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Generalized Morita Equivalence
for Linearly Topologized Rings.

E. GREGORIO (*)

0. Introduction.

Since the appearance of Morita theory on equivalences between
categories of modules, many authors have tried to generalize it and
to characterize equivalences between subcategories of modules with
suitable closure properties. The most important paper on the sub-
ject is Fuller’s [3] in which importance was given to topological con-
cepts, namely to the connections between the theory of density and
that of equivalence.

In this paper we generalize Morita theory to a similar one on
equivalences between categories of modules associated to linearly
topologized rings by proving results which extend Morita’s and Fuller’s.

It should be noted that a parallel generalization of Morita duality
already exists in the literature.

The most important result, on which are based all the others, is
exposed in Section 1: it is a theorem on representation of equivalences
between categories of modules; this representation is obtained by a
limit process inspired by MacDonald’s paper [5].

In section 2 we apply this theorem to the equivalences between
the categories of discrete modules over linearly topologized rings,
showing that these equivalences are always induced by a suitable
bimodule; recall that a right linearly topologized ring (B, 7) is a
topological ring having a local basis (i.e. a basis of neighborhoods of

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata,
Via Belzoni 7 - 35131 Padova, Italy.
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zero) consisting of right ideals and that a module M € Mod-R is a
discrete module over (R, 7) if and only if Anng(x) € - (the filter of
all r-open right ideals of R) for all x € M. We denote by Mod-R: the
Grothendieck category of all discrete modules over (R, r). The de-
finition of linearly topologized module is obvious.

Section 3 is devoted to the introduction of a useful functor between
the categories of complete linearly topologized modules over a linearly
topologized ring induced by a bimodule, which has properties similar
to those of the tensor product.

In Section 4 the modules which induce equivalences between the
categories of discrete modules over linearly topologized rings are
characterized; these modules are studied more deeply in Section 5,
‘where we prove also a density theorem which generalizes Fuller’s den-
gity theorem in [3].

In Section 6 we give some examples to prove that we have reached
an effective generalization of the previous theories.

Finally, in Section 7 we specialize the results to the case of com-
mutative rings.

If (R, 7) is a right linearly topologized ring then denote by LTC-R-
the category of all complete linearly topologized modules over (R, 7);
if 7 is the discrete topology, then put LTC-E,; = LTC-E. All topological
modules and rings considered in this paper are, unless the contrary
is stated (e.g. in the definition of tensor product), Hausdorff. Moreover
we shall be concerned only with right linearly topologized rings and
right modules, with a few exceptions in Section 5. Morphisms of right
modules will be written on the left (and morphisms of left modules
on the right). Any subcategory of a given category will be closed
under isomorphisms. Given two topological modules M, and N, we
denote by Chomg(M, N) the group of all continuous R-morphisms
from M to N and by Cend (Mg) the ring of all continuous endo-
morphisms of Mp.

1. Equivalences between finitely closed categories of modules.

1.1. Let A be a ring and D, a finitely closed subcategory of Mod-A,
i.e. full and closed with respect to finite direct sums submodules and
homomorphic images. If F, is the set of those right ideals of 4 such
that A/I € D4, then it is clear that F, is a filter of ideals in A and
defines a linear topology on A (let us denote it by o) which is not,
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in general, Hausdorff. It is also clear that D, is a subcategory of
Mod-4,. The Hausdorff completion of (4, ) is 4 zllig_l AL
€Fa

1.2. Let us fix, for the rest of Section 1, two rings A and R and
two finitely closed subecategories D, and G of Mod-4 and Mod-R
respectively. We shall also assume that an equivalence

(F: g)A%gR’ G: gR")ﬂ)A)

is given. We denote by F, and F; the filters of (right) ideals (and by ¢
and 7 the associated topologies) defined on 4 and R by D, and G;.

LEMMA ([cf. [5, Lemma 1]). Let Pp= 11m F(A/I), endowed with

the limit topology of the discrete topologies on F(A/I Then P e LTC-R,
and there exists a canonical ring morphism

w: A — Chomg (P, P) .
ProoF. For I €&, and a ac A define
Aoy Al(I:a) — Al

by A, (¢4 (I:a)) = ax 4 I (where (I:a) = {xcA: avel}):i,,is a
morphism, hence there exists a unique morphism y(a): P — P which
makes commutative all the diagrams of the form

P y(a) 3 P

F(A/I:a)) XD s P(A[T)

as Ie€J, (here the vertical arrows are the canonical projections);
y(a) is clearly continuous and one can easily verify that y is a ring
morphism. O

In this way P becomes on A-R-bimodule; moreover Pye LTC-E:
and A4 acts on Py by continuous endomorphisms. If we endow the
modules in G, with the discrete topology, then we can consider the
functor Chomg (P, —): Sz — Mod-4 defined in the obvious way.
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1.3 REPRESENTATION THEOREM (cf. [5, Lemma 2]). There is a
natural isomorphism

p: @ — Chomg (P, —) .
Proor. If M € G we can consider the chain of (group) isomorphisms

GM ~ colim Anngy (I) ~ colim Hom, (4/I, GM) ~
= colim Homg (F(4/I), M)

(here and in all this proof limits and colimits are taken with I running
through F,); let sy: GM — colim Hom, (F(A/I), M) be their compo-
sition; denote by

b;: Homg (F(A[I), M)— colim Homg (F(A/I), M), 1;: P — F(A[I)

the canonical morphisms of colimit and limit respectively. There is
a unique (group) morphism

ty: colim Homy (F(A/[I), M) — Hom; (P, M)

such that ¢,b; = Homg (I;, M), for any I€ F,. It follows from [2,
p. b7] that ty is injective: indeed I, is surjective so that Homy (I,, M)
is injective for all I € &,.

It is clear that a morphism f: P — M is continuous if and only
if it factors through [;, for some I. So it follows plainly that
Chomj (P, M)<Imt,; it remains to prove the converse inequality. If
g € colim Homy, (F(A/I), M), there are I € §, and h € Homg(F(A/[I), M)
such that g = b,(h); hence

tul(g) = tuby(h) = Homg(l;, M)(h) = ki, .

Finally, if we put uwm= tySu: GM — Chom, (P, M), we obtain a
natural isomorphism u: G — Chomg (P, —), since it is easy to see that
pu i8 @ morphism of A4-modules. O

We can of course work as before on F, getting Q = }159 G(R|J),

a ring morphism ¢: R — Chom, (@, @) and a natural isomorphism
v: F — Chom, (@, —). Now we look for a relation between Py and Q.
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Denote by (R, #) and (4, §) the Hausdorff completions of (R, 7) and
(4, 6) respectively.

1.4 PROPOSITION. There exist two canonical isomorphisms
Q ~ Chom, (P, (R, %)) and P = Chom,(Q, (4,3)).

Proor. From the definitions and 1.3 we get (limits are taken for
J e Fp):

Q ~1lim G(R/J) ~lim Chomy (P, R/J) .
We have the canonical morphisms
k;: lim Chomg (P, R/J) — Chomg (P, R/[J)
and ¢,: R — R/J, as J € . There is a unique morphism
u: Chomy (P, (R, %)) — lim Chom, (P, R/J)

such that k,4 = Chomy (P, ¢;), for all J € F. ]':et us see that u is
an isomorphism. If u(f) = 0 for feChomg (P, (R, 7)), then

0 = k;u(f) = Chomg (P, ¢;)(f) = ¢;f

for all J € F: hence Imf< [ Kere¢,= 0, so that f= 0. On the

JeF g
other hand, if » € lim Chomg (P, E/J), then by the properties of limit
there exists g € Chomg (P, R, £)) such that ¢,g = k(n), for all J € Fz,
and so u(g) =#%. 0O

2. Linearly topologized rings.

2.1 DEFINITION. Let (4, o) and (R, 7) be (right) linearly topologized
rings. We say that they are similar if there exists an equivalence

(£': Mod-As — Mod-R:, G: Mod-R; — Mod-A4y,) .
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In this case we say also that the pair (F, G) is a similarity between
(4, 0) and (R, 7).
The following fact is well known.

2.2 PROPOSITION. Any linearly topologized ring is similar to its
Hausdorff completion.

An obvious application of 1.3 gives the following

2.3 THEOREM. Let (F, @) be a similarity between (A, o) and (R, 7).
Then there exist modules Py € LTC-R,; and @, € LTC-As and morphisms
yp: A — Chomg (P, P) and ¢: R — Chom, (@, Q) in such a way that

F ~ Chom,(@,—), G =~ Chomg(P,—).

At this moment we have «represented » the similarities: in the
sequel we shall characterize all bimodules ,Pr such that the functor
Chomg (P, —) defines a similarity between two linearly topologized
rings. We need the following

2.4. DEFINITION. Let (R, 7) be a ring and P, a module, both
linearly topologized; denote by F(Pgz) the set of open submodules
of P. We say that P is:

(i) topologically finitely generated (t.f.g.) if, for any V € F(Pj),
the quotient P/V is finitely generated;

(ii) topologically quasi-projective if, given any V e F(Pp) and
any continuous morphism f: P — P/V (where P/V has the discrete
topology), there exists a continuous R-endomorphism g: P — P such
that for all p e P we have

f(p) = g9(p) + V;

(iii) a self-generator if, for any V € F(Pg), the closure in P of
Z(V)= Y {Imf| fe Chomg (P, V)} coincides with V;

(iv) a 7-generator if it is a topological module over (R, r) and,
for any non-zero morphism f: M — N in Mod-R, there is a continuous
morphism ¢: P — M such that fg=£0.

We say that Py is

(1) a quasiprogenerator if it satisfies (i), (ii), (iii) and is complete;
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(2) a t-progenerator if it is a quasiprogenerator and a t-generator.

REMARKS. Let Pr be a discrete module.
() Pr is a quasiprogenerator if and only if it is a quasi-
progenerator in the sense of Fuller [3].
(b) Let T = d be the discrete topology on RE; we shall prove that
Pr is a d-progenerator if and only if it is a progenerator in the sense
of Morita theory.

3. Chom functors and tensor products.

3.1. Let Pr and My be objects in LTC-R.: we can endow the
group Chomg (P, M) with the topology of uniform convergence, which
has as a local basis the set of subgroups of the form

3(V) = {f € Chomg (P, M): f(P)< V}

as V runs through the family F(M) of all open submodules of M.
We shall denote by Chomyj, (P, M) the group of continuous R-morphisms
from P to M endowed with the topology of uniform convergence.
It is almost trivial to see that Chomj (P, M) is complete.

Consider now the ring A = Chom;, (P, P), again with the topology o
of uniform convergence: one can easily prove that this is indeed a
ring topology and that Chom} (P, M) € LTC-4,,forall M € LTC-E-.

We have so defined a functor

Chom?, (P, —): LTC-R; - LTC-A4s

(the action on morphisms being the obvious one), which maps Mod-R-
into Mod-A4s.

3.2. In this Section we shall fix two complete linearly topologized
rings (4, o) and (R, ) and a bimodule ,P; such that
(1) Pre LTC-R;
(2) P is faithful on both sides;

- (3) A acts on P, by continuous morphisms and the topology
induced on A4 by the topology of uniform convergence on Cend (Pg) =
= Chomg (P, P) is coarser than o.
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Under these hypotheses, the functor Chomz(P, —) is again a functor
LTC-R; — LTC-44, which maps Mod-E. into Mod-4,.

3.3. Let NeLTC-4s,: we can endow N ®, P with the greatest
linear topology that makes continuous all morphisms P — N®, P
of the form

NR:pr>n@p

for » € N. In this way N Q, P becomes a linearly topologized module
over (R, 7), though in general it is not Hausdorff; a local basis for
it is the set of R-submodules U of N ®, P such that

n® 1 (U)={peP:nRpe U}

is open for all ne N.

DEFINITION. N &), P is the Hausdorff completion of N ®, P. We
shall denote by ¢y the canonical morphism N ®, P — N @A P.

PROPOSITION. — &), P is a functor LTC-As — LTC-R;.

ProoF. It suffices to define the action of morphism f: M — N.
Consider f@,P: M®4 P - N®,P: this is continuous and so
there exists a unique continuous morphism g which makes the diagram

MR,PI>N®,P
cul CNi
MR, P% N, P

commute. Sinee this is clearly functorial, we get the desired morphism
by putting O, P=g¢. 0O

3.4. Let Ne LT(C-A, M € LTC-R and f € Hom, (N, Chomg (P, M)):
then

f(n®p) = f(n)(p) (neN,peP)

defines a continuous morphism f': NQ, P — M: indeed, if V is an
open submodule of M and ne N, then n®1(f~YV)) = f(n)"%V),
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and this is open in P by assumption. Hence there is & unique mor-
phism {(f): N¥4 P - M making commutative the diagram

N®4P
chN
NP i
and we have obtained a group morphism
¢: Hom, (N, Chomg (P, M)) — Chom, (NQ, P, M)
natural in N and M.

3.5. We want to see that the morphism ¢ of 3.4 is an isomorphism:
if g € Chom, (N ®4 P, M), then we can define ¢': N — Hom; (P, M) by

g'(n)(p) = g(ex(n ®P));

for all n € N, the map g¢'(n) is continuous: if V e F(M), we have

g'(n)=(V) = n®@* ((gew) (V)

and this is open by assumption.
We now state a sufficient condition to assure that ( is an iso-
morphism from Chom, (N, Chom% (P, M)) onto Chomz (N®, P, M).

DEFINITION. Let U be an open submodule of N®,P: we put
NU]l={neN:VpeP,n®peU}.

We denote by B, the class consisting of the modules N € LTC-4,
such that N[U] is open for any Ue F(N®,P). We have that
Mod-4,C B, and that (4, o) € B,, since AR, P is topologically iso-
morphic to P.

3.6. Let N € LTC-4s and M € LTC-R,: consider the two natural
morphisms

ay: N — Chom? (P, N&), P)
Bu: Chom? (P, M), P — M
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defined for ne N, fe Chom, (P, M) = N’ and pe P by

ax(n)(p) = ex(n @ p)
ﬂM(GN'(f®p)) = f(p) .

PROPOSITION. (a) P s continuous for all M € LTC-R:;
(b) ay is continuous for all N € $,;
(¢) if Ne Bp and M = NRQ, P, then By is surjective.

PROOF. (a) Py is just the unique continuous morphism that makes
commutative the diagram

Chom¥ (P, M)®, P —2» M

|_—

Chomy (P, M)&, P

where ¢, is the valuation (it is easily seen to be continuous).

(b) Trivial.

(¢) Let NeB,, M=NQ,P and f=Pu(ax®sP): M — M.
If ne N and pe P we have clearly f(cy(n® p)) = ex(n® p), so that
f=1,. O

3.7. Put @ = Chom}(P, (R, 7)): Q,€ LTC-4; and R acts con-
tinuously on . Assume that the bimodule @, satisfies the same
hypotheses as P with 4 and R interchanged; then we can define
the functor

— ®2Q: LTC-R; — LTC-4, .
PROPOSITION. There exist two nmatural morphisms
7 lpzc.r, —> Chomy}, (@, Chomy, (P, —))

1. —&®zQ — Chomy (P, —) .

ProoF. For M € LTC-R;, me M and ¢q € Q we define a continuous
morphism [m, q]:P — M by

[m, q1(p) = mq(p);
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it is easy to see that the mapping m +— [m,—] is a continuous
R-morphism from M to Chom} (@, Chomj (P, M)): this we take as y,.
In order to find y we observe that fy: M ®r@ — Chomy (P, M) de-
fined by fu(m® q) = [m, q] is a continuous morphism, so that there
is a unique yxu such that yyew=fuy. O

4. Similarities between linearly topologized rings.

= We shall divide this Section in two parts: in the first one we shall
prove that if (¥F: Mod-4s; — Mod-R:, G: Mod-R;— Mod-4,) is a simi-
larity between the two complete linearly topologized rings (4, ¢) and
(R, 7) and ,Pg is the bimodule of 2.3, then Py is a tv-progenerator
and (4, o) is topologically isomorphic to Chomp (P, P) with the
topology of uniform convergence.

The second part will be concerned with the inverse of the above
result, namely that if we are given a complete linearly topologized
ring (R, r) and a t-progenerator P, then the functor Chomg (P, —)
defines an equivalence between Mod-R. and Mod-A4,, where (4, o)
is the ring Chomg (P, P) with the topology of uniform convergence.

Part I.

In this part we assume that we are given two complete linearly
topologized rings (4, 0) and (R, ) and a similarity between them,
(#: Mod-4s; - Mod-R., G: Mod-R; — Mod-4,). With the notations of
2.3 we have

G ~ Chomg (P,—), F ~ Chom,(Q,—)

where @ = Chom; (P, (R, 7)) and P = Chom, (@, (4, ¢)) algebraic-
ally (1.4).

4.1 LEMMA. If the notations are as before, then @ ~ Chomj, (P, (R, 7))
and P ~ Chomj (@, (4, 0)).

ProoF. Obviously we can prove this lemma only for .

All the limits in this proof will be taken for J e F-.

By the completeness of (R, v) we have that B ~lim R/J: if lim R/J
is identified as usual with a submodule of the direct product of the
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R|J, then, if I is an open right ideal of (R, z), I is identified with
{(ry): r,= 0} = {f elim R|J: 7,(f) = 0}, where =, is the canonical pro-
jection from the direct product.

A local basis for Chomj (P, (R, 7)) is the set of submodules of
the form 3(I) as I € F-.

Identify @, as usual, with a submodule of the direct product

Chomyg, (P, R/J); then an element of @ is a family f = (f,: P— R/J)
JEF =
of morphisms; if h; denotes the projection from the product, &,(f) = f,

and a local basis for @ is the set of submodules of the form @ N ker &;.

If ¢: @ — Chomy (P,lim RE/J) is the algebraic isomorphism given
in 1.4, then, for g: P — R, ¢~X(g) = (7,9); if g€ J(I), then ¢~(g) is
in ker k;. Conversely, if f = (f;)€ker h; and p e P, then ¢(f)(p) =
(f/(p)) and this belongs to I since f,(p) =0. O

4.2 LEMMA. A is algebraically isomorphic to Chomg (P, P) and o
48 fimer than the topology of wuniform convergence.

ProoF. Recalling that A is complete, we get the isomorphisms
A ~1im A[I =~ lim GF(A[I) = lim Chom (P, F(A/I))

and we get the conclusion by using arguments similar to those of 1.4
(limits are taken for I € Fg).

Recall that P is defined as lim F(A/I); denote by I;: P — F(A/[I)
the canonical map of the limit. If V € &(P) then there is I € F, such
that V>Kerl; and J(V)>J(Ker!l;). On the other hand it is plain
that I<J(Kerl,), since, if €I and peP, then (I:4)=A and
L(ip) = F(A,)lw:a(p) = 0 (Ar:: A|(I:4) - AJI is defined in 1.2).
Hence J(V)>I and is open with respect to ¢. O

4.3. Since P ~ Chomj (9, (4, 0)), there exists by 3.7 a na,tj\ural
morphism y: —®,4 P — Chom} (@, —). For Ne$B, put M = N®,P
and (ay)y = Chom} (@, ay); then

(ox)s0xn: N&4 P — Chom (@, Chomy (P, M));
if neN, peP and ¢t = ey(n® p) we have

(otw)go gn(t) = (“N)*([’"/; P]) = ayo[n, p]
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and, for g @, € P,

(aeyo[n, P1)(9) () = aw(np(q))(®) = ex(np(q) ® ) = ex(n @ p(g)®) .

If we identify @, with Chomj (P, (R, 7)) then

yult) (@) (@) = [t, ql(x) = tq(2) = ex(n @ pq()) .

But the elements pg(r)e P and p(q)x € P = Chom} (@, 4) are the
same with respect to the identifications we made: indeed the iso-
morphism P — Chom? (@, 4) is defined by p > §, where p(q) is the
only element in 4 such that for all x e P

(B(9)) = = pe(=) .

Hence (ay)ioyy is an isomorphism and yxy is injective.

From the above it follows immediately that if N is discrete, then
also N®, P is. Indeed x~ i8 @ continuous injective morphism from
N®, P into Chom? (Q, N) which is discrete.

4.4 THEOREM. F is naturally isomorphic to —@A P.

Proor. Since Mod-4, is contained in $,, it follows from 3.4
and 3.5 that — ®,P is a left adjoint of Chomg (P,—): Mod-R; —
— Mod-A4s; by the uniqueness of adjoints we get the conclusion. O

4.5 CoROLLARY. If I€ &, then
F(A[I) = P|IP

where TP is the closure of IP in P.

Proor. It is well known that A/T®,P ~ P/IP, by means of
fia+I)®pr>ap +IP (ac A,peP). Let us verify that f is a
homeomorphism, if we endow P/IP with the quotient topology.

(i) If Ve F(P) and V>IP then, for any a € A we have

(0 + )@Y fWV/IP)) ={peP:ape V}.
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(ii) Let Ue F(A/I®4P): then V = (1 4+ I)®~* (U) € F(P); but
p €V implies p € f(U), hence V>f(U), so that f is open.

The Hausdorff space associated to P/IP is P/IP; moreover A/IX), P
is the Hausdorff completion of P/TP and so there exists a topological
imbedding P/IP -~ A[I®,P. By 4.4, A/I@AP is discrete, so that
the domain is discrete too, hence complete. O

4.6 THEOREM. P is a t-progenerator and (A, o) = Chomj} (P, P).

ProoF. Let V € F(P): then ¥V >XKerl; for some open right ideal I
of A (where P= Illgl F(A[I) and, for I € F,, I, is the canonical map
€ o

of the limit). Then there is an epimorphism F(A/I) - P|V and, by
applying G, we get an epimorphism A/I — G(P|V); hence V is of
the form Kerl,, for some open ideal J of (4, o).

(i) Pg is topologically finitely generated. It is sufficient to prove
that F(A/I) is finitely generated for all open right ideals I of (4, o);
but this follows from the fact that F has a right adjoint, so that it
preserves colimits.

(ii) Py s topologically quasi-projective. If V € §(P) then we can
consider PV = F(A[I); if f: P — P|V is a continuous morphism
then we have f, = Chomj (P, f):Chomj (P, P) - A[I, and f.(1)=
= @ + I for some ac 4.

(iii) Pg s a self-generator. Let V € F(P): then P[V = F(A[I)
and IP<V, so that also IP<V. Then we have

P|V >~ F(A]I) ~ A[IQ, P ~ P[IP - P|V

and the composition is the identity, so that IP = V.

(iv) Pg s a t-generator. Indeed Pj is clearly a module over R:;
if f is a non-zero morphism in Mod-R. then G(f) %0 in Mod-4,; so
that there are an open right ideal I in (4, o) and a morphism ¢ with
domain A/I such that G(f)g 0.

It remains to see that ¢ is coarser than the topology of uniform
convergence. Let I be an open ideal in (4, o): then I<J(IP) and
we have

Chomy, (P, PTP) = G(A[I®, P) =~ GF(A[I) ~ A|I
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and a monomorphism of A/J(IP) into Chomj (P, P/TP). Therefore
= J(IP) is open in the topology of uniform convergence. O

Part II1.

In this part of Section 4 we fix a linearly topologized ring (R, 7).
First we need a definition and a lemma.

DEFINITION. Let Pre LTC-R. and M € Mod-R: we say that Py is
(topologically) M-projective if for all submodules L of M; and aill
continuous morphisms f: P — M/L there exists a continuous morphism
g: P — M such that the following diagram is commutative (M and
M|L are endowed with the discrete topology; the row is the projection)

Sl
M- M|L -0
We denote by J(Pz) the class of those R-modules M such that P is
M-projective.
4.7 LEMMA. §(Pg) is closed under
(i) homomorphic images;
(ii) submodules;
(iii) fimite direct sums.
If Py is t.f.g. then (Pg) is also closed under infinite direct sums.

The proof is the same as the proof of Proposition 16.12 in [1].

4.8 THEOREM. If Pj is a t-progenerator, A = Chomg (P, P) and ¢
s the topology of uniform convergence on A, then the pair

(Chomy, (P, —), — Q4 P)

18 an equivalence between Mod-R. and Mod-A,.
We divide the proof into several steps.

(4.8.1) DEFINITION. G, is the class consisting of those modules N
in Mod-4; such that N®, P is discrete.



236 E. Gregorio

If N € Mod-A4,, then we denote by K(N) the kernel of the topology
of N ®,P:itis obvious that N € G, iff K(N) is open in N ®, P.

(4.8.2) G, is closed with respect to direct sums.
Let (Ni);cs be a family in G, and N = @.N;.I then N®,P ~

~ @ (N2 ®4P) algebraically, so we can identify them.

Let © = (#1)3c4€ @ Na: if we take for all Ae A an open submo-
dule U of N®, P, then

@1 (z Ul) ={peP:m®pe UV} = 22QXT1)
f

Aed

which is open in P, because F(P) is closed under finite intersections
and 2, ®~YU,) = P for almost all A. This shows that any submodule
of N®, P of the form > U, (U open in Ny®, P) is open. Let now V

A
be an open submodule of N®,P: put Vi=V N (N2Q4P) and
take nie N;. We have

Mm@ (Vi) ={peP:m@peVi}={peP:mRpe V}=mR YY)

(na is considered first in N, and then in N). Hence V contains a sub-
module of the form Y Ui, with each U, open in N, &, P. Therefore

A
K(N)>3> K(N;) and N is in G,.
i

(4.8.3) G, is closed with respect to homomorphic images.

Let N € G, and L be a submodule of N,. If n: N — N/L is the
canonical projection and f = 7 ®, P, one can easily verify that f is
open and surjective and that the open submodules of N/L&, P are
precisely those of the form f(U), with U open in N ®,.P and U>Xer f.
Let ne N:then (n + L)®@ Y K(N/L))>n@ YK(N)).

(4.8.4) T, contains a family of generators of Mod-As.

It suffices to show that if V € F(P) and I = J(V), then A/I € G,:
The canonical isomorphism A4/I®,P — P/IP is a homeomorphism
and the Hausdorff space associated to P/IP is P/IP (see 4.5). Since P
is a self-generator, TP = V and so P/TP is discrete.

(4.8.5) G, = Mod-4,.
Follows easily from the arguments above.
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(4.8.6) The functor — &, P: Mod-As — Mod-R; is left adjoint to the
functor Chomg(P, —): Mod-R, — Mod-As. Consequently it is right exact
and preserves colimits.

This comes from 3.3 and 3.4.

(4.8.7) Chompg(P, —) commutes with direct sums in Mod-R-.
Since Py is t.f.g. the result is almost obvious.

Consider, for N € Mod-4, and M € Mod-R., the morphisms of 3.5

oy: N — Chom? (P, NQ), P)
Bur: Chom® (P, M)&, P — M

(4.8.8) If (M1)eq 8 @ family in Mod-R. such that B, is an iso-
morphism for all A and M = @ M,, then By is an isomorphism too.
A

It suffices to consider the chain of isomorphisms

~

Chomg (P, M)®, P ~ (ela Chomy (P, M;))&, P ~
= @ (Chomy (P, M), P) =M

(where the last morphism is @ fu,); the resulting morphism is easily
seen to be fy. g

(4.8.9) If Ve F(P) then S, is an isomorphism. Therefore, if I'x
denotes the direct sum of all P|V as V runs through F(P), then Iy is o
generator of Mod-R; such that, if X is any set and M = I'®, then Bu
is an isomorphism.

From the fact that P, is quasi-projective it follows that
Chomy (P, P/V) >~ A[/J(V). Hence the first statement follows from
the proof of 4.8.4, while the second one is an application of 4.8.8 and
the fact that P is a t-generator.

(4.8.10) Py is an isomorphism for all M € Mod-R:.
Let M € Mod-R.: there exists a [I-resolution of M, i.e. an exact
sequence of the form
' -1 M->0.

From this (and applying 4.7) we get the following commutative dia-
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gram with exact rows

Chom, (P, I'®) &), P — Chom, (P, I'")®), P — Chom, (P, M)&, P -0

lﬁr(X) lﬂr(y) lﬁu

I’ Ny A ¢] M >0

and B, is an isomorphism by the Five Lemma.

(4.8.11) «y ts an isomorphism for all N € Mod-A,.
Let Ve F(P): from the isomorphisms

Chomy, (P, A4/3(V) &, P) o Chom, (P, P|V) ~ A[3(V)

one deduces easily that o,/3,, is an isomorphism. Moreover, denoting
by A4, the direct sum of all 4/J(V) as V runs through F(P), it is clear
that 4 is a generator of Mod-4s, such that, if X is a set and N = 4D,
oy 18 an isomorphism. By reasoning as in 4.8.10 we get the con-
clusion. 0O

We are now in the position to state our main

4.9 THEOREM. Let (4, o) and (R, T) be complete linearly topologized
rings and (F: Mod-A; — Mod-R:, G: Mod-R.; — Mod-4;) a similarity.
. Then there exists a z-progenerator Py such that:
(a) (4, o) is topologically isomorphic to Chomg (P, P) endowed with
the topology of uniform convergence;

(b) G =~ Chomg (P, —);
(¢) F~—QuP.

Conversely, let (R,z) be a linearly topologized ring, Pp a tv-pro-
generator and (A, o) = Cend” (Pg): then we have the similarity

(— &4 P: Mod-As —> Mod-R:, Chomg(P, —): Mod-R: — Mod-A4,) .

5. Quasiprogenerators.

5.1 DEFINITION. Let P e LTC-R: we denote by
(i) Gen (Pg) the full subcategory of Mod-R generated by the set
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{P|V: Ve F(P)}, i.e. the smallest full subcategory of Mod-R contain-
ing each PV (V € F(P)) and closed under direct sums and homo-
morphic images;

(ii) Gen (Pg) the smallest full subcategory of Mod-R containing
Gen (Pz) and closed under submodules.

If M € LTC-R we denote by Tr, (P) the submodule of M generated
by Im{ as fe Chomg (P, M).

The P-topology 7, on R is the linear topology having as a local
basis the set of right ideals J of R such that R/J € Gen (Pj).

5.2 REMARKS. If P is discrete, then these notations coincide with
those of Fuller in [3]. It is clear that P is a topological module over
(B, 7p)-

5.3 LEMMA. If Py is a quasiprogenerator then Gen (Pjg) = Gen (Pr).

Proor. The proof runs exactly as that of Lemma 2.2 in [3]. The
only thing to show is that P generates all the submodules of P[V,
for V € 5(P). Assume then that V € F(P) and that W>7V; if we W
then there exists a net (w;) in Tr, (P) convergent to w (recall that P
is a self-generator). But then there exists 6 such that w— ws€V,
so, that w + V = w;+ Ve Tr,,(P). O

5.4 THEOREM. Let Pre LTC-R and put (A, c) = Cend” (Pg). The
following conditions are equivalent:

(a) Chompg(P, —) is an equivalence between Gen (Py) and Mod-A,;
(b) Pr is a quasiprogemerator.

If these conditions are fulfilled then the inverse equivalence is —Q.P
(ef. [3, Theorem 2.6]).

Proor. If (R, %,) denotes the Hausdorff competion of (R, 7,) then
it is clear by 5.3 that Pj is a quasiprogenerator if and only if it is
a ftp,-progenerator. The second part of the theorem comes then di-
rectly from 4.9. O

In analogy with 3 we want to prove a density theorem for quasi-
progerators. From now on Pj will be a quasiprogenerator and (4, ¢) =
= Cend" (Pg).
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5.5 LEMMA. Let ne N and give P the product topology. If U is
an open submodule of P» and we put I(U)= {f € Chom, (P, P"):
Imf< U}, then J(U)P = U; in other words Py generates (topologically)
all open submodules of P=.

Proor. It is clear that Chomj (P, P*) = A" with the product
topology and that J(U) is open in A" Consider the canonical morphisms

¢: A*/3(U) — Chomg (P, P"[T)
p: A*[I(U)®4 P — P*[3(U)P;

the first one is injective, while the second is a topological isomorphism
(it is defined like the f in the proof of 4.5).

Since A"/J(U) € Mod-A4,;, the Hausdorff completion of P»/3(U)P
is discrete, so that J(U)P is open (and contained in U). We
have the canonical epimorphism h: P*/J(U)P — P»/U: if we apply
Chom, (P, —) and recall that P*/3(U) P = A*/J(U)Q.P we get an
epimorphism A47/J(0) — Chomg (P, P*/U) which is easily seen to be ¢.
Thus kb is an isomorphism and J(U)P = U. 0O

5.6 Consider the ring B = Cend (,P) of all continuous A4-endo-
morphisms of P and on B the topology of pointwise convergence,
which has as a local basis the family of sets of the form

W@y ey a3 V) = {£€B: ()€ V,I<i<n}

for ne N, z;,€ P and V € $(P). Let y: R — B be the canonical mor-
phism: if we give R the P-topology t,, then u is continuous. Indeed
if e P and V € F(P) we have that v~ (W(x; V)) = (V:.2), and this
is an open ideal of (R, 7,). It is obvious then that y(R) is dense in B
if and only if P satisfies the following condition

(D) for all be B, for each choice of ..., %, in P and for all
Ve F(P), there exists r € R such that, for ¢ =1, ...,n, x;rexb 4+ V.

We now see that if Pr is a quasiprogenerator then it satisfies con-
dition (D). _
Let U be an open submodule of P*: by 5.5, J(U)P = U. Hence

UB = (3(U)P)B<(3(U)P)B = 3(U)(PB) = J(U)P = U .
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Now, if (#,,...,2,) € P* and U = V» (for V€ F(P)), we have
((@ry ceey @0) + V) B (04 ooy @a) R 4 V™
and we are done.

5.7 DENSITY THEOREM FOR QUASIPROGENERATORS. Let Pre LTC-R
be a quasiprogenerator, (4, c) = Cend” (Pz), B = Cend (,P) and give B
the topology B of pointwise convergence. The canonical morphism

y: (B, 7,) = (B, B)

is continuous, open on its image and y(R) is dense in (B, f).

Proor. We have only to prove that ¢ is open on its image: let J

be an open right ideal of R. Since R/J € Gen (P;) = Gen (Pg), there
are an open submodule V of P, and an epimorphism f: (P/V)* — R/[J.

ffe,+ V, ..., 0.+ V) =14 J, it is clear that J2 [ (V: @;), so that
p(J) containg W(wy, ..., 2,; V)N p(R). O =1

Assume that P, is strictly linearly compact (i.e. topologically
artinian and complete) and that (R, 7,) is complete: then (R, 7,) is
strictly linearly compact too and so y(R) = B. Hence the topology
induced on B by R is strictly linearly compact and therefore minimail,
so that it coincides with the topology of pointwise convergence, which
is Hausdorff. (For a detailed treatment of strictly linearly compact
modules and rings see e.g. [4]).

5.8 COROLLARY. Let Py be a strictly linearly compact quasiprogener-
ator, T, the P-topology on R and A = Cend (Py). Then the Hausdorff
completion of (R, 7,) is B = Chom, (P, P) with the topology of point-
wise convergence.

6. Examples.

The theory developed so far is very similar to that of 3. We shall
now see that we have reached an effective generalization by giving
some examples.
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Ezxample of a non discrete quasiprogenerator.

Let R be a ring, (Sy),er @ family of pairwise non-isomorphic simple
R-modules and P, the product of all 8, endowed with the product
topology of the discrete topologies. Moreover let G = @ §,, with

Y
the relative topology: G is dense in P. Finally set (4,0) =
= Chomy}, (P, P) and, for all yeI', D,= End(8,);' we put on each
D, the discrete topology.

6.1 THEOREM. With the notations as above, Py is a quasiprogenerator,
which is not discrete if I' is imfinite.
PrOOF. (a) (4, o) is topologically isomorphic to ] Dy.

4
For all y € I', we have that Hom, (&, S,) = Chom; (@, S,). Hence
we have the algebraic isomorphisms

A = Chomy, (P, P) ~ [] Chomy (P, 8y) = [ Chomy (&, S,) ~
v v

= H Homg (G, 8,) = l_[ H Homyg, (85, 8y) =~ H Dy;
4 y @ Y

if d = (dy),cr€ [[ Dy, its action on & = (@,),er€ P is given by dw =

v
= (dy@y),er- A local basis of P is the family of sets
W(F) —= {(my)ye['GP: Ty = 0 if yEF}

as F runs through the finite subsets of I. Then, identifying A with
[1 Dy, one has
v

I W(F)) = {(dy),ere [[ Dy: dy=0 if yc F},

so that the topology of uniform convergence coincides with the product
topology of the discrete topologies.
(b) Py is t.f.g9.; any open submodule of Pp is of the form W(F),
for some finite subset F of I.
Let V € F(P): there exists F C I, finite, such that V> W(F). Then
we have an epimorphism P/W(F) — P/V, which splits, since P/W(F) =~

=~ [[8y. The conclusion is now obvious.
YEF
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(¢) Pg is topologically quasi-projective.
Let F be a finite subset of I" and f: P — P/W(F') be a continuous

morphism. Then by (b) the kernel of f is of the form W(ZF’) for some
F'c T, finite. Hence we can consider f': [[8y— [[8y: extending

yeF’ yEF

this by zero, we obtain the desired g: P — P.
(@) Py is a self-generator.

Obvious from (&) and (b).
If the set I'is not finite, then the topology on P is not discrete. O

Example of a non discrete t-progenerator.

6.2 THEOREM. Let (R,t) be a complete linearly topologized ring
and X a non empty set; consider the direct product RX with the product
topology. Then RZX is a t-progenerator.

PrOOF. (a) R* is topologically fimitely generated.

A local basis for R is the set of submodules of the form []I,
z€X
where I.€ 5. for all x€ X and I,= R for all but a finite number of x

in X. Take V = []I.<R* to be one of them: if ¥ = {x € X: I,# R}

reX

then R*|V = (—BF R/|I,, which is finitely generated.
yE

(b) R* is a T-generator.

Let f: M — N be a non zero morphism in Mod-R.. Fix me M
with f(m)#0 and ye X: we can define a continuous morphism
g: R*—> M by

g( (rz):ceX) = mry

and fg+#0.
(¢) BX 18 tT-projective.

For ye X, ¢, = (ry),cx €K%, where r,= 0 if x5y and r,=1.
Suppose we are given an epimorphism f: M — N in Mod-R. and
a continuous morphism g: R* — N. The kernel of g is open so that it

contains a submodule of the form V = []I, of the type mentioned
zeX

above. Let F = {xe€ X: I, R}: then F is finite and for x ¢ F we
have ¢,€ V and g(e,) = 0. If we put n,= g(e;), these are almost all
Zero.
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Take, for vx€ X, m,e M such that f(m,) = n,, with m,= 0 if
v¢ . Now we get a continuous morphism h: R* -~ M by putting

W((ra)zex) = 2 Male

reX

(where we sum only the finitely many non zero terms), since

ker h> || Anng (m,)

reX

which is open in R*. It is easy to see that fh and ¢ coincide on the
direct sum R®, and this one is dense in RZ.
(d) R* is quasiprojective.

Let V be an open submodule of R%, #: RX¥ — RX|V the projection
and f: R* — R*|V a continuous morphism; for z€ X take m,e€ R*¥
such that n(m,) = f(e.,), with the condition that m,=— 0 whenever
f(ez) = 0: by reasoning as above we can see that the set {re X:
m, 70} is finite.

Define g¢,: B — R* by g.(r) = m,r: thus we have the codiagonal
morphism ¢: R® — R*, which is continuous if we endow R® with
the relative topology of R%, as it is easily proved by taking into aec-
count the fact that almost all the g,’s are zero. Hence there is a
unique extension of g to a continuous endomorphism g of R*. It is
plain that g coincides with f on R® and so mg = f.

(e) RX is a self-generator.
Let V be an open submodule of R¥ and let H I, be an open basic

reX
neighbourhood of zero of the type mentioned above; if F = {x e X:

I, R} then F is finite. Let X(F) denote the directed set of all finite
subsets of X which contain F.

If Y is a finite subset of X, we may define a continuous endo-
morphism f,: R¥ — R* by

fr((rz)a;ex) = (S2)zex s

where s,=r,if v€ Y and s,= 0 if #¢ Y. It is clear that for all
Y € X(F) we have f,(V)< V, so that any element r of V is the limitin V'
of the net (fy(r))rexwr -
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Now we are done, because it is clear that any element of 7V,
having at most finitely many non zero components, belongs to the
image of a continuous morphism R*— V. 0O

7. Commutative rings.

DEFINITION. (a) Let R be a ring and 7, v’ right linear topologies
on it: we say that = and 7’ are equivalent if any right ideal of R closed
for one topology is closed also for the other.

(b) If (R, 7) and (4, 0) are linearly topologized rings, we say
that 7 and ¢ are equivalent if R and A are isomorphic and 7 and o
become equivalent topologies when we identify R and A.

7.1 THEOREM. Let (R, 1) and (A, o) be linearly topologized rings
and assume that they are commutative, complete, and similar: then

(i) R and A are (algebraically) isomorphic;

(ii) 7 and o are equivalent topologies.

Proor. Let P be the 7-progenerator which gives the similarity:
there exists an injective ring morphism y: B — Cend (Pp) = 4. We
want to show that for any open ideal I of A, y~1(I) is closed in R;
assume then that I = J(V), with V e F(P):

y Y (IV)) ={reR: Pr<V} = (V:P)=[(V:p)
DEP
which is closed in R.
By the commutativity of A there is an injective ring morphism
@: A — Cend (Q,) = R, where @ = Chom, (P, (R, 7)); it is not dif-
ficult to convince oneself that yp =1, and ey = 1. O

7.2 COROLLARY. Let (R, ) and (4, 0c) be as in 7.1. Assume also
that © and o are minimal. Then (R, 7) and (A, o) are topologically iso-
morphic. This is in particular true when they are strictly linearly com-
pact rings.
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