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On Absolutely Simple Locally Finite Groups.
RICHARD E. PHILLIPS (*)

1. Introduction.

A well-known result of Kegel [5; pp. 172-173] (or [6; p. 115])
asserts that if G is a countably infinite locally finite simple group then

(1.1) there is an ascending chain C ... c Fz c ... of finite subgroups
of G satisfying

, and

(b) for each n &#x3E; 1 there is a maximal normal subgroup 111n
of F~ such that

The import of this result lies in the display of finite simple sections
of unbounded orders in the finite subgroups of a countably infinite
locally finite simple G. In general, the condition (1.1) does not imply
simplicity [6; p. 116]. Indeed, there are countably infinite residually
finite groups satisfying (1.1).

A minor adaptation of Kegel’s arguments can be used to

streng then (1.1) to a condition equivalent to simplicity, and we will
give such a condition in Theorems 1 and 2. In these same theorems
we give a similar criteria for the absolute simplicity of G.

Recall that G is absolutely simple if the only composition series of G
is the one consisting of 1 and G only; equivalently, G is absolutely

(*) Indirizzo dell’A.: Dept. of Mathematics, Michigan State University,
East Lansing, MI. 48824, U.S.A.
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simple if the only serial subgroups of G are 1 and G (see [11; I, p. 12,
p. 16] or our § 2.1 for the relevant definitions). Obviously, every
absolutely simple group is simple and, in general, the absolutely simple
groups form a proper subclass of the class of simple groups ([1]
or [11; II, 3.4]). However, it is not known whether or not every locally
finite simple group is absolutely simple. Our Theorems 1 and 2 put
the (possible) differences between these two (locally finite) classes in
a  local &#x3E;&#x3E; context.

In the sequel, we frequently encounter ascending chains
of finite subgroups of the countably infinite locally

finite G with = G. Such a chain is called an approximating
sequence of G (caution; this term is used in a different way in [6;
p. 116]).

Part of Theorem 1 is stated in terms of subnormal subgroups.
Recall that if G, the standard series of M in G is defined induc-
tively by

We also have occasion to use the subgroups

THEOREM 1. Let ~Dn~ be an approximating sequence of the coun-
tably infinite locally finite G.

a) If (~ is simple, there is a subsequence of and an approx-
imating sequence of C satisfying
i) and and

ii) for 1~ &#x3E; 1, if then there is an such that

Vx n Fk-1 = 1.

b) If G is absolutely simple, y there is a subsequence of 

and an approximating sequence of 6~ satisfying

Obviously, the condition in (ii) of part implies (1.1 ).

A type of converse is provided in
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THEOREM 2. Suppose is an approximating sequence of the
countably infinite locally finite G.

a) If satisfies the property (ii) of Theorem 1(a), then G is simple.

b) If ~F~;~ satisfies the property (ii) of Theorem 1(b), then G is ab-
solutely simple.

An interesting interplay between Theorems 1 and 2 is that the
existence of a single approximating sequence of G satisfying con-
dition (ii) of Theorem l(a) (or Theorem 1(b)) implies that a sequence
with similar properties can be extracted from any approximating
sequence (as in part a(i) of Theorem 1). The conditions a(ii) and b(ii)
of Theorem 1 accentuate the possible differences between the countable
« simple » and « absolutely simple » locally finite groups.

We also note that the condition (ii) of Theorem 1(b) is equivalent to

(1.2) for all implies = 1’ k+1 .

While the above results are stated for countable groups, they can
be extended to higher cardinal ties by employing  countable » local
theorems for the classes of simple and absolutely simple groups. The
available theorems are recorded in

(1.3) The infinite group G is simple (absolutely simple) if and only
if G has a local system of countable simple (absolutely simple)
subgroups (see [6; p. 114], [9; p. 190], [7; p. 131] for the simple
case and [3; p. 529] for the absolutely simple case).

It follows immediately that Theorems 1 and 2 can be formulated
in terms of the countable subgroups of the locally finite G.

Our final result gives a sufficient condition for absolute simplicity.

THEOREM 3. Let G be a countably infinite locally finite simple
group and an approximating sequence of G. If there is a 

such that every perfect subnormal subgroup of Dn has defect at most d
in D., then G is absolutely simple.

The definition of the defect of a subnormal subgroup is given later
in §2.1; see also [11; I, p. 173].

It is not difficult to see that the perfect subnormal subgroups of
a finite group L all have defect d or less if and only if the perfect sub-
normal subgroups of have defect d or less, where .8’ is the solvable



216

radical of L. Since all known countably infinite locally finite simple
groups have approximating sequences where for 
is a direct product of non-Abelian simple groups (see [10; p. 385])
we have, as a consequence of Theorem 3 and the above remarks on
extensions to higher cardinals,

(1.4) all known locally finite simple groups are absolutely simple.

As a final remark, we point out, that with minor modifications,
the groups of Theorem 1 can always be chosen to be perfect.
To see this, let be an approximating sequence of the simple G
and denote by Dn the intersection of the members of the derived series
of Dn . Since G cannot be locally solvable [11; p.154] and U {Do’: 
is a normal subgroup of G, we must have U ~Dn : = G. Thus,

is an approximating sequence of perfect subgroups of G. If the

groups are chosen relative to (rather than ~Dn~~, the 
will also be perfect.

2. Proofs.

2.1. Remarks on serial and subnormal subgroups.

The standard series of if in G has been defined in 91. It is fre-

quently easier to work with the commutator form

where [G, nM] is defined inductively by [G, OM] = G and for 
[G, nM] = [[G, (n - 1) M], M] (c.f. [11; I, p. 173]). The subgroup M
of G is subnormal in G written .M « « G if and only if M = M(n, G)
for some  cv. Equivalently, a a G if and only if [G, M

for some n &#x3E; 0. If if « « G, the minimal n for which M = M(n, G)
is called the defect of if in G. The symbol M G will mean that M
is subnormal in G of defect n or less.

Several useful facts are given in

then .

then 1

(c) If (~ is finite and



217

Our use of the term normal series coincides with the normal systems
of Kurosh [8; p. 171] and is essentially equivalent to the series of
Robinson [11; 1, pp. 9-10]. A subgroup .~1 of G is a serial subgroup
of G (written .R’ ser G) if there is a normal series C of G with H E C.
We will need the following ( local» characterization of serial sub-

groups [4; Theorem 2] (or in the locally finite case [2; Lemma 2]).

(2.1.2) If G, then H ser G if and only if for every finitely gen-
erated G, F C implies F C H.

An essential lemma for our arguments is

LEMMA 1. Let be an approximating sequence of the countably
infinite locally finite G and suppose that for each n&#x3E;I we have a

subgroup « « Dn and that n &#x3E; m implies Then
M = ser G. Further, y if there is a d ~ 0 such that

for all then M G.

PROOF. For the first part, we use the criterion (2.1.2). Let .F be
a finite subgroup of G and suppose that F C MF. Then there is an n
such that F C Dn and Since Mn « « (M , F) C Dn we have
F C Mn ç .M~ as desired.

Suppose now that Mn a a d Dn for all n. Then, for 
[Dn, dMn] ç M, and so

Thus, and this completes the proof.

2.2. For the proof of Theorem 1 we require the following lemma.
The proof follows the lines of argument given in [6; pp. 112-114].

LEMMA 2. Let be an approximating sequence of the countably
infinite locally finite G and put D = Dl.

a) If G is simple and d &#x3E; 0 then

i) is an approximating sequence of G, and

ii) there is a positive integer j such that for 
implies Y n D E ~1, D}.

b) If G is absolutely simple, then

i) D,,): is an approximating sequence of G, and
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ii) there is a positive integer j such that for n &#x3E; j, Y « « D. implies
Y n D E {1,D}.

PROOF. For the proof of (i) of part (a), note first that for 
From Lemma 1 we have V =

{D(d, Dn): n &#x3E; 11 v ad G and the simplicity of G forces V = G.
Part (i) of (b) follows similarly; in this case we have V =

= U Dn): ser G (by Lemma 1) and since G is absolutely
simple, V = G.

Proceeding to part (ii) of (ac), suppose that there is no j with the
asserted property. There is then an approximating sequence C ~D~~
and subgroups such that Since D is
finite there is a subgroup M of D with .lll ~ ~1, D} and an approx-
imating sequence ~En~ ~ such that for n &#x3E; I there are subgroups

with Now for M(d, E~) ~ Xn (by
(2.1.1)(a)) and so D r1 M(d, .En). From part (i) we have
G = ~J ~M( d, E~ ) : n ~ 1 ~ and the contradiction now

follows.
The proof of b(ii) is identical with that of a(ii); in the same manner

we arrive at an approximating sequence ~Dn~ and subgroups
X n with M 0 {1, D}. The fact that U n ~ 1 ~ = G
(part (i) of (b)) together with for n&#x3E;I again
yields the contradiction D = M.

2.3 PROOF OF THEOREM 1. Let be an approximating se-
quence of G and suppose G is simple. If .F’, S are finite subgroups of G
there is, by Lemma 2(a) a positive integer j = j(F, S) such that

~F, S) C F(1 , D; ) == ,(F, S) and Y J]2 D~ implies Y n F e I’~. If

V -:01 ,(F, S) then and so V n .~’ E .F~. Further, if F C V
and .L = CoreD, (V) then L n F e ~1, If F C L, then L = Fli =
= S) which contradicts the fact that lz(F, S). Thus,
L n F = 1 and since for every x E Dj we have ~1, .F’~, there
must be an x E D, with V" n F = 1.

Now for the construction of the desired subsequence ~.F’k~. Put

F2 = D2 ) and F3 = ~u (1~’2 ~ D;a) where j3 =
= max {3, j(F1, D2)}; for k &#x3E; 3, let Fk = 03BC(Fk-1,Djk) where jk =
= max One checks easily that has the proper-
ties listed in Theorem 1 (a) .

For the proof of (b), let ~D~~ be an approximating sequence of the
absolutely simple G and F and 8 finite subgroups of G. Using
Lemma 2(b) there is a positive integer j = j(F, S) such that
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(.F, F(w, Dj) == ,u(.h’, ~S’) and Y « « Dj implies Y {I, .~~. If

~~(F~) and we have which forces

~C(.I’, S) = V (by (2.1.1 ) (b) ). From this we conclude that V = 1.
The sequence satisfying ( i ) and ( ii ) of Theorem may now

be constructed as follows :

2.4 PROOF OF THEOREM 2. Suppose G has an approximating se-
quence satisfying the property (ii) of Theorem l(a) and let

1 ~ H « G. Then for some ko, implies J3’n 1. For any
r1 n = = 1 for any x E Thus,

n B’ _ and this forces .8’ = G. We have shown that G is

simple and this concludes the proof of part (a).
For part (b), suppose the approximating sequence satisfies

the property (ii) of Theorem 1(b) and that As above,
there is a ko such that k&#x3E; ko implies Thus, if 1~ ~ J~o,

and (H n Fk) r1 (.lq’ 1 ~ 1. This gives
(g n and we conclude that (H r1 Fk+1) = Fk+l. It
follows that .8’ = G and that G is absolutely simple.

2.5. Prior to our proof of Theorem 3, we need

(2.5.1) If l~’ is a serial locally solvable subgroup of a locally finite G,
then HO is also locally solvable.

The proof of (2.5.1) is straightforward and will not be given here.
For the proof of Theorem 3, let G be a countable simple locally
finite group and an approximating sequence such that for eacn n,
the perfect subnormal subgroups of Dn are of defect d or less. Now
let .lI ser G with 10 .H ; from (2.5.1) and the fact that simple locally
solvable groups are finite [11; I, p. 154], we see that .8’ is not locally
solvable. Thus, there is an no such that H r1 Dn is not

solvable. Consequently, if n ~ no, the subgroup (H r1 Dn)w, the inter-
section of the terms of the derived series of H r1 D.,, 7 is a non-trivial

perfect subnormal subgroup of Dn . From our assumptions, we have
Dn)w Lemma 1 now implies that V =

== U a v d G and the simplicity of G forces V = G.
Since V c H, we have H = G also, and G is absolutely simple.
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