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On Absolutely Simple Locally Finite Groups.

RicaArD E. PHILLIPS (*)

1. Introduction.

A well-known result of Kegel [5; pp. 172-173] (or [6; p. 115])
asserts that if & is a countably infinite locally finite simple group then

(1.1) there is an ascending chain F,C...C F, C... of finite subgroups
of G satisfying

(@) UF,=@, and

(b) for each » >1 there is a maximal normal subgroup M,
of F, such that F,_,N M, = 1.

The import of this result lies in the display of finite simple sections
of unbounded orders in the finite subgroups of a countably infinite
locally finite simple . In general, the condition (1.1) does not imply
simplicity [6; p. 116]. Indeed, there are countably infinite residually
finite groups satisfying (1.1).

A minor adaptation of Kegel’s arguments can be used to
strengthen (1.1) to a condition equivalent to simplicity, and we will
give such a condition in Theorems 1 and 2. In these same theorems
we give a similar criteria for the absolute simplicity of G.

Recall that G is absolutely simple if the only composition series of G
is the one consisting of 1 and G only; equivalently, G is absolutely

(*) Indirizzo dell’A.: Dept. of Mathematics, Michigan State University,
East Lansing, MI. 48824, U.S.A.
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simple if the only serial subgroups of G are 1 and & (see [11; I, p. 12,
p. 16] or our §2.1 for the relevant definitions). Obviously, every
absolutely simple group is simple and, in general, the absolutely simple
groups form a proper subclass of the class of simple groups ([1]
or [11; IL, 3.4]). However, it is not known whether or not every locally
finite simple group is absolutely simple. Our Theorems 1 and 2 put
the (possible) differences between these two (locally finite) classes in
a «local » context.

In the sequel, we frequently encounter ascending chains
F,C...CF,C... of finite subgroups of the countably infinite locally
finite @ with (JF, =G Such a chain is called an approximating
sequence of G (caution; this term is used in a different way in [6;
p. 116]).

Part of Theorem 1 is stated in terms of subnormal subgroups.
Recall that if M C G, the standard series of M in G is defined induc-
tively by

MO,¢)=6G and for n<l, M(n, @) = MMO—1.9
We also have occasion to use the subgroups
M(w, @) =N {M(n, G): n>0}.
THEOREM 1. Let {D,} be an approximating sequence of the coun-
tably infinite locally finite G.

a) If @ is simple, there is a subsequence {D, } of {D,} and an approx-
imating sequence {F,} of @ satisfying
i) #,=D, and for k>1, F,=D,_(1,D,,) =D and
i) for k>1, if V 3 F, then there is an x€ N, _(F,) such that
VeNF,,=1.
b) If @ is absolutely simple, there is a subsequence {D,} of {D,}
and an approximating sequence {F,} of G satisfying
i) F,=D,, and for k>1, F,= D,, (w,D,,), and
ii) for k>1, if V < F,, then VN Fpy=1.
Obviously, the condition in (ii) of part (a) implies (1.1).

A type of converse is provided in
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THEOREM 2. Suppose {F,} is an approximating sequence of the
countably infinite locally finite G.

a) If {F} satisfies the property (ii) of Theorem 1(a), then @ is simple.

b) If {F,} satisfies the property (ii) of Theorem 1(b), then G is ab-
solutely simple.

An interesting interplay between Theorems 1 and 2 is that the
existence of a single approximating sequence {F,} of & satisfying con-
dition (ii) of Theorem 1(a) (or Theorem 1(b)) implies that a sequence
with similar properties can be extracted from any approximating
sequence (as in part a(i) of Theorem 1). The conditions a(ii) and b(ii)
of Theorem 1 accentuate the possible differences between the countable
« simple » and « absolutely simple » locally finite groups.

‘We also note that the condition (ii) of Theorem 1(b) is equivalent to

(1.2) for all k>1, 122 e F, implies o™= 1T,,,.

While the above results are stated for countable groups, they can
be extended to higher cardinal ties by employing « countable » local
theorems for the classes of simple and absolutely simple groups. The
available theorems are recorded in

(1.3) The infinite group G is simple (absolutely simple) if and only
if @ has a local system of countable simple (absolutely simple)
subgroups (see [6; p. 114], [9; p. 190], [7; p. 131] for the simple
case and [3; p. 529] for the absolutely simple case).

It follows immediately that Theorems 1 and 2 can be formulated
in terms of the countable subgroups of the locally finite G.
Our final result gives a sufficient condition for absolute simplicity.

THEOREM 3. Let G be a countably infinite locally finite simple
group and {D,} an approximating sequence of ¢. If there is a d>0
such that every perfect subnormal subgroup of D, has defect at most d
in D,, then G is absolutely simple.

The definition of the defect of a subnormal subgroup is given later
in §2.1; see also [11; I, p. 173].

It is not difficult to see that the perfect subnormal subgroups of
a finite group L all have defect d or less if and only if the perfect sub-
normal subgroups of L/H have defect d or less, where H is the solvable
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radical of L. Since all known countably infinite locally finite simple
groups have approximating sequences {D,} where for n>1, D,[;(D,)
is a direct product of non-Abelian simple groups (see [10; p. 385])
we have, as a consequence of Theorem 3 and the above remarks on
extensions to higher cardinals,

(1.4) all known locally finite simple groups are absolutely simple.

As a final remark, we point out, that with minor modifications,
the groups {F,} of Theorem 1 can always be chosen to be perfect.
To see this, let {D,} be an approximating sequence of the simple G
and denote by D, the intersection of the members of the derived series
of D,. Since & cannot be locally solvable [11;p.154] and U {D%: n>1}
is a normal subgroup of @&, we must have |J {D%:n>1} = @. Thus,
{D3} is an approximating sequence of perfect subgroups of G. If the
groups {F,} are chosen relative to {D%} (rather than {D,}), the F,’s
will also be perfect.

2. Proofs.

2.1. Remarks on serial and subnormal subgroups.

The standard series of M in G has been defined in §1. It is fre-
quently easier to work with the commutator form

M(n, ) = M[G, nM]

where [G, nM] is defined inductively by [G, 0M] = G and for n>1,
[G,nM] = [[G, (n—1)M], M] (c.f.[11; I, p. 173]). The subgroup M
of G is subnormal in @ written M << @ if and only if M = M(n, G)
for some 0 <# < w. Equivalently, M << @ if and only if [, nM]C M
for some n>0. If M << @, the minimal » for which M = M(n, &)
is called the defect of M in ¢. The symbol M <<1, G will mean that M
is subnormal in G of defect » or less.

Several useful facts are given in

(2.1.1) (a) if NC M <<, G, then N(n, @) C M.

(b) If NC M << G, then N(w,G)C M.
() If @ is finite and M C @, then M¥*:& = M(w, @).
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Our use of the term normal series coincides with the normal systems
of Kurosh [8; p. 171] and is essentially equivalent to the series of
Robinson [11; I, pp. 9-10]. A subgroup H of G is a serial subgroup
of G (written H ser @) if there is a normal series C of G with H € C.
We will need the following «local» characterization of serial sub-
groups [4; Theorem 2] (or in the locally finite case [2; Lemma 2]).

(21.2) 1If HC @, then H ser G if and only if for every finitely gen-
erated FC @, F C HF implies F C H.

An essential lemma for our arguments is

LEMMA 1. Let {D,} be an approximating sequence of the countably
infinite locally finite ¢ and suppose that for each n>1 we have a
subgroup M, <x<<a D, and that » > m implies M, C M,. Then
M= U{M,:n>1} ser G. Further, if there is a d>0 such that
M, <<, D, for all n>1 then M <<, G.

Proor. For the first part, we use the criterion (2.1.2). Let F be
a finite subgroup of G and suppose that F C MF, Then there is an »
such that FC D, and FC MZ. Since M, << {(M,, F)C D, we have
FCM,CM as desired.

Suppose now that M, <x<,D, for all n. Then, for n>1,
[D,,dM,]1<C M, and so

(@, dM] = U{[D,,dM,]:n>1}C M.

Thus, M <u<1; G and this completes the proof.

2.2. For the proof of Theorem 1 we require the following lemma.
The proof follows the lines of argument given in [6; pp.112-114].

LemMA 2. Let {D,} be an approximating sequence of the countably
infinite locally finite G and put D = D,.

a) If G is simple and d>0 then
iy {D(d,D,): n>1} is an approximating sequence of &, and

ii) there is a positive integer j such that for n>j, ¥ <<, D,
implies Y N De {1, D}.

b) If @ is absolutely simple, then

i) {D(w, D,): n>1} is an approximating sequence of @, and
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ii) there is a positive integer j such that for n>j, Y <«<a D, implies
YNnDe{l,D}.

ProoF. For the proof of (i) of part (a), note first that for n>1,
D(d, D,)< D(d,D,+,). From Lemma 1 we have V =
= U {D@,D,): n>1} «<, G and the simplicity of G forces V = G.

Part (i) of (b) follows similarly; in this case we have V =
= U {D(w, D,): n>1} ser @ (by Lemma 1) and since & is absolutely
simple, V = @G.

Proceeding to part (ii) of (a), suppose that there is no § with the
asserted property. Thereis then an approximating sequence {P,} C {D,}
and subgroups Y, <<, P, such that ¥,N D¢ {1, D}. Since D is
finite there is a subgroup M of D with M ¢ {1, D} and an approx-
imating sequence {E,}C {P,} such that for n>1 there are subgroups
X,<<, B, with X,nD = M. Now for n>1, M(d,E,)CX, (by
(2.1.1)(a)) and so M = Dn M(d,E,). From part (i) we have
G = U{M(d,E,):n>1} and the contradiction M = DN G now
follows.

The proof of b(ii) is identical with that of a(ii); in the same manner
we arrive at an approximating sequence {E,}C {D,} and subgroups
X, << B, with M ¢ {1, D}. The fact that U {M(w, E,):n>1} = G
(part (i) of (b)) together with M = DN M(w, E,) for n>1 again
yields the contradiction D = M.

2.3 ProoF oF THEOREM 1. Let {D,} be an approximating se-
quence of @ and suppose G is simple. If F, § are finite subgroups of ¢
there is, by Lemma 2(a) a positive integer j = j(#, S) such that
(F,8)C F(1,D,) = u(F,S) and Y <1, D, implies YN Fe{l,F}. If
V2 u(F, 8) then V<1<, D, and so VN F e {1, F}. Further, if FCV
and L = Corep, (V) then LN Fe{l,F}. If FCL, then L = FP =
= u(F, 8) which contradicts the fact that V 7= w(F, S). Thus,
LNF =1 and since for every v € D, we have V=N F e {1, F}, there
must be an € D; with V=N F = 1.

Now for the construction of the desired subsequence {F.}. Put
F, =D, F,=u(F,D,) and F;= u(F,,D;) where j,=
= max {3, j(¥,, D,)}; for k> 3, let F; = u(Fy-, D;,) where j, =
=max (k, j(Fy-, D;_)}. One checks easily that {F,} has the proper-
ties listed in Theorem 1(a).

For the proof of (b), let {D,} be an approximating sequence of the
absolutely simple ¢ and F and § finite subgroups of ¢. Using
Lemma 2(b) there is a positive integer j = j(¥, S) such that
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(F,8)C F(w, D;) = u(F, 8) and ¥ < D, implies YN Fe{1,F}. If
Vu®,8) and FCV we have FCV<<iu(F,S) which forces
w(F, 8) =V (by (2.1.1)(b)). From this we conclude that FNV = 1.

The sequence {F,} satisfying (i) and (ii) of Theorem 1(b) may now
be constructed as follows:

F,= D,,..., F,= u(Fpy Dy)y ...

2.4 Proor OF THEOREM 2. Suppose G has an approximating se-
quence {F,} satisfying the property (ii) of Theorem 1(a) and let
1+ H <a G. Then for some k,, k>Fk, implies HN F, % 1. For any
such k, fi N (FepuN H)*=F,NH =1 for any s € N(Fi;). Thus,
FryyN H = Fyy, and this forces H = ¢. We have shown that G is
simple and this concludes the proof of part (a).

For part (b), suppose the approximating sequence {F,} satisfies
the property (ii) of Theorem 1(b) and that 1 H ser @. As above,
there is a k, such that k>k, implies HN F,# 1. Thus, if k>Fk,,
1#HNF,<<a F, and (HN F,)N (HN Fiyy) 3£ 1. This gives
(HN Fyy)** = F,yy and we conclude that (HN Fyy,) = Fiy. It
follows that H = G and that G is absolutely simple.

2.5. Prior to our proof of Theorem 3, we need

(2.5.1) If H is a serial locally solvable subgroup of a locally finite @,
then H¢ is also locally solvable.

The proof of (2.5.1) is straightforward and will not be given here.
For the proof of Theorem 3, let G be a countable simple locally
finite group and {D,} an approximating sequence such that for eacn =,
the perfect subnormal subgroups of D, are of defect d or less. Now
let H ser G with 15 H; from (2.5.1) and the fact that simple locally
solvable groups are finite [11; I, p. 154], we see that H is not locally
solvable. Thus, there is an n, such that for n>mn,, HN D, is not
solvable. Consequently, if n>mn,, the subgroup (H N D,)®, the inter-
section of the terms of the derived series of H N D,, is a non-trivial
perfect subnormal subgroup of D,. From our assumptions, we have
(HN D) <a<azD,. Lemma 1 now implies that V =
=U{HN D,)*:n>1} <, G and the simplicity of G forces V = G.
Since V C H, we have H = @ also, and @ is absolutely simple.
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