RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GILBERTO DINI

ANGELA SELVAGGI PRIMICERIO

Proper holomorphic mappings between Reinhards domains and pseudoellipsoids

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 1-4

http://www.numdam.org/item?id=RSMUP_1988__79__1_0

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Proper Holomorphic Mappings between Reinhards Domains and Pseudoellipsoids.

GILBERTO DINI - ANGELA SELVAGGI PRIMICERIO (*)

In recent years several results have been obtained on the conditions for the existence of proper holomorphic mappings between two domains D_1 and D_2 in \mathbb{C}^n and particularly for mappings of polynomial type. It is a conjecture, due to Bell [2], that if R_1 and R_2 are Reinhardt domains related by a proper holomorphic mapping then there is such a map which is polynomial. We recall that a Reinhardt domain (respect to O) in \mathbb{C}^n is an open connected set R such that if $z \in R$ for any $\theta \in \mathbb{R}^n$

$$T_{\theta}(z) = \left(\exp\left[i\theta_1\right]z_1, ..., \exp\left[i\theta_n\right]z_n\right) \in R$$
.

If such a condition holds only when $\theta_1 = \theta_2 = ... = \theta_n$ then R is said to be a circular domain.

A Reinhardt domain R is complete if for any $z^0 = (z_1^0, ..., z_n^0) \in R$ the closed polydisc $\Delta_{z^0} = \{z \in \mathbb{C}^n \colon |z_i| \leqslant |z_i^0| \ i = 1, ..., n\}$ is contained in R.

For any $\alpha \in \mathbb{N}^n$ the pseudoellipsoid

$$\Sigma_n(\alpha) = \left\{ z \in \mathbb{C}^n \colon \sum_{i=1}^n |z_i|^{2\alpha_i} < 1 \right\}$$

is a complete bounded Reinhardt domain.

(*) Indirizzo degli AA.: Istituto Matematico «U. Dini », Viale Morgagni 67/A, 50134 Firenze (Italy).

If $a \in (\mathbb{C}^*)^n$, $T_a \colon \mathbb{C}^n \to \mathbb{C}^n$, defined as $T_a(z_1, \ldots, z_n) = (a_1 z_1, \ldots, a_n z_n)$ is a linear automorphism of \mathbb{C}^n such that for any Reinhardt domain R, $T_a(R)$ is still a Reinhardt domain. So, we will say that two Reinhardt domains R_1 and R_2 in \mathbb{C}^n are T_a -equivalent, $R_1 \cong R_2$, if there exists $a \in (\mathbb{C}^*)^n$ such that $R_1 = T_a(R_2)$. It is clear that any T_a does not affect the polynomial feature of a map $f \colon R_1 \to R_2$.

In this note we prove that Bell conjecture holds when $R_2 = \Sigma_n(\alpha)$. More exactly

THEOREM 1. Let R_1 be a Reinhardt domain in \mathbb{C}^n with $0 \in R_1$. If there exists a proper holomorphic mapping $T: R_1 \to R_2 \cong \Sigma_n(\alpha)$ then there exists a proper polynomial holomorphic one.

In [4] the autors proved

THEOREM 2. Let R_1 be a Reinhardt domain in \mathbb{C}^n and

$$f: R_1 \to R_2 \cong \Sigma_n(\alpha)$$
,

a proper polynomial holomorphic mapping then $R_1 \cong \Sigma_n(\beta)$ where $\beta_i/\alpha_i \in N$ for i=1,...,n.

The previous theorems allow to characterize in the following corollary Reinhardt domains properly related to pseudoellipsoids.

COROLLARY 3. Let R_1 be a Reinhardt domain in \mathbb{C}^n with $0 \in R_1$, $R_1 \cong \Sigma_n(\beta)$ if and only if there exists a proper holomorphic mapping $F \colon R_1 \to \Sigma_n(\alpha)$ on a pseudoellipsoid $\Sigma_n(\alpha)$.

PROOF OF THEOREM 1. First consider $R_2 = \mathbb{B}_n(0,1)$, the unit ball in \mathbb{C}^n . We require two key facts.

FACT 1 (Alexander [1]). Let N be a neighborhood of $p \in b\mathbb{B}_n$ and F a non-constant mapping holomorphic in $N \cap \mathbb{B}_n$ and C^{∞} in $N \cap \overline{\mathbb{B}}_n$. If $F(N \cap b\mathbb{B}_n) \subseteq b\mathbb{B}_n$ then F extends holomorphically to an automorphism of \mathbb{B}_n .

FACT 2 (Bell [2]). A proper holomorphic mapping F between bounded complete Reinhardt domains extends holomorphically past the boundary and if $F^{-1}(0) = \{0\}$ then F is a polynomial mapping.

To apply Bell's results let us see that R_1 is complete and bounded. R_1 is complete: infact if $z^0 \in R_1$ T will extend to a holomorphic map $\widehat{T}: \overline{A}_{z^0} \to \mathbb{C}^n$ (see for example [5] theorem 2.4.6). The existence of $z \in \overline{A}_{z^0} \cap (\mathbb{C}^n - R_1)$ would contradict the maximum principle for the

function $\sum_{i=1}^{n} |\hat{T}_{i}(z)|^{2}$, where \hat{T}_{i} are the components of \hat{T} .

 R_1 is bounded otherwise by Liouville theorem T would not be proper.

For any given proper mapping $T: R_1 \to \mathbf{B}_n$ and for any $g \in \operatorname{Aut}(R_1)$ we claim that there exists $\Phi_g \in \operatorname{Aut}(\mathbf{B}_n)$ such that $T \circ g = \Phi_g \circ T$ on R.

As T and g extend holomorphically past the boundary, one can find a point $P \in bR_1$ and a neighborhood U of P in \mathbb{C}^n such that

- i) $J_T(z) \neq 0 \ z \in U$,
- ii) g is a biholomorphism on U,
- iii) $J_T(\xi) \neq 0, \ \xi \in g(U), \ \text{where}$

$$J_T(z) = \det \left(\partial T_i(z) / \partial z_i \right) \quad j, i = 1, ..., n.$$

(By the way, one could show that J_T can vanish only on coordinate hyperplanes.)

Furthermore, for any $z \in U \cap bR$, $g(z) \in bR$ and $T(z) \in b\mathbf{B}_n$ and if $\zeta \in g(U) \cap bR$, $T(g(\zeta)) \in b\mathbf{B}_n$.

Hence one can define a biholomorphism $\varphi = T \circ g \circ T^{-1} \colon T(U) \to T(g(U))$ such that $\varphi(T(U) \cap b\mathbb{B}_n) \subseteq T(g(U)) \cap b\mathbb{B}_n$.

By fact 1 such a map extends to $\Phi_g \in \operatorname{Aut}(\mathbb{B}_n)$ and $\Phi_g \circ T$ and $T \circ g$ agree on U, hence on R_1 .

As $\operatorname{Aut}(B_n)$ acts transitively one can find $\psi \in \operatorname{Aut}(B_n)$ such that $\psi \circ T \equiv F \colon R_1 \to B_n$ is a proper map and F(0) = 0.

For any $\theta \in \mathbb{R}^n$ let Φ_{θ} be the automorphism of \mathbf{B}_n such that $\Phi_{\theta} \circ F = F \circ T_{\theta}$.

$$arPhi_ heta(0) = arPhi_ hetaig(F(0)ig) = Fig(T_ heta(0)ig) = F(0) = 0$$
 .

This implies $F^{-1}(0) = \{0\}$ and by fact 2 F is polynomial. In fact if there exists $0 \neq a \in F^{-1}(0)$, for any $\theta \in \mathbb{R}^n$, $F(T_{\theta}(a)) = \Phi_{\theta}(F(a)) = 0$ hence F would not be proper.

In the general case $R_2 \cong \Sigma_n(\alpha) \neq \mathbb{B}_n(0,1)$ consider

$$H_{\alpha} \colon \Sigma_n(\alpha) \to \mathbb{B}_n(0,1)$$
,

defined as $H_{\alpha}(w_1, ..., w_n) = (w_1^{\alpha_1}, ..., w_n^{\alpha_n}).$

 $H_{\alpha} \circ T \colon R_1 \to \mathbf{B}_n$ is a proper holomorphic map hence R_1 can be properly mapped on \mathbf{B}_n by a polynomial map and $R_1 \cong \Sigma_n(\beta)$ for suitable β by theorem 2.

By results of Landucci [6] $\gamma_i = \beta_i/\alpha_i \in \mathbb{N}, i = 1, ..., n$ and

$$(z_1,\ldots,z_n) \rightarrow (z_1^{\gamma_1},\ldots,z_n^{\gamma_n})$$

s the required map from R_1 on R_2 .

REMARK. One can obtain the same conclusion of theorem 1 for circular domains D under suitable conditions (see [3]) that imply the extendibility of $T: D \to R_2 \cong \Sigma_n(\alpha)$ applying results analogous to fact 2, for circular domains, due to Bell [3].

The following example shows anyhow that there are circular domains D in \mathbb{C}^n such that there exists proper polynomial holomorphic mapping $P: D \to \mathbb{B}_n$ but which are not T_a -equivalent to pseudoelipsoids.

$$egin{aligned} &(z_1+z_2,\,2z_1-2z_2,\,z_3^2)\colon \mathbb{C}^n o \mathbb{C}^n ext{ maps } D = \ &= \{z \in \mathbb{C}^n\colon 5|z_1|^2 +\, 5|z_2|^2 -\, 6 \, \operatorname{Re} z_1z_2 + |z_3|^4 < 1 \} \end{aligned}$$

on the ball, but D is not a Reinhardt domain.

REFERENCES

- H. ALEXANDER, Proper holomorphic mappings in Cⁿ, Indiana Univ. Math. J., 26 (1977), pp. 137-146.
- [2] S. Bell, The Bergman kernel function and proper holomorphic mapping, Trans. Am. Math. Soc., 270 (1982), pp. 685-691.
- [3] S. Bell, Proper holomorphic mappings between circular domains, Comment. Math. Helvetici, 57 (1982), pp. 532-538.
- [4] G. DINI A. SELVAGGI PRIMICERIO, Applications holomorphes propres de type polynomial pour une classe de domaines de Reinhardt, C. R. Acad. Sc. Paris, 300 (1985), pp. 217-219.
- [5] L. HÖRMANDER, An introduction to several complex variables, Van Nostrand, Princeton, N.J., 1966.
- [6] M. LANDUCCI, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Am. Math. Soc., 282 (1984), pp. 807-811.

Manoscritto pervenuto in redazione il 31 luglio 1985.