)}$.

The inverse Fourier transformation of an $f \in L^2$ is defined by

$$(\mathcal{F}_{\bf 2}^{-1}f)(\xi) = (2\pi)^{-q}(\mathcal{F}_{\bf 2}f)(-\xi) \;, \quad \; \xi \in \Re^q \,.$$

Clearly, \mathcal{F}_2^{-1} is an isomorphism of $D_{L^2}^{(M_p)}$ onto $\mathfrak{D}_{L^2}^{(M_p)}$. This implies that

the adjoint mappings

$$\mathcal{F}_{\scriptscriptstyle{M}} \colon D_{\scriptscriptstyle{L^{\mathbf{3}}}}^{\prime(M_{\scriptscriptstyle{p}})} \to \mathfrak{D}_{\scriptscriptstyle{L^{\mathbf{3}}}}^{\prime(M_{\scriptscriptstyle{p}})} \,, \qquad \mathcal{F}_{\scriptscriptstyle{M}}^{-1} \,\, \mathfrak{D}_{\scriptscriptstyle{L^{\mathbf{3}}}}^{\prime(M_{\scriptscriptstyle{p}})} \to D_{\scriptscriptstyle{L^{\mathbf{3}}}}^{\prime(M_{\scriptscriptstyle{p}})}$$

are isomorphisms. One can easily prove that for $f \in L^2$

$$\mathcal{F}_M f = \mathcal{F}_2 f$$
 and $\mathcal{F}_M^{-1} f = \mathcal{F}_2 f$.

Similarly, we define $\mathcal{F}_M \colon \mathcal{D}_{L^1}^{\prime(M_p)} \to \mathcal{D}_{L^1}^{\prime(M_p)}$ and $\mathcal{F}_M^{-1} \colon \mathcal{D}_{L^1}^{\prime(M_p)} \to \mathcal{D}_{L^1}^{\prime(M_p)}$. Let $f \in \mathcal{D}_{L^1}^{\prime(M_p)}$ and $\varphi \in \mathcal{D}_{L^1}^{\prime(M_p)}$. We have:

(2)
$$\langle \mathcal{F}_{M}^{-1}f, \mathcal{F}_{2}\varphi \rangle = \langle f, \varphi \rangle = \langle \mathcal{F}_{M}f, \mathcal{F}_{2}^{-1}\varphi \rangle.$$

Let

$$D^{\scriptscriptstyle \alpha} = D_{\scriptscriptstyle 1}^{\scriptscriptstyle \alpha_{\scriptscriptstyle 1}} \dots D_{\scriptscriptstyle q}^{\scriptscriptstyle \alpha_{\scriptscriptstyle q}} = \left(i\,\frac{\partial}{\partial x_{\scriptscriptstyle 1}}\right)^{\!\!\!\!\!\!\!\alpha_{\scriptscriptstyle 1}} \dots \left(i\,\frac{\partial}{\partial x_{\scriptscriptstyle q}}\right)^{\!\!\!\!\!\!\!\!\!\alpha_{\scriptscriptstyle q}}.$$

An operator of the form $P(D) = \sum_{\alpha \in \mathfrak{N}_{0}^{d}} a_{\alpha} D^{\alpha}$, a_{α} are complex numbers, is called the ultradifferential operator of class (M_{p}) if there are L > 0 and C > 0 such that

(3)
$$|a_{\alpha}| \leqslant CL^{|\alpha|}/M_{|\alpha|}, \quad \alpha \in \mathfrak{N}_0^q ([2]).$$

It was proved in [4] that the mapping $\varphi \mapsto P(D)\varphi$ from $\mathfrak{D}_{L^{1}}^{(M_{\mathfrak{P}})}$ into $\mathfrak{D}_{L^{1}}^{(M_{\mathfrak{P}})}$ is continuous. We have

$$\mathcal{F}_{\mathbf{2}}\big(P(D)\,\varphi\big)(\xi) = P(\xi)\,\mathcal{F}_{\mathbf{2}}(\varphi)(\xi)\;, \quad \ \xi \in \Re^q\,.$$

We proved in [4] the following structural theorem: $f \in \mathfrak{D}_{L^*}^{(M_p)}$ iff there exist an ultradifferential operator of class (M_p) , P(D), and an $F \in L^2$ such that

$$f = P(D)F.$$

By (2) and (4) we have

(5)
$$(\mathcal{F}_{\scriptscriptstyle M} f)(\xi) = P(\xi)(\mathcal{F}_{\scriptscriptstyle 2} F)(\xi) , \quad \xi \in \Re^q.$$

Thus, we see that $\mathcal{F}_M f$ is a function from L^2_{loc} .

For the analytic function $P(\zeta) = \sum_{\alpha \in \mathfrak{N}_0^q} a_{\alpha} \zeta^{\alpha}, \ \zeta \in \mathfrak{C}^q, \ (a_{\alpha} \text{ satisfy (3)})$ we have

$$(6) \qquad |P(\zeta)| \leqslant (C/M_0) \sup_{\alpha \in \mathfrak{R}_q^q} \left\{ \frac{L^{|\alpha|} M_0 |\zeta|^{|\alpha|}}{M_{|\alpha|}} \right\} \leqslant C_1 \exp\left(M \big(L_1 |\zeta|\big) \;, \quad \ \zeta \in \mathfrak{C}^q \;,$$

where $C_1 = (C/M_0)$. $\sum_{\alpha \in \mathfrak{N}_0^{\alpha}} (L/L_1)^{|\alpha|}$ and $L_1 > L$.

3. Let $f \in \mathcal{D}_{L^{1}}^{\prime(M_{p})}$ and $\varphi \in \mathcal{D}_{L^{1}}^{(M_{p})}$; we define

$$(f * \varphi)(x) = \langle f(t), \varphi(x-t) \rangle, \quad x \in \Re^q.$$

Let us put $\psi(x) = (f * \varphi)(x), x \in \Re^q$, and assume that f is of the form (4). We have

PROPOSITION 1. For any $\alpha \in \mathfrak{N}_0^a$, $\psi^{(\alpha)}$ is bounded and continuous. Moreover, for any k > 0

$$eta_k(\psi) = \sup_{\substack{x \in \mathfrak{R}^q \\ x \in \mathfrak{D}^{q}}} \left\{ rac{k^{|lpha|}|\psi^{(lpha)}(x)|}{M_{|lpha|}}
ight\} < \infty \,.$$

PROOF. For any $x \in \Re^q$ we have

Since P(D) $\varphi^{(\alpha)} \in L^2$, the first part of the assertion follows. Using (6), for $x \in \Re^q$, $\alpha \in \Re^p_0$, we have

$$egin{aligned} rac{k^{|lpha|}}{M_{|lpha|}}|\psi^{(lpha)}(x)| &\leqslant \|F\|_2 rac{k^{|lpha|}}{M_{|lpha|}} \|ig(P(D)\, arphi^{(lpha)}ig)(\xi)\|_2 \leqslant \ &\leqslant C_1 rac{k^{|lpha|}}{M_{|lpha|}} \|F\|_2 \|\expig(Mig(L_1|\xi|ig)ig)\xi^lpha(\mathcal{F}_2arphi)(\xi)\|_2 \,. \end{aligned}$$

Thus by (1) we have

$$\sup_{\substack{x \in \Re^q \\ \alpha \in \Re^q^0}} \left\{ \frac{k^{|\alpha|}}{M_{|\alpha|}} |\psi^{(\alpha)}(x)| \right\} \leqslant C \|\exp\left(M(L_1|\xi|) + M(k|\xi|)\right) (\mathcal{F}_2\varphi)(\xi)\|_2 \leqslant C_0 \|\exp\left(M((L_1+k)|\xi|)(\mathcal{F}_2\varphi)(\xi)\right)\|_2$$

where C and C_0 are suitable constants. Since the sequence of norms

$$u_k(\varphi) = \|\exp(M(k|\xi|))(\mathcal{F}_2\varphi)(\xi)\|_2, \quad k \in \mathfrak{R},$$

is equivalent to the sequence γ_k , $k \in \Re$ ([4, Proposition 2.1]), the second assertion of the proposition follows.

If φ , $\psi \in \mathfrak{D}_{L^2}^{(M_p)}$, then $\mathcal{F}_2(\varphi * \psi) = (\mathcal{F}_2\varphi)(\mathcal{F}_2\psi)$ ([5]). (In this case * is the ordinary convolution.)

PROPOSITION 2. Let $f \in \mathfrak{D}_{L^{1}}^{\prime(M_{p})}$ and $\varphi \in \mathfrak{D}_{L^{1}}^{(M_{p})}$. Then

$$\mathcal{F}_t(f * \varphi)(\xi) = (\mathcal{F}_M f)(\xi)(\mathcal{F}_2 \varphi)(\xi) , \quad \xi \in \Re^q.$$

PROOF. We assume that f is of the form (4). We have

$$\begin{split} (f*\varphi)(x) &= \langle P(D)F(t), \varphi(x-t) \rangle = \langle F(t), P(-D)\varphi(x-t) \rangle = \\ &= \int\limits_{\Re g} F(t)P(-D)\varphi(x-t) \, dt = \big(F*P(D)\varphi\big)(x) \; . \end{split}$$

since $F \in L^2$ and $P(D)\varphi \in L^2$, from the remark given before Proposition 2 and (5), the assertion follows.

4. Let $g \in \mathfrak{D}_{L^1}^{\prime(M_p)}$ such that for every $\varphi \in \mathfrak{D}_{L^1}^{(M_p)}$, $g * \varphi \in \mathfrak{D}_{L^1}^{(M_p)}$. Then we call g the convolution-operator or convolutor. The space of all convolutors is denoted by $\mathfrak{O}_C'(\mathfrak{D}_{L^2}^{\prime(M_p)}, \mathfrak{D}_{L^2}^{\prime(M_p)})$ or in short, by $\mathfrak{O}_C'^{\prime(M_p)}$. (Note that we do not assume the continuity of the mapping $\varphi \to g * \varphi$, in $\mathfrak{D}_{L^1}^{(M_p)}$. This will be proved in Proposition 5.)

Proposition 2 implies.

PROPOSITION 3. Let $g \in \mathcal{O}_C^{(M_p)}$ and $\varphi \in \mathcal{D}_{L^2}^{(M_p)}$. Then

$$\mathcal{F}(g * \varphi)(\xi) = (\mathcal{F}_{\mathsf{M}}g)(\xi)(\mathcal{F}_{\mathsf{2}}\varphi)(\xi) \;, \quad \ \xi \in \Re^q \,.$$

Proposition 4. A $g \in \mathfrak{D}_{L^2}^{\prime(M_p)}$ is from $\mathfrak{O}_{C}^{\prime(M_p)}$ iff there exists k > 0 such that

(7)
$$(\mathcal{F}_{M}g) \exp \left(-M(k|\cdot|)\right) \in L^{\infty}.$$

PROOF. From (7) it follows that for any $\varphi \in \mathfrak{D}_{L^{2}}^{(M_{p})}$ and any $\alpha \in \mathfrak{N}_{0}^{q}$

$$\mathcal{F}_{\scriptscriptstyle M}(g*\varphi^{\scriptscriptstyle(\alpha)})=(\mathcal{F}_{\scriptscriptstyle M}g)\,\mathcal{F}_{\scriptscriptstyle 2}(\varphi^{\scriptscriptstyle(\alpha)})\in L^2$$

and

$$\mathcal{F}_{M}(g * \varphi^{(\alpha)}) = \mathcal{F}_{2}(g * \varphi^{(\alpha)}) = (\mathcal{F}_{M}g)(-i\xi)^{\alpha}(\mathcal{F}_{2}\varphi).$$

Let r > 0. From (7) and (1) we obtain

$$\begin{split} \sup_{\alpha \in \mathfrak{N}_{0}^{q}} & \left\{ \frac{r^{|\alpha|}}{M_{|\alpha|}} \|g * \varphi^{(\alpha)}\|_{2} \right\} \leqslant (2\pi)^{-q/2} \left\| \sup_{\alpha} \left\{ \frac{r^{|\alpha|}}{M_{|\alpha|}} |(\mathcal{F}_{M}g)(\xi)| \, |\xi|^{\alpha} \, |(\mathcal{F}_{2}\varphi)(\xi)| \right\} \right\|_{2} \leqslant \\ & \leqslant C \| \exp\left(M(r|\xi|)\right) \exp\left(M(k|\xi|)\right) (\mathcal{F}_{2}\varphi)(\xi)\|_{2} \\ & \leqslant \overline{C} \| \exp\left(M((r+k)|\xi|)\right) (\mathcal{F}_{2}\varphi)(\xi)\|_{2} \, . \end{split}$$

Thus, we have proved

(8)
$$\tilde{\gamma}_r(g * \varphi) \leqslant \bar{C} \nu_{r+k}(\varphi), \quad \varphi \in \mathfrak{D}_{L^2}^{(M_p)}.$$

Conversely, let $g \in \mathcal{O}_{C}^{\prime(M_{p})}$ and φ be an arbitrary element from $\mathfrak{D}_{L^{1}}^{(M_{p})}$. Since $\mathcal{F}_{2}(g * \varphi) = (\mathcal{F}_{M}g)(\mathcal{F}_{2}\varphi)$ and $\nu_{k}(g * \varphi) < \infty$ for every k > 0, we have

(9)
$$\|(\mathcal{F}_{M}g)\exp(M(k|\cdot|))(\mathcal{F}_{2}\varphi)\|_{2}<\infty \quad \text{for every } k>0.$$

It can be proved by (9) that $\mathcal{F}_M g$ is from L^{∞}_{loc} . Namely, for any open ball $\mathring{K}(m)$, $L^2(\mathring{K}(m))$ can be embedded into $D_{L^1}^{(M_p)}$ in a natural way:

$$L^2ig(\mathring{K}(m)ig)\in\psi\mapsto ilde{\psi}\ = \left\{egin{array}{ll} \psi & ext{ on } \mathring{K}(m) \ 0 & ext{ on } \Re^qig) \mathring{K}(m) \end{array}
ight.$$

Since the condition

$$\|H(\xi)\psi(\xi)\|_{L^2(\overset{\circ}{K}(m))}<\infty \quad ext{ for every } \psi\in L^2(\overset{\circ}{K}(m)) \ ,$$

implies $H \in L^{\infty}(\mathring{K}(m))$, we obtain that $\mathcal{F}_{M}g \in L^{\infty}_{loc}$.

Let us prove (7) by proving that g does not belong to $\mathcal{O}_{\mathcal{C}}^{\prime(M_p)}$ if (7) does not hold.

If (7) does not hold there exists a sequence a_i such that $a_1 > 1$,

 $a_{i+1} > a_i + 1$ and

$$|(\mathcal{F}_{M}g)(\xi)|\exp\left(-M(j|\xi|)\right)>j$$
 if $|\xi|\in A_{j}\subset(a_{j},a_{j+1})$

with mes $A_j = \varepsilon_j > 0, j \in \mathfrak{R}$.

Put

$$\psi_{j}(\xi) = \left\{ egin{array}{ll} arepsilon_{j}^{-1} \exp\left(-M(j|\xi|)
ight), & |\xi| \in A_{j}, \ j \in \mathfrak{N} \ , \\ 0 & ext{elsewhere} \end{array}
ight.$$

and $\psi = \sum_{j=1}^{\infty} \psi_j$. Since $\exp\left(-M(|\xi|)\right)$ decreases monotonically faster than any power of $1/|\xi|$ when, $|\xi| \to \infty$, one can prove that $\psi \in D_{L^*}^{(M_p)}$ and that $(\mathcal{F}_M g) \psi$ does not belong to $D_{L^*}^{(M_p)}$.

The proof is completed.

From (8) directly follows:

Proposition 5. If $g \in \mathcal{O}_C^{\prime(M_p)}$ then the mapping

$$\varphi \mapsto g * \varphi$$
 from $\mathfrak{D}_{L^{2}}^{(M_{\mathcal{P}})}$ into $\mathfrak{D}_{L^{2}}^{(M_{\mathcal{P}})}$

is continuous.

The last assertion enables us to define the convolution of an $f \in \mathfrak{D}_{L^1}^{\prime(M_p)}$ and a $g \in \mathfrak{O}_C^{\prime(M_p)}$ in a usual way:

$$\langle f \stackrel{\cdot}{\Omega} g, \varphi \rangle = \langle f, \check{g} * \varphi \rangle$$
 where $\check{g}(x) = g(-x), x \in \Re$.

Proposition 6. If $f \in \mathfrak{D}_{L^2}^{\prime(M_p)}$ and $g \in \mathfrak{O}_{C}^{\prime(M_p)}$ then,

$$\mathcal{F}_{M}(f \diamondsuit g) = (\mathcal{F}_{M} f)(\mathcal{F}_{M} g) .$$

PROOF. For $\psi \in D_{L_1}^{(M_p)}$ we have

$$\begin{split} \langle \mathcal{F}_{M}(f \langle \mathfrak{T} g), \psi \rangle &= \langle f \langle \mathfrak{T} g, \mathcal{F}_{2} \psi \rangle = \langle f, \check{g} * \mathcal{F}_{2} \psi \rangle = \\ &= \langle \mathcal{F}_{M} f, \mathcal{F}_{2}^{-1}(\check{g} * \mathcal{F}_{2} \psi) \rangle = \langle (\mathcal{F}_{M} f)(\xi), (2\pi)^{-q} \mathcal{F}_{2}(\check{g} * \mathcal{F}_{2} \psi)(-\xi) \rangle = \\ &= \langle (\mathcal{F}_{M} f)(\xi), (2\pi)^{-q} (\mathcal{F}_{M} g)(\xi) (\mathcal{F}_{2}(\mathcal{F}_{2} \psi))(-\xi) \rangle = \\ &= \langle (\mathcal{F}_{M} f)(\xi), (\mathcal{F}_{M} g)(\xi) \psi(\xi) \rangle. \end{split}$$

This implies the assertion.

If g and f are from $\mathcal{O}_{\mathcal{C}}^{\prime(M_p)}$ then $f \Leftrightarrow g \in \mathcal{O}_{\mathcal{C}}^{\prime(M_p)}$.

This follows from the definition of $\mathcal{O}_{C}^{\prime(M_{p})}$ and the fact that

$$(f \triangleleft g) * \varphi = f \triangleleft (g * \varphi) = f * (g * \varphi), \quad \varphi \in \mathfrak{D}_{L^{1/2}}^{(M_p)}.$$

Properties of the convolution are given in the next

Proposition 7. Let $g, h \in \mathcal{O}_C^{\prime(M_p)}$ and $f \in \mathcal{D}_{L^1}^{\prime(M_p)}$.

- (i) $g \Leftrightarrow h = h \Leftrightarrow g$;
- (ii) $(f \Leftrightarrow q) \Leftrightarrow h = f \Leftrightarrow (q \Leftrightarrow h)$.

Proof. (i) We have

$$\langle g \Leftrightarrow h, \varphi \rangle = \langle g, \check{h} * \varphi \rangle = (g * (\check{h} * \varphi))(0);$$

 $\langle h \Leftrightarrow g, \varphi \rangle = (h * (\check{g} * \varphi))(0).$

Proposition 3 implies that $(h * (\check{g} * \varphi))(x) = (g * (\check{h} * \varphi))(x), x \in \Re^q$.

(ii) Since

$$\begin{split} \langle f \lozenge (g \lozenge h), \varphi \rangle &= \langle f, (g \lozenge h) * \varphi \rangle = \langle f(x), (g \lozenge h)(t), \varphi(x+t) \rangle = \\ &= \left\langle f(x), \left\langle g(t), \left\langle \check{h}(u), \varphi(x+t-\alpha) \right\rangle \right\rangle \right\rangle = \\ &= \left\langle f(x), \left\langle g(t), (\check{h} * \varphi)(x+t) \right\rangle \right\rangle = \left\langle f(x), \check{g} * (\check{h} * \varphi)(x) \right\rangle, \end{split}$$

and

$$\langle (f \triangleleft g) \triangleleft h, \varphi \rangle = \langle (f \triangleleft g), (\check{h} * \varphi) \rangle = \langle f, \check{g} * (\check{h} * \varphi) \rangle,$$

the assertion is proved.

5. Observe the convolution equation in $\mathfrak{D}_{L_2}^{\prime(M_p)}$:

$$(10) S \Leftrightarrow U = V,$$

where $S \in \mathcal{O}_C^{\prime(M_p)}$ and $V \in \mathcal{D}_{L^1}^{\prime(M_p)}$ are known ultradistributions and $U \in \mathcal{D}_{L^1}^{\prime(M_p)}$ is the unknown one.

Denote by $\mathcal{O}'_{C,\mathcal{A}}^{(M_p)}$ the space of all convolutors $S \in \mathcal{O}'_{C}^{(M_p)}$ for which $\mathcal{F}_M S$ is a smooth function which has the analytic continuation onto the whole \mathfrak{C}^q .

PROPOSITION 8. Let $S \in \mathcal{O}'_{L^{\mathbf{x}}}^{(M_p)}$. The sufficient condition that the equation (10) is solvable in $\mathfrak{D}'_{L^{\mathbf{x}}}^{(M_p)}$ for any $V \in \mathfrak{D}'_{L^{\mathbf{x}}}^{(M_p)}$ is the following one: There exist C > 0 and k > 0 such that

$$|(\mathcal{F}_{M}S)(\zeta)| \geqslant \frac{C}{\exp\left(M(k|\zeta|)\right)}, \quad \zeta \in \mathfrak{C}^{q}.$$

PROOF. Assume that (11) holds. Put

$$u(\xi) = \frac{(\mathcal{F}_M V)(\xi)}{(\mathcal{F}_M S)(\xi)}, \quad \xi \in \Re^q.$$

From (5) it follows that for some ultradifferential operator P of class (M_p) and some $v \in L^2$

$$u(\xi) = \frac{P(\xi)}{(\mathcal{F}_M S)(\xi)} v(\xi) , \quad \xi \in \Re^q.$$

Let $P_1(\xi) = P(\xi)/(\mathcal{F}_M S)(\xi)$, $\xi \in \Re^q$. From [2, Proposizion 4.5] it follows that $P_1(D)$ is an ultradifferential operator of class (M_p) . Thus, by (5) again, we obtain that the solution of (10) is

$$U = P_1(D) \mathcal{F}_2^{-1} v$$
.

PROPOSITION 9. Let $S \in \mathcal{O}_C^{\prime(M_p)}$. Then the necessary condition for the solvability of (10) for any $V \in \mathcal{D}_{L^2}^{\prime(M_p)}$ is the following one:

There exist C > 0, D > 0 and k > 0 such that

(12)
$$|(\mathcal{F}_{M}S)(\xi)| \geqslant C \exp\left(-M(k|\xi|)\right), \quad |\xi| \geqslant D.$$

PROOF. Assume that (10) is solvable for any $V \in \mathfrak{D}_{L^{2}}^{\prime(M_{p})}$ but (12) does not hold. This implies that there exists a sequence of sets A_{j} , $j \in \mathfrak{R}$, such that mes $A_{j} = \varepsilon_{j} > 0$, $A_{j} \subset (a_{j}, a_{j+1})$ $a_{1} > 1$, $a_{j+1} > a_{j} + 1$, $j \in \mathfrak{R}$ and

$$|(\mathcal{F}_{\scriptscriptstyle M}S)(\xi)| \leqslant j^{-1} \exp\left(-M\big(j^2|\xi|\big)\right), \qquad |\xi| \in A_{\scriptscriptstyle J}, \ j \in \mathfrak{N} \ .$$

As in the proof of Proposition 4, put

$$v_j = \left\{ egin{array}{ll} arepsilon_j^{-1} \exp\left(-M(j|\xi|)
ight), & |\xi| \in A_j, \; j \in \mathfrak{N}\,, \ 0 & ext{elsewhere} \end{array}
ight.$$

and

$$v=\sum_{j=1}^{\infty}v_{j}.$$

Clearly $v \in D_{L^2}^{\prime(M_p)}$ but

$$v/(\mathcal{F}_M S) \notin D_{L^2}^{\prime(M_p)}$$
.

Thus, for such $V = \mathcal{F}_M^{-1}(v)$ and S the solution of (10) does not exist in $\mathfrak{D}_{L^2}^{\prime(M_p)}$.

6. We say that equation (10) satisfies the hypoelipticity condition if the existence of the solution $U \in \mathcal{D}_{L^1}^{(M_p)}$ of (10) and $V \in \mathcal{D}_{L^1}^{(M_p)}$ imply that $U \in \mathcal{D}_{L^1}^{(M_p)}$. In this case we say that U is the hypoeliptic solution of (10).

Proposition 10. Let $S \in \mathcal{O}_{\mathcal{C}}^{\prime(M_p)}$. Equation (10) is hypoeliptic iff (12) holds.

PROOF. Let $\tilde{\psi}(\xi) = 1$ for $|\xi| \leqslant D + 1$ and $\tilde{\psi}(\xi) = 0$ for $|\xi| > D + 1$. This is an element of $D_{L^2}^{(M_p)}$.

Put

$$ilde{P}(\xi) = rac{1 - ilde{\psi}(\xi)}{(ilde{\mathcal{F}}_M S)(\xi)} \, .$$

We have

$$| ilde{P}(\xi)| \leqslant C \exp M(k|\xi|), \quad \xi \in \Re^q.$$

Obviously, $P = \mathcal{F}_M^{-1} \tilde{P} \in \mathfrak{O}_C^{\prime(M_p)}$ and

$$\label{eq:spin} S \, {\mbox{$\stackrel{\mbox{\tiny$\mbox{\sim}}}{\sim}$}} \, P = \delta - \psi \; , \quad \text{ where } \; \psi = \mathcal{F}^{\scriptscriptstyle -1}(\tilde{\psi}) \; .$$

Since

$$U = U * \delta = V \Leftrightarrow P + U \Leftrightarrow \psi$$

one can easily prove that $U \in \mathfrak{D}_L^{(M_p)}$.

By the same arguments as in the second part of the proof of Proposition 9 one can prove that if (10) is hypoeliptic then (12) holds for S.

REFERENCES

- [1] K. FLORET J. WLOKA, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math. 56, Springer, Berlin, Heidelberg, New York, 1968.
- [2] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), pp. 25-105.
- [3] S. PILIPOVIĆ, Hilbert transformation of ultradistributions, Rend. Math. Univ. Padova, 77 (1987), pp. 1-13.
- [4] S. PILIPOVIĆ, Boundary value representations for a class of Beurling ultradistributions, Port. Math. (to appear).
- [5] V. S. VLADIMIROV, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979.

Added in proof. Proposition 4 implies that $(\mathcal{F}_M S)(\xi) = s(\xi) \exp\left[M(k|\xi|)\right]$, $\xi \in \Re^q$, for some k > 0 and some $s \in L^{\infty}$, and from (4) we have $(\mathcal{F}_M V)(\xi) = P(\xi)v(\xi)$, $\xi \in \Re^2$, where P is an ultradifferential operator of class (M_p) and $v \in L^2$. So, by using the Fourier transformation we have:

« (10) is solvable in $\mathfrak{D}'_{L^{s,p}}^{(M_p)}$ if the equation su=v has a solution $u\in L^2$ ».

Manoscritto pervenuto in redazione il 20 novembre 1986.