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Generalized Morita Equivalence
for Linearly Topologized Rings.

E. GREGORIO (*)

0. Introduction.

Since the appearance of Morita theory on equivalences between
categories of modules, y many authors have tried to generalize it and
to characterize equivalences between subcategories of modules with
suitable closure properties. The most important paper on the sub-
ject is Fuller’s [3] in which importance was given to topological con-
cepts, namely to the connections between the theory of density and
that of equivalence.

In this paper we generalize Morita theory to a similar one on
equivalences between categories of modules associated to linearly
topologized rings by proving results which extend Morita’s and Fuller’s.

It should be noted that a parallel generalization of Morita duality
already exists in the literature.

The most important result, on which are based all the others, y is

exposed in Section 1: it is a theorem on representation of equivalences
between categories of modules; this representation is obtained by a
limit process inspired by MacDonald’s paper [5].

In section 2 we apply this theorem to the equivalences between
the categories of discrete modules over linearly topologized rings, y
showing that these equivalences are always induced by a suitable
bimodule; recall that a right linearly topologized ring (R,1’) is a

topological ring having a local basis (i.e. a basis of neighborhoods of

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata,
Via Belzoni 7 - 35131 Padova, Italy.
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zero) consisting of right ideals and that a module llf e mod-R is a
discrete module over T) if and only if (the filter of
all T-open right ideals of R) for all x E M. We denote by Mod-Rt the
Grothendieck category of all discrete modules over (R, T). The de-
finition of linearly topologized module is obvious.

Section 3 is devoted to the introduction of a useful functor between
the categories of complete linearly topologized modules over a linearly
topologized ring induced by a bimodule, which has properties similar
to those of the tensor product.

In Section 4 the modules which induce equivalences between the
categories of discrete modules over linearly topologized rings are

characterized; these modules are studied more deeply in Section 5,
where we prove also a density theorem which generalizes Fuller’s den-
sity theorem in [3].

In Section 6 we give some examples to prove that we have reached
an effective generalization of the previous theories.

Finally, in Section 7 we specialize the results to the case of com-
mutative rings.

If (.R, r) is a right linearly topologized ring then denote by LTO-Rr
the category of all complete linearly topologized modules over (R, z);
if T is the discrete topology, then put = LTC-.R. All topological
modules and rings considered in this paper are, unless the contrary
is stated (e.g. in the definition of tensor product), Hausdorff. Moreover
we shall be concerned only with right linearly topologized rings and
right modules, with a few exceptions in Section 5. Morphisms of right
modules will be written on the left (and morphisms of left modules
on the right). Any subcategory of a given category will be closed
under isomorphisms. Given two topological modules MR and NR we
denote by ChomR(M, N) the group of all continuous R-morphisms
from .M to N and by Cend (llf) the ring of all continuous endo-

morphisms of MR.

1. Equivalences between finitely closed categories of modules.

1.1. Let A be a ring and ÐA a finitely closed subcategory of Mod-A,
i.e. full and closed with respect to finite direct sums submodules and
homomorphic images. If YA is the set of those right ideals of A such
that then it is clear that ~’~ is a filter of ideals in A and
defines a linear topology on A (let us denote it by a) which is not,
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in general, Hausdorff. It is also clear that ÐA is a subcategory of
Mod-A6. The Hausdorff completion of is A = lim A/I.

I E FA

1.2. Let us fix, for the rest of Section 1, two rings A and R and
two finitely closed subcategories ÐA and of Mod-A and Mod-B

respectively. We shall also assume that an equivalence

is given. We denote by S:A and :FR the filters of (right) ideals (and by (J
and i the associated topologies) defined on A and .R by ÐA and 

LEMMA ([cf. [5, Lemma 1] ). Let PR = lim F(A/I), endowed with
I E FA

the limit topology of the discrete topologies on F(AjI). Then P E LTC-Rt
and there exists a canonical ring morphism

PROOF. For I c- YA and a ac E A define

by (where a

morphism, hence there exists a unique morphism P --~ P which
makes commutative all the diagrams of the form

as I E:FA (here the vertical arrows are the canonical projections);
y(a) is clearly continuous and one can easily verify that ip is a ring
morphism. CJ

In this way P becomes on A-.R-bimodule; moreover PR E 
and A acts on PR by continuous endomorphisms. If we endow the
modules in tlR with the discrete topology, then we can consider the
functor ChomR (P, - ) : Mod-A defined in the obvious way.



224

1.3 REPRESENTATION THEOREM (ef. [5, Lemma 2]). There is a
natural isomorphism

PROOF. If we can consider the chain of (group) isomorphisms

GM gz colim AnnaM (I ) ~ colim HomA(A /1, 

(here and in all this proof limits and colimits are taken with I running
through let 8M: colim HomR (.F’(A/I ), M) be their compo-
sition ; denote by

the canonical morphisms of colimit and limit respectively. There is
a unique (group) morphism

such that tMb¡ = Homn (h, M), for any I E YA - It follows from [2,
p. 57] that tM is injective: indeed 1, is surjective so that Hom, M)
is injective for all I E 

It is clear that a morphism f : P - M is continuous if and only
if it factors through 1,, for some I. So it follows plainly that

it remains to prove the converse inequality. If

g E colim HomR (F(A/I), .M), there are I E :FA and h E M)
such that g = hence

Finally, if we put tM8M: M), we obtain a
natural isomorphism ,u : G .-~ ChomR (P, - ), since it is easy to see that
itm is a morphism of A-modules. 0

We can of course work as before on F, getting Q = lim 
J E FR

a ring morphism cp : R - ChomA (Q, Q ) and a natural isomorphism
v : .F’ -~. ChomA(Q, -). Now we look for a relation between PR and Q~ .
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Denote by (R, i) and (A, 6) the Hausdorff completions of (R, 1’) and
(A, a) respectively.

1.4 PROPOSITION. There exist two canonical isomorphisms

PROOF. From the definitions and 1.3 we get (limits are taken for
J E FR):

We have the canonical morphisms

and c,, : JS as There is a unique morphism

such that = ChomR (P, e,,), for all J E Let us see that u is

an isomorphism. If u(f) = 0 for f E ChomR (P, (P, i)), then

for all hence : so that f = 0. On the

other hand, if q dim ChomR then by the properties of limit
there exists g E Chom, (P, r)) such that c,,g = kj(q) , for 
and so u(g) _ q, 0

2. Linearly topologized rings.

2.1 DEFINITION. Let (A, 0’) and (R, 7:) be (right) linearly topologized
rings. We say that they are similar if there exists an equ*valence
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In this case we say also that the pair (F, G) is a similarity between
(.A, a) and (R, ~).

The following fact is well known.

2.2 PROPOSITION. Any linearly topologized ring is similar to its

Hausdorff completion.

An obvious application of 1.3 gives the following

2.3 THEOREM. Let (F, G) be a similarity between (A, a) and (R, t).
Then there exist modules PR E LTC-Rt and QA E LTC-AO’ and morphisms
1Jl: A - ChomR (P, P) and qJ: I~ --~ ChomA (Q, Q) in such a zvay that

At this moment we have  represented &#x3E;&#x3E; the similarities: in the
sequel we shall characterize all bimodules APR such that the functor
ChomR (P, -) defines a similarity between two linearly topologized
rings. We need the following

2.4. DEFINITION. Let (2~ r) be a ring and PR a module, both
linearly topologized; denote by the set of open submodules
of P. We say that P is :

(i) topologically finitely generated (t.f.g. ) if, for any V E Y(PR),
the quotient PIV is finitely generated;

(ii) topologically quasi-projective if, given any V E Y(P,) and
any continuous morphism (where P/Y has the discrete
topology), there exists a continuous R-endomorphism g: P - P such
that for all p E P we have

(iii) a self-generator if, for any V’ E Y(P), the closure in P of
I f E ChomR (P, V)} coincides with V;

(iv) a i-generator if it is a topological module over (.R, T) and,
for any non-zero morphism f : M - N in there is a continuous

morphism g: P - M such that fg o 0.

We say that PR is

(1) a quasiprogenerator if it satisfies (i), (ii), (iii) and is complete;



227

(2) a i-progenerator if it is a quasiprogenerator and a r-generator.

REMARKS. Let PR be a discrete module.

(a) PR is a quasiprogenerator if and only if it is a quasi-
progenerator in the sense of Fuller [3].

(b) Let i = d be the discrete topology on R; we shall prove that
PR is a d-progenerator if and only if it is a progenerator in the sense
of Morita theory.

3. Chom functors and tensor products.

3.1. Let PR and be objects in LTC-Rr: we can endow the
group Chom,, (P, with the topology of uniform convergence, which
has as a local basis the set of subgroups of the form

as V runs through the family 5i(M) of all open submodules of M.
We shall denote by Chom; (P, M) the group of continuous R-morphisms
from P to M endowed with the topology of uniform convergence.
It is almost trivial to see that Chom~ (P, M) is complete.

Consider now the ring A = ChomR (P, P), again with the topology ar
of uniform convergence: one can easily prove that this is indeed a

ring topology and that Chomp (P, M) E LTC-A6, for all .M E LTC-Rr .
We have so defined a functor

(the action on morphisms being the obvious one), which maps Mod-Rr
into Mod-A«.

3.2. In this Section we shall fix two complete linearly topologized
rings (A, (1) and (,R, -r) and a bimodule such that

(1) PR E LTC-.Rz;
(2) P is faithful on both sides;
(3) A acts on PR by continuous morphisms and the topology

induced on A by the topology of uniform convergence on Cend (PR) ==
- Chom, (P, P) is coarser than (1.
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Under these hypotheses, the functor ChomR(P, - ) is again a functor
LTC-AD’, which maps Mod-Rt into Mod-A,,.

3.3. Let N E LTC-AD’: we can endow N OA P with the greatest
linear topology that makes continuous all morphisms 
of the form

f or n E N. In this way becomes a linearly topologized module
over (R, 7:), though in general it is not Hausdorff; a local basis for
it is the set of B-submodules U of such that

is open for all n E N.

DEFINITION. is the Hausdorff completion of NO, P. We
shall denote by CN the canonical morphism 

functors LTO-Rr.

PROOF. It suffices to define the action of morphism f : M - N.
this is continuous and so

there exists a unique continuous morphism g which makes the diagram

commute. Since this is clearly functorial, we get the desired morphism
by putting = g. 0

defines a continuous morphism indeed, if V is an

open submodule of M and n E N, then
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and this is open in P by assumption. Hence there is a unique mor-
phism ’(1): P - If making commutative the diagram

and we have obtained a group morphism

natural in N and M.

3.5. We want to see that the morphism ~ of 3.4 is an isomorphism:
if g E ChomR (N x ~ P, ~VI ) , then we can define g’ : N - Hom,, (P, M) by

for all the map g’ (n) is continuous: if we have

and this is open by assumption.
We now state a sufficient condition to assure that C is an iso-

morphism from Chom, (N, ChomuR (P, M)) onto ChomR (NXA P, M).
DEFINITION. Let U be an open submodule of we put

We denote by 93p the class consisting of the modules N E LTC-A6
such that N[ U~ is open for any We have that

Mod-Aa C ~p and that (A, or) E 93p, since A~~ P is topologically iso-

morphic to P.

3.6. Let N E LTC-Âa and M E LTC-R-r: consider the two natural

morphisms
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defined for n c N, f E ChomR (P, ~) = N’ and p E P by

PROPOSITION. (ac) f3M is continuous for all M E LTC-R1’;
(b) aN is continuous for all N E Bp ;
(c) if N E 93p and M = Na, P, then f3M is surjective.

PROOF. (a) f3M is just the unique continuous morphism that makes
commutative the diagram

where eM is the valuation (it is easily seen to be continuous).

If n E N and p E P we have clearly f

3.7. Put QÁELTC-Aa and .R acts con-

tinuously on Q. Assume that the bimodule ~Q~ satisfies the same

hypotheses as P with A and R interchanged; then we can define
the functor

PROPOSITION. There exist two natural morphisms

PROOF. For if e if and q e Q we define a continuous
morphism [m, q] : P -~ .DI by
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it is easy to see that the mapping m - [m, -] is a continuous

R-morphism from M to ChomR (Q, ChomR (P, if)): this we take as yM .
In order to find X we observe that (P, de-
fined by = [m, q] is a continuous morphism, so that there
is a unique xM such that f M . Cl

4. Similarities between linearly topologized rings.

We shall divide this Section in two parts: in the first one we shall
prove that if (F: G : is a simi-

larity between the two complete linearly topologized rings (A, 0’) and
(R, r) and APR is the bimodule of 2.3, then PR is a r-progenerator
and (A, a) is topologically isomorphic to Chom,, (P, P) with the

topology of uniform convergence.
The second part will be concerned with the inverse of the above

result, y namely that if we are given a complete linearly topologized
ring (R, -r) and a t-progenerator PR, then the functor ChomR (P, -)
defines an equivalence between Mod-Rr and Mod-Aa, where (A, (1)
is the ring ChomR (P, P) with the topology of uniform convergence.

Part I.

In this part we assume that we are given two complete linearly
topologized rings (A, (1) and (1~, -r) and a similarity between them,
(F: G : With the notations of
2.3 we have

where Q = ChomR (P, (R, T)) and P = Chom, (Q, (A, 0’)) algebraic-
ally (1.4).

4.1 LEMMA. If the notations are as before, Chom’ (P, (R, T))
and P I"J Chom~ (Q, (A, a) ).

PROOF. Obviously we can prove this lemma only for Q.
All the limits in this proof will be taken for 
By the completeness of (.R, r) we have that R ~ lim if lim 1~/J

is identified as usual with a submodule of the direct product of the
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Rg, then, if I is an open right ideal of (7~ T), I is identified with
r, = 0} = = 0}, where ni is the canonical pro-

jection from the direct product.
A local basis for ChomR (P, (R, 1’)) is the set of submodules of

the form 3(1) as I E :;-7:.
Identify Q, as usual, y with a submodule of the direct product

; then an element of Q is a family

of morphisms; if hr denotes the projection from the product, = fi
and a local basis for Q is the set of submodules of the form Q n ker hi .

If Q - ChomR (P, lim Rg) is the algebraic isomorphism given
in 1.4, then, for g: 99-1(g) = (n,g) ; if g E 3(l), then qJ-1(g) is
in ker hI. Conversely, if and p E P, then 99 (f) (p)
(fj(p)) and this belongs to I since fi(p) = 0. C7

4.2 LEMMA. A is algebraically isomorphic to ChomR (P, P) and a
is finer than the topology of uniform convergence.

PROOF. Recalling that A is complete, we get the isomorphisms

and we get the conclusion by using arguments similar to those of 1.4
(limits are taken for I E 3i"a).

Recall that P is defined as lim denote by l¡: 
the canonical map of the limit. If V e Y(P) then there is I E such
that and ~(Y) ~ 3 (Ker 1,). On the other hand it is plain
that since, if and p E P, then and

lI(ip) = = 0 (Al,i: A/(I:i) is defined in 1.2).
Hence and is open with respect to (1. L7

4.3. Since Chom~ (Q, (A, (1)), there exists by 3.7 a natural
morphism x : - 0A P - Chom~ (Q, - ) . For N put M = P

and (aN),~ = Choml (Q, aN) ; then

if n E N, p E P and t = cN(n 0 p) we have
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and, for qEQ, xEP,

If we identify Q~ with ChomR (P, (R, z) ) then

But the elements pq(x) E P and are the
same with respect to the identifications we made: indeed the iso-

morphism P --~ Chom~ (Q, A) is defined by p ~ ~, where p(q) is the

only element in A such that for all x E P

Hence is an isomorphism and xN is injective.
From the above it follows immediately that if N is discrete, then

also is. Indeed xN is a continuous injective morphism from
into Chom~ (Q, N) which is discrete.

4.4 naturally isomorphic to - 0~ P.

PROOF. Since Mod-Aa is contained in it follows from 3.4
and 3.5 that - is a left adjoint of Chom, (P, - ) : 
- Mod-Aa; by the uniqueness of adjoints we get the conclusion. 0

4.5 COROLLARY. I f then

where IP is the closure of IP in P.

PROOF. It is well known that by means of

Let us verify that f is a

homeomorphism, if we endow P/IP with the quotient topology.

(i) If V E 3ë’(P) and V&#x3E;IP then, for any we have
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(ii) Let U E ~~ P) : then V = (1 + I) O-1 (U) E Y(P); but
p E V implies p E f ( Z7), hence Y ~ f ( ZI ), so that f is open.

The Hausdorff space associated to P/IP is P/IP ; moreover A119A P
is the Hausdorff completion of PjIP and so there exists a topological
imbedding By 4.4, is discrete, so that
the domain is discrete too, hence complete. 0

4.6 THEOREM. PR is a r-progenerator and (A, a) = Chomu (P, P).

PROOF. Let V E Y(P): then for some open right ideal I
of A (where and, for I E is the canonical map

of the limit). Then there is an epimorphism and, by
applying G, we get an epimorphism G(P/Y) ; hence V is of
the form for some open ideal J of (A., cr).

(i) PR is topologically finitely generated. It is sufficient to prove
that is finitely generated for all open right ideals I of (A, ~) ;
but this follows from the fact that .F’ has a right adjoint, so that it
preserves colimits.

(ii) PB is topologically quasi-projective. If V E then we can
consider P/V = .P(A/I ) ; if f: is a continuous morphism
then we have f * Chom’ , (P, f) ChomR (P, P) --~ A/I, and f *(1 ) ==

for some a e A.

(iii) PR is a sel f -generator. Let V E Y(P): then PIV = .F(A/I )
and IP V, so that also IP c Y. Then we have

and the composition is the identity, so that IP = V.

(iv) PR is a 7:-generator. Indeed PR is clearly a module over 
if f is a non-zero morphism in Mod-Rr then G(f) ~ 0 in Mod-Aa so
that there are an open right ideal I in (A, (1) and a morphism g with
domain All such that 

It remains to see that a is coarser than the topology of uniform
convergence. Let I be an open ideal in (A, (1): then and
we have
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and a monomorphism of into Chom, (P, PIIP). Therefore
I = 3(IP) is open in the topology of uniform convergence. 0

Part 11.

In this part of Seotion 4 we fix a linearly topologized ring (I~, 7:).
First we need a definition and a lemma.

DEFINITION. Let PR E LTC-jRT and M e Mod-R : we say that PR is
(topologically) M-projective if for all submodules L of .lVIR and all
continuous morphisms t : P - MIL there exists a continuous morphism
g : such that the following diagram is commutative (M and
MIL are endowed with the discrete topology; the row is the projection)

We denote by ~’(PR) the class of those R-modules .M such that P is
M-projective.

4. 7 ~’ (PR ) is closed under

( i ) homomorphic images ;
(ii) submodules;

(iii) finite direct sums.

If PR is t. f .g. then (PR) is also closed under in f inite direct sums.
The proof is the same as the proof of Proposition 16.12 in [1].

4.8 THEOREM. If PR is a t-progenerator, A = ChomR (P, P) and a
is the topology of convergence on A, then the pair

is an equivalences between Mod-R1: and Mod-Aa.
We divide the proof into several steps.

(4.8.1) DEFINITION. i3p is the class consisting of those modules N
in Mod-A6 such that is discrete.
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If N E Mod-Âa, then we denote by K(N) the kernel of the topology
of N ~~ P : it is obvious that N E lJp iff K(N) is open in N Q9A P.

(4.8.2 ) ‘~p is closed with respect to direct sums.
Let be a family in Gp and N = (D then 

k

= (Na x A P) algebraically, so we can identify them.
Let x = E EÐ if we take for all A E ll an open submo-

dule II of N Q9A P, then

which is open in P, because Y(P) is closed under finite intersections
and xa, 0-1( Th,) = P for almost all A. This shows that any submodule

of N Q9A P of the form E Uk (Uk open in Na, X A P) is open. Let now V
be an open submodule of N Q9A P: put and

take nk E We have

is considered first in NA and then in N). Hence V contains a sub-
module of the form EUk, with each UA open in NA&#x26;JAP. Therefore

k

(4.8.3) bp is closed with respect to homomorphic images.
Let N and .L be a submodule of NA. If ~: N --~ is the

canonical projection and f = one can easily verify that f is
open and surjective and that the open submodules of 
precisely those of the form f ( ZI ), with TJ open in and U &#x3E; Ker f.
Let then

(4.8.4) bp contains a family of generators 
I 
of 

Mod-Ac. It suffices to show that if V E and 1 = ~(’V~), then All E ’6,:
The canonical isomorphism P --~ P/IP is a homeomorphism
and the Hausdorff space associated to P/IP is P/IP (see 4.5). Since P

is a self-generator, IP = V and so P/IP is discrete.

(4.8.5 ) 
Follows easily from the arguments above.
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(4.8.6 ) T he a, P : Mod-Rr is left adjoint to the
f unctor ChomR(P, - ) : Mod-Aa . Consequently it is right exact
and preserves colimits.

This comes from 3.3 and 3.4.

(4.8.7) ChomR(P, -) commutes with direct sums in Mod-Ri.
Since PR is t.f.g. the result is almost obvious.

Consider, for N E Mod-Aa and M E Mod-R1’, the morphisms of 3.5

(4.8.8) I f is a family in such is an iso-

morphism for all 2 and M = + Ma, then f3M is an isomorphism too.
k

It suffices to consider the chain of isomorphisms

(where the last morphism is EB the resulting morphism is easily
seen to be f3M. 

Â. 
~

(4.8.9) If TT E then is an isomorphism. Therefore, if 
denotes the direct sum of all PjV as V runs through ,~ (P), then 1-’R is a
generactor of Mod-Rt such that, if X is any set and M = T(x), then f3M
is an isomorphism.

From the fact that PR is quasi-projective it follows that

Chom, (P, Hence the first statement follows from
the proof of 4.8.4, while the second one is an application of 4.8.8 and
the fact that P is a t-generator.

(4.8.10 ) ~3M is an isomorphism for all M E Mod-R,.
Let .M E there exists a r-resolution of M, i.e. an exact

sequence of the form

From this (and applying 4.7) we get the following commutative dia-
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gram with exact rows

and is an isomorphism by the Five Lemma.

(4.8.11 ) aN is an isomorphism for all N E mod-A«.
Let V E Y(P): from the isomorphisms

one deduces easily that is an isomorphism. Moreover, denoting
by d ~ the direct sum of all as V runs through Y(P), it is clear
that d is a generator of Mod-Aa, such that, if X is a set and N = 
aN is an isomorphism. By reasoning as in 4.8.10 we get the con-
clusion. 0

We are now in the position to state our main

4.9 THEOREM. Let (A, (1) and (R, 7:) be complete linearly topologized
rings and (F: G : a similarity.
. Then there exists a 7:-progenerator PR such that:

(a) (A, (1) is topologically isomorphic to ChomR (P, P) endowed with
the topology of uni f orm convergence;

(b) G  OhomR (P, - ) ;
(c) 

Conversely, let (R, 7:) be a linearly topologized ring, PR a 7:-pro-
generator and (A, a) = Cendu (PR) : then we have the similarity

5. Quasiprogenerators.

5.1 DEFINITION. Let we denote by
(i) Gen (PR) the full su.bcategory of Mod-R generated by the set
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V E .~ (P)~, i.e. the smallest full subcategory of Mod-R contain-
ing each PjV and closed under direct sums and homo-

morphic images;

(ii) Gen (PR) the smallest full subcategory of Mod-B containing
Gen (PR) and closed under submodules.

If M e LTC-R we denote by TrM (P) the submodule of if generated
by Im f as f E Chom., (P, .~).

The P-topoiogy ip on jR is the linear topology having as a local
basis the set of right ideals J of .R such that R/J E Gen (PR).

5.2 REMARKS. If P is discrete, then these notations coincide with
those of Fuller in [3]. It is clear that P is a topological module over
(R, 7:p).

5.3 LEMMA. If PR is a quasiprogenerator then Gen (PR) = Gen (PR).

PROOF. The proof runs exactly as that of Lemma 2.2 in [3]. The
only thing to show is that P generates all the submodules of PIV,
for V E Y(P). Assume then that Y E ~(P) and that W &#x3E; V ; if w E W
then there exists a net (w,) in Trw (P) convergent to w (recall that P
is a self-generator). But then there exists 6 such that 
so, that w + V’ = wa --~- TT E Trplv(P). D

5.4 THEOREM. Let PR E and put (A, a) == Cendu (PR). The

following conditions are equivalent :
(a) Chom(P, - ) is an equivalenee between Gen (PR) and Mod-Aa;
(b) PR is a quasiprogenerator.

If these conditions are fulfilled then the inverse equivalence is - ~~ P
(cf. [3, Theorem 2.6]).

PROOF. If (J~ i,) denotes the Hausdorff competion of (.R, 7:p) then
it is clear by 5.3 that PR is a quasiprogenerator if and only if it is
a tP-progenerator. The second part of the theorem comes then di-
rectly from 4.9. C7

In analogy with 3 we want to prove a density theorem for quasi-
progerators. From now on PR will be a quasiprogenerator and (A, 6) _
- Cend" (PR).
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5.5 LEMMA. Let n E N and give pn the product topology. If U is
an open submodule of pn and we put J(U) = {f E ChomR (P, 

U}, then = U; in other words PR generates (topologically)
all open -gubmo&#x26;7uleg o f Pn.

PROOF. It is clear that ChomR (P, Pn) = An with the product
topology and that is open in An. Consider the canonical morphisms

the first one is injective, while the second is a topological isomorphism
(it is defined like the f in the proof of 4.5).

Since E Mod-Aa, the Hausdorff completion of 
is discrete, so is open (and contained in U). We

have the canonical epimorphism h: if we apply
ChomR (P, - ) and recall that P = AA P we get an
epimorphism Anj3(0) - Chom, (P, pn¡U) which is easily seen to be 99.
Thus h is an isomorphism P = U. 0

5.6 Consider the ring B = Cend (AP) of all continuous A-endo-

morphisms of P and on B the topology of pointwise convergence,
which has as a local basis the family of sets of the form

for n E N, Xi E P and V E Y(P). Let y : 1~ --~ B be the canonical mor-
phism : if we give .R the P-topology íp, then y is continuous. Indeed
if x E P and we have that 1jJ-1(W(X; V)) _ ( Y : x) , and this
is an open ideal of rp). It is obvious then that 1jJ(R) is dense in B
if and only if P satisfies the following condition

(D) for all b E B, for each choice of zi, P and for all

there exists r E R such for i = 1, ... , n, xZ r E xi b + V.

We now see that if PR is a quasiprogenerator then it satisfies con-
dition (D). 

____

Let U be an open submodule of Pn : by 5.5y ~(~)jP = U. Hence
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Now, if and U = Yn (for we have

and we are done.

7 DENSITY THEOREM FOR QUASIPROGENERATORS..Let PR E LTC-R
be a quasiprogenerator, (A, (j) = Cend’ (PR), B = Cend and give B
the o f point2vise convergence. The canonical 

is continuous, open on its image and y(R) is dense in (B, fl).

PROOF. We have only to prove that y is open on its image: let J
be an open right ideal of Since .R/J E Gen (PR) = Gen (PR), there
are an open submodule Y’ of PR and an epimorphism f : (PjV)n - BIT.

Assume that PR is strictly linearly compact (i.e. topologically
artinian and complete) and that is complete: then (R, zp) is

strictly linearly compact too and so y(R) = B. Hence the topology
induced on B by 1~ is strictly linearly compact and therefore minimal,
so that it coincides with the topology of pointwise convergence, which
is Hausdorff. (For a detailed treatment of strictly linearly compact
modules and rings see e.g. [4]).

5.8 COROLLARY. Let PR be a strictly linearly compact quasiprogener-
ator, ~p the P-topology on R and A = Cend (PR). Then the Hausdorff
completion of (R, íp) is B = ChomA (P, P) with the topology of point-
wise convergence.

6. Examples.

The theory developed so far is very similar to that of 3. We shall
now see that we have reached an effective generalization by giving
some examples.
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Example of a non discrete quasiprogenerator.
Let R be a ring, (Sy)YEr a family of pairwise non-isomorphic simple

R-modules and PR the product of all Sv, endowed with the product
topology of the discrete topologies. Moreover let G = EB B’Y’ with

v

the relative topology: G is dense in P. Finally set (A, 0-) _
= Choml (P, P) and, for all y E I ; Dv = End (Sv);’ we ’put on each
Dv the discrete topology. 

’

6.1 THEOREM. With the notations as above, PR is a quasiprogenerator,
which is not discrete if 1~ is infinite.

PROOF. (a) (A, a) is topologically isomorphic to fl DY.
y

For all we have that Hom,, (G, ~’Y) = ChomR (G, Hence
we have the algebraic isomorphisms

, its action on x = (xv)yEr E P is given =

A local basis of P is the family of sets

as F runs through the finite subsets of 1~. Then, identifying .A with
fl Dv, one has
y

so that the topology of uniform convergence coincides with the product
topology of the discrete topologies.

(b) PR is t. f .g. ; any open submodule of PR is of the form W(F),
for some f inite F of r.

Let V E Y(P): there exists F 9 .,lr’, finite, such that V&#x3E; W (.F’) . Then
we have an epimorphism PI V, which splits, since P/yY(.F’) 

. The conclusion is now obvious.
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(c) PR is topologically quasi-projective.
Let .F be a finite subset of rand f : P --~ be a continuous

morphism. Then by ( b ) the kernel of f is of the form W (.F" ) for some
c .1~, finite. Hence we can consider t’ : fl fl Sv: extending

YEF’ yEF

this by zero, we obtain the desired g : P --~ P.

(d) PR is a sel f -generator.
Obvious from (a) and (b).
If the set 1~’ is not finite, then the topology on .r is not discrete. 0

Example of a non discrete 7:-progenerator.

6.2 THEOREM. Let (R, 7:) be a complete linearly topologized ring
and X a non empty set; consider the direct product Rx with the product
topology. Then Rx is a r-progenerator.

PROOF. (a) RX is topologically finitely generated.
A local basis for is the set of submodules of the form fl lx

x EX

where Ix E for all x E .X and Ire _ .R for all but a finite number of x
in X. Take to be one of them: if 1~’ _ {x E X : R~
then RXJV = EÐ RII.,, which is finitely generated.

~’

(b) RX is a r-generator.
Let f : M - N be a non zero morphism in Mod-Rr. Fix 

with f (m) ~ 0 and y e X: we can define a continuous morphism
by

and f g ~ 0.

(c) RX is r-projective.
For y E X, e1l = (r.)..x where rx = 0 y and r1l = 1.

Suppose we are given an epimorphism f : M - N in and
a continuous morphism g : N. The kernel of g is open so that it
contains a submodule of the form of the type mentioned

above. Let F = Ix ~ I~~ : then F is finite and for we

have V and g(e.,) = 0. If we put nx = these are almost all
zero.
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(where we sum only the finitely many non zero terms), since

which is open in It is easy to see that f h and g coincide on the
direct sum R(.x), and this one is dense in RX.

(d) RX is quasiprojective.
Let V be an open submodule of n: the projection

and a continuous morphism; for take mx E Rx
such that = f (ex), with the condition that mx = 0 whenever

/(~)=0: by reasoning as above we can see that the set 
is finite.

Define by = mxr : thus we have the codiagonal
morphism g: R(x) - which is continuous if we endow R(x) with
the relative topology of RX, as it is easily proved by taking into ac-
count the fact that almost all the gx’s are zero. Hence there is a

unique extension of 9 to a continuous endomorphism g of It is

plain that g coincides with f on R(x) and so ng = f .
(e) RX is a 

Let V be an open submodule of I~g and let fl I., be an open basic
xEg

neighbourhood of zero of the type mentioned above; if 14’ = 

then F is finite. Let X(F) denote the directed set of all finite
subsets of X which contain F.

If Y is a finite subset of X, we may define a continuous endo-
morphism RX - RX by

where sx = rx if x E Y and sx = 0 if x 0 Y. It is clear that for all
Y E X(F) we have fy( )  V, so that any element r of V is the limit in V
of the net 
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Now we are done, because it is clear that any element of V,
having at most finitely many non zero components, y belongs to the
image of a continuous morphism V. 0

’1. Commutative rings.

DEFINITION. (a) Let R be a ring and ~, ~ right linear topologies
on it: we say that i and i’ are equivalent if any right ideal of R closed
for one topology is closed also for the other.

(b) If (R, r) and (A, (1) are linearly topologized rings, we say
that r and c are equivalent if R and A are isomorphic and and c
become equivalent topologies when we identify R and A.

7.1 THEOREM. Let (R, r) and (A, or) be linearly topologized rings
and assume that they are commutative, complete, and similar: then

(i) R and A are (algebraically) isomorphic;

(it) r and 6 are equivalent topologies.

PROOF. Let PR be the r-progenerator which gives the similarity:
there exists an injective ring morphism y : A. We
want to show that for any open ideal I of A, is closed in 1~;
assume then that 1== J(V), with 

which is closed in R.

By the commutativity of A there is an injective ring morphism
q : A - Cend (QA) = 1~, where Q = ChomR (P, (R, 7:)); it is not dif-
ficult to convince oneself that V99 = 1A and = 1R . 0

7.2 COROLLARY. Let (R, 7:) and (A, or) be as in 7.1. Assume also
that 7: and a are minimal. Then (R, 7:) and (A, 0") are topologically iso-
morphic. This is in particular true when they are strictly linearly com-
pact rings.



246

REFERENCES

[1] F. W. ANDERSON - K. R. FULLER, Rings and Categories of Modules, Sprin-
ger, Berlin, Heidelberg, New York, 1974.

[2] L. FUCHS, Infinite Abelian Groups, Academic Press, New York, 1970.
[3] K. R. FULLER, Density and Equivalence, J. Algebra, 29 (1974), pp. 528-550.
[4] H. LEPTIN, Linear Kompakten Moduln und Ringe, Math. Z., 62 (1955),

pp. 241-267. 

[5] R. N. S. MACDONALD, Representable dualities between finitely closed sub-

categories of modules, Can. J. Math., 31 (1979), pp. 465-475.
[6] K. MORITA, Duality for modules and its applications to the theory of rings

with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 6

(1958), pp. 85-142.

Manoscritto pervenuto in redazione il 13 aprile 1987.


