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On the Convolution in the Space $$D’L2(Mp).

STEVAN PILIPOVI0107 (*)

SUMMARY. - We investigate the convolution and the Fourier transformation
in the space of Beurling ultradistributions tj)~(P 1’) . We give some simple
conditions on a convolutor S for the solvability and the hypoelipticity
of a convolution equation S * U = V in D’L2(Mp).

1. The space ~L ~~~ introduced in [3] is a subspace of the space
of Beurling ultradistributions ([2]). This is a natural generalization
of the Schwartz space 9)L I. and we investigated them in [3] in con-
nection with the Hilbert transformation of ultradistributions. With
suitable assumptions on the sequence M~, we determined in [4]
elements of as boundary values of certain holomorphic functions.

In [3] some questions on the convolution in occured. This

was the motivation for our investigations of the convolution in 
The Fourier transformation maps into a subspace of So

by proving the exchange formula we obtain simple conditions for the
solvability and the hypoelipticity of a convolution equation in 5)’(mp)

2. Our notation is the same as in [2]. Let Mp , p E 9èo == 9è U 10}
be a sequence of positive numbers such that

(*) Indirizzo dell’A.: Institute of Mathematics, University of Novi Sad,
21000 Novi Sad, Dr. Ilije Djuricica 4, Yugoslavia.
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(M.2) There are constants A and H such that

(M.3) There is a constant A such that

We assumed in [3] instead of (M.2) and (M.3) the weaker conditions:
(M.2 )’ and (M.3 )’. (All these conditions were analysed in [2].) The

reason for that is the structural theorem for ~L;’~~~ which we need
for the full characterization of the convolution in 

The associated function if is defined by

From [2, Proposition 3.6] it follows

The space of Beurling ultradistributions is defined ([2]) as the

strong dual of the space

where

000 = the space of smooth functions on K(m) is the

closed ball with the center at zero and with the radius m &#x3E; 0,
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The space is defined ([3]) as follows:

The space is an FG-space (Gelfand space, see [1]) and

where c A ~ B » means that A is a dense subspace of B and the in-
clusion mapping is continuous. is well-known Schwartz space.)

The Fourier transformation of an f E .L2 is defined by

where l.i.m. means the square-mean limit. Since we shall use in the

paper the Fourier transformations of tempered distributions and of
D’L2(Mp)-ultradistributions, we indicate these transformations by sii
and:F M, respectively. It is well-known that for f e .L2 CS" :F2t = 

Obviously, the sequence of norms yk, %, on 5)(1p) is equivalent
to the following one:

This implies that Ll is isomorphic to the space A
in which we transport the convergence structure from *

The inverse Fourier transformation of an f E .L2 is defined by

Clearly, is an isomorphism of D1¥p) onto This implies that
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the adjoint mappings

are isomorphisms. One can easily prove that for 

Similarly, we define ~

Let

An operator of the form I , aO/, are complex numbers,
is called the ultradifferential operator of class if there are L &#x3E; 0
and C &#x3E; 0 such that

It was proved in [4] that the mapping from
into is continuous. We have

We proved in [4] the following structural theorem: 1~
there exist an ultradifferential operator of class (.111~), P(D), and an
F E L2 such that

By (2) and (4) we have

Thus, we see that :F M f is a function from 1-1
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For the analytic function
we have

where (

we define

Let us put = (f * g~)(x), x E 9lq, and assume that f is of the form (4).
We have

P’ROPOSITION 1. I’or any ex E ~o, is bounded and continuous.

Moreover, for any k &#x3E; 0

PROOF. For any x E 91q we have

Since P(D) E .L2, the first part of the assertion follows.

Thus by (1) we have
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where C and Co are suitable constants. Since the sequence of norms

is equivalent to the sequence yk, k E 9l ( [4, Proposition 2.1]), the second
assertion of the proposition follows.

If E Ði¥21), then * 1f’) == (~2g~) (~’~y~) ([5]). (In this case *
is the ordinary convolution.)

PROPOSITION 2. Let Then

PROOF. We assume that f is of the form (4). We have

since FE L2 and from the remark given before Propo-
sition 2 and (5), the assertion follows.

4. Let g E such that for every ç E E 

Then we call g the convolution-operator or convolutor. The space
of all convolutors is denoted by Ð~BMJ») or in short, by
. (Note that we do not assume the continuity of the mapping
~ ~7 * ~ in This will be proved in Proposition 5.)

Proposition 2 implies.

PROPOSITION 3. Z~

PROPOSITION 4. A I is f rom iff there exists k &#x3E; 0
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PROOF. From (7) it follows that for any and any «

and

Let r &#x3E; 0. From (7) and (1) we obtain

Thus, we have proved

Conversely, let g E and 99 be an arbitrary element from D%i9").
Since .
have

It can be proved by (9) that is from Lf’oc. Namely, for any
open ball can be embedded into in a natural w~ay:

Since the condition

implies we obtain that 
Let us prove ( 7 ) by proving that g does not belong to if (7)

does not hold.
If (7) does not hold there exists a sequence aj such that ai &#x3E; 1,
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and

with mes.
Put

and , decreases monotonically faster

than any power of 1/1~1 I when, 1$1 one can prove that 1p E Dflfp)
and that does not belong to Dz;sp&#x3E;.

The proof is completed.
From (8) directly follows:

PROPOSITION 5. I f then the mapping

is continuous.
The last assertion enables us to define the convolution of an

f E and in a usual way:

PROPOSITION 6. I f ~ J then,

PROOF. For 1p E Di¥p) we have

This implies the assertion.
If g and f are from then
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This follows from the definition of and the fact that

Properties of the convolution are given in the next

PROPOSITION 7. Let and

PROOF, (i) We have

Proposition 3 implies that

(ii) Since

and

the assertion is proved.

5. Observe the convolution equation in 3)~~:

where S E O’(Mp)C and V e are known ultradistributions and
U E is the unknown one.

Denote by 0’(m--) the space of all convolutors ~S E for which
is a smooth function which has the analytic continuation onto

the whole ~q.
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PROPOSITION 8. Let The su f f icient condition that the

equation (10 ) is solvable in ~L ~p~ f or any V e the following one :
There exist C &#x3E; 0 and k &#x3E; 0 such that

PROOF. Assume that (11) holds. Put

From (5) it follows that for some ultradifferential operator P of class
and SoMe V e L2

From [2, Proposizion 4.5] it
follows that P1(D) is an ultrad.ifferential operator of class (M~). Thus,
by (5) again, we obtain that the solution of (10) is

PROPOSITION 9..Let Then the necessary condition f or
the solvability o f (10) f or any Ve the f ollowing one :

There exist C &#x3E; 0, D &#x3E; 0 and k &#x3E; 0 such that

PROOF. Assume that (10) is solvable for any V E but (12)
does not hold. This implies that there exists a sequence of sets Ai,
JEW, such that mes ~
j E 91 and

As in the proof of Proposition 4, put
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and

Clearly

Thus, for such V== and S the solution of (10) does not exist

6. We say that equation (10) satisfies the hypoelipticity condi-
tion if the existence of the solution U E of (10) and TT E 

imply that U E ~L~p~. In this case we say that U is the hypoeliptic
solution of (10).

PROPOSITION 10. Let S E Equation (10) is hypoeliptic i f f (12)
holds.

PROOF.
This is an element of -

Put

We have

Obviously,

Since

one can easily prove that U E 
By the same arguments as in the second part of the proof of

Proposition 9 one can prove that if (10) is hypoeliptic then (12) holds
for ~S’.
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Added in proof. Proposition 4 implies that (YMS) (~) = 8(~) exp 
~ E for some k &#x3E; 0 and some 8 E and from (4) we have =

= e m2, where P is an ultradifferential operator of class (M2) and
v E L2. So, by using the Fourier transformation we have:

« (10) is solvable in if the equation 8u = v has a solution u .

Manoscritto pervenuto in redazione il 20 novembre 1986.


