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Constant Mean Curvature Surfaces in 4-Space Forms.

JOST-HINRICH ESCHENBURG (1) - RENATO DE AZEVEDO TRIBUZY (2) (*)

1. Introduction : constant mean curvature in 3-space.

Consider the following classical theorems about constant mean

curvature surfaces in euclidean 3-space:

THEOREM (a) (Ricci) [2, 12]. Let (.1~2, ds2) be a simply connected
surface with Gaussian curvature 2L Then there exists an isometric
immersion f : M -* R3 with constant mean curvature H without um-
bilic points if and only if .H2 &#x3E; .K and the metric _ (H2 - .K)~ ds2
is flat.

THEOREM (b) (H. Hopf) [9]. Let ~2 be a closed surface with Euler

characteristic X and an immersion with constant mean
curvature. Then either is a round sphere or 2x = - N where N
is the number of umbilic points, counted with multiplicities.

REMARK. Hopf does not state explicitly this theorem but only
its corollary: A topological sphere of constant mean curvature is
round ([9], Ch. VI, 2.1). However, the more general statement can
be read off from VI, 2.3., p. 139: In the non-umbilic case the singular-
ities of the principal line fields, i.e. the umbilic points are isolated and
of index j = - n/2 where n is the order of the umbilic point (see below).

(*) Indirizzo degli AA.: J.-H. ESCHENBURG: Mathematisches Institut

Memminger Str. 6, D-8900 Augsburg, West Germany; R. DE AZEVEDOTRI-
BUZY : Departamento de Matemática, Universidade do Amazonas, 69000 Ma-
naus, A.M., Brasil.
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(2) Supported by CNPq, Brasil, and GMD, Germany.
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This implies Theorem (b) by the Poinear6-Hopf index theorem which
was discussed before ([9], Ch. III, 2.2).

At first sight, the two theorems seem to be unrelated since in (a)
the umbilics are excluded, in (b) they are counted. But it turns out
that a sharpened version of (a) in fact implies (b). To see this, we must
extend the local characterization of minimal surfaces given in (a)
to the umbilic points. First observe that the flatness of a metric
d§2 = a ds2 is expressed by the differential equation

where 4 is the Laplacian with respect to the metric ds2. Unfortunately,
in general the left hand side is undefined at the zeros of the function a,
and the zeros of a = (H2 - K)i are precisely the umbilic points. How-
ever, y for a certain type of zeros the expression d log a makes still
sense:

DEFINITION. A function a : M --~ [o, oo) on a surface (M, dS2)
is called of absolute value type (A VT) if every point in M has a neigh-
borhood U such that a = on U where cco is smooth and positive
and hoz-1 is holomorphic for some conformal coordinate z: U- C.

Here, conformal means that ds2 = £2 dzdi for some positive func-
tion A, called conformal factor. Note that then d = 4A-2 a~ 8, .

If an absolute value type funct ion a does not vanish entirely
its zeros are isolated, and around each zero we have 4 log a = d log a.
which is still defined and smooth at the zeros. The order ord, (a) of a
at a zero p E M is, by definition, the order of its holomorphic part
h at p. If M is a compact surface, we define the number of zeros of a
(with multiplicities) to be

Then we get as an easy consequence of the divergence theorem
(see [7], 4.1 )

LEMMA. 1. Let (M, d~2) be a compact surface and a 1 0 an AYT
function on M. Then
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REMARK. One may generalize the notion of A V T functions by
allowing the holomorphic part h to have poles. Then the lemma is
still correct with N(a) = number of zeros - number of poles.

Now we can give the sharpened version of Ricci’s theorem (a)
for any 3-space form of constant sectional curvature c, Q~ :

THEOREM 0. Let (M, ds2) be a simply connected surface with
Gaussian curvature g. Then there exists an isometric immersion

f : M -~ Q~ with constant mean curvature .H if and only if c + H2
and a:= (c + H2 - K)i is A VT satisfying

0 and f is totally umbilic. In fact, there is exactly a one-
parameter family of such immersions, up to local congruence.
Of course, for the « only if » part we do not have to assume simple
connectivity. By local congruence we mean that the lifts to the
universal cover 3 are congruent.

This theorem has been stated by Lawson [12], but avoiding um-
bilic points. However, for global applications the umbilic points are
essential as we saw. In fact, from Theorem 0 and Lemma 1 we get
immediately Theorem (b), using the Gauss-Bonnet theorem:

COROLLARY. Let M be a compact surface and an im-

mersion with constant mean curvature .H~. Then either f is totally
umbilic or

where X is the Euler number of M and a = (c + H 2 - K)I. Note

that the zeros of a are precisely the umbilic points, y by Gauss equa-
tions.

As a consequence, y a topological sphere of constant mean curva-
ture in Q’ is totally umbilic. This is well known: See Almgren [1]
and Calabi [4] for Ql c = S3 and Chern [6] for general space forms.

Theorem 0 turns out to be a special case of a theorem in dimen-
sion 4 which we will discuss in the next two sections. But the theo-

rems and (b) stated at the beginning may serve as a model case as
well: Local characterization in terms of curvatures leads to global
results. In the present paper we want to carry out this program for
minimal surfaces in 4-space of constant sectional curvature (see also [7]
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for the case of constant holomorphic curvature). We wish to mention
that everything can be done for branched immersions as well which
we will discuss in a subsequent paper (*).

Part of this work was done while both. authors were visiting the
Federal University of Ceara at Fortaleza, Brasil. It was finished during
the visit of the second author at the University of Miinster, Germany.
We wish to express our thanks to these universities for their hospitality
and to CNPq and GMD for financial support.

2. Constant mean curvature in 4-space.

In the following sections, y let Q’ be any 4-dimensional space of
constant sectional curvature c and (M, ds2) a surface with Gaussian
curvature g which is always assumed to be simply connected if we
claim existence of an immersion. One way of carrying over the notion
of constant mean curvature surfaces to 4-space is the assumption of
parallel mean curvature vector: If f : M -~ Q~ is an immersion with
2nd fundamental form «(z, y) == (Dx y)1, then q : = 2 trace oc is called
the mean curvature vector field, and this is called parallel if it is a
parallel section of the normal bundle, i.e. = 0.

THEOREM 1. There exists an isometric immersion f : with

parallel mean curvature vector of length H &#x3E; 0 if and only if I~ 
~ c + .H’2 and a : _ (c + .H2 - K)l is AVT satisfying

In fact, up to local congruence, y there is exactly a two-parameter
family - ~c  C1, T ~ ’JT, of such immersions.

REMARK. It is known by Yau [17] that a surface of nonzero parallel
mean curvature vector always lies in a totally umbilic hypersurface
Q~. c Q~ with constant mean curvature H’= (H2 - (c’ - c))l, for some
c’ &#x3E; c. Therefore, Theorem 0 and Theorem 1 are essentially the same.
The two parameters a and T are easy to explain geometrically: One

parameter 7: is obtained by rotating the second fundamental form in
the tangent plane, i.e. replacing oc with where Rt is the rotation
of angle T. The other parameter a arises as the angle between the

(*) J.-H. ESCHENBURG and R. TRIBUZY, Branch points of conformal map-
pings of sur f aces, Math. Ann., 279 (1988), pp. 621-633.
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normal vector of Q:, in Q: and the mean curvature vector n in the
normal plane of M in Q~ . In other words, we have

(Observe that (c’- c)k is the mean curvature of Q’, in Q"). In fact, we
see that for fixed Icrl, the immersions fct all belong to the same totally
umbilic hypersurface Q’,, up to local congruence, and that is con-

gruent to under a reflection in Q~~ .
There is yet another way of generalizing the notion of constant

mean curvature to higher codimension, namely by only assuming
that ]] = .8’ = const. S. T. Yau has investigated this situation [17].
In particular he claimes: If .M is diffeomorphic to a sphere, then
any immersion /:~f2013~(~ with II = const &#x3E; 0 is totally umbilic.
However, 9 his proof relies on the claim that for any surface 
with II = const, like in the minimal case II =0, the quartic form
~)=~’(~~)~2013~’(~J~)~ where J denotes the 90 °-rotation
on M is the real part of a holomorphic quartic form; here we let
a’(x, y) := a(x, y) - x, the trace free part of the 2nd funda-
mental form a. We will show by a counterexample that in general
this is wrong (see Appendix). So the question remains open whether
there exists a non-trivial immersion of S2 into Q§ with II - const ~ 0.

3. Minimal surfaces in 4-space.

In this case, as a new ingredience we have the normal curvature
which is defined as follows. Let f : M --~ Qc be any isometric im-

mersion. Let DN be the induced connection on the normal bundle
NM and .RN its curvature tensor. Then RN is determined by a single
function, called normal curvature,

where and (el, e2, ea, e4) is an oriented orthonormal basis of

ei , e2 tangent and e~ normal. ( T M and NM are always
considered as subbundles of f* TQ’.) Thus .gN can be defined only
if the bundle f*TQ§ over M is orientable. If the mean curvature

vector ?7 is parallel and non-zero, the plane bundle NM has a parallel
section and hence = 0. But now we consider minimal surfaces,
i.e. immersions with q = 0. Then it follows from Gauss and Ricci
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equation that

with equality exactly at those points p E M where the so called ellipse
of curvature

in N l’ M is a circle (see ch. 4); these points are called circular (or semi-
umbilic). A minimal immersion is called superminimal if every point
is circular.

THEOREM 2. Let M-~ R be a smooth function satisfying (3).
Then there exists an isometric minimal but not superminimal immer-
sion f : ..1V1-~ Q~ with normal curvature Kv if and only if the func-
tions at :_ (c - are AYT with

In fact, up to local congruence, there is exactly a one-parameter family
- x  ~  ~~ of such immersions. 

’

This theorem was obtained in [16] under the assumption IKNI 
 c - K and no circular points.

If M is closed and oriented with oriented normal bundle, the Gauss-
Bonnet-Chern-Weil theorem gives the Euler number XN of the normal
bundle:

Hence integrating (2) and using Lemma 1, we get immediately:

COROLLARY. Let M be a closed oriented surface and f : if -* Q"
a minimal but not superminimal immersion with oriented normal
bundle. Then we get

and in particular

where
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Recall that N(a+ a_) is the number of circular points (counted with
multiplicities). One may interpret (6) as follows: At any p E M consider
the longest principal axis of the ellipse of curvature Since the

mapping x) : has degree two, there are exactly
four vectors with xi) II maximal. This defines a field
of two perpendicular lines outside the circular points, y and in the
circular points the index of this two-line field is - ordp (a+a_) (see [8]).
Thus we may get (6) from the Poincare-Hopf index theorem. This

argument is very similar to Hopf’s proof of Theorem ( b ) (see ch. 1).
In particular it follows from (6) that a minimal sphere in Q" is

always superminimal which was proved first by Calabi [4] and that
a minimal torus is either superminimal or has no circular points at all.

Now consider superminimal immersions in Q~. For these we have

and the following intrinsic characterization:

THEOREM 3. There exists an isometric superminimal immersion
f : M --~ Q~ which is not totally geodesic if and only if c and the
function a : = (c - Kl’ is with

Equation (7) was known to Calabi [4]. The theorem was obtained

by Tribuzy and Guadalupe [16] in the case K  c (i.e. no points for
which a vanishes). For c = 0, Q ~ == 11~4, the theorem shows that the
superminimal immersions are exactly those which are holomorphic
with respect to a suitable isometry between R4 and C2, and they are
also totally real with respect to another such isometry (see 3.6, 3.8
and the concluding note in [7]). For c = 1, Q4 = ~54, we see that there
is only one superminimal immersion of constant curvature which is not
totally geodesic, namely the Veronese embedding of RP2 with .K = 3.
The superminimal surfaces in 54 have been investigated by R.
Bryant ([3], see also [10]).

As a global consequence of (3), (3’) and Theorem 3 we get immedi-
ately a theorem of Rodriguez and Guadalupe [13]:

COROLLARY (see [13]). Let M be a closed oriented surface and

f : a minimal immersion with orientable normal bundle. Then
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with equality if and only if f is superminimal. In this case we have

where a = (c - unless f is totally geodesic.
Recall that N(a) counts the number of totally geodesic points

(a = 0) with multiplicities.
One consequence of this corollary is a theorem of E. Ruh [14]:

A minimal 2-sphere (which has to be superminimal as we saw) with
trivial normal bundle (xN = 0) is totally geodesic. E.g. it is well known
that xN = 0 for an embedded oriented closed surface in S4 ( [11],
Cor. 3.2); hence an embedded minimal sphere in S4 is a great sphere.

4. Structure equations of surfaces in 4-space forms.

Let be a surface and an immersion. Let (el, e2,
e3, e4) be a Darboux frame along f , i.e. an orthonormal frame with

et, e2 tangent e4 normal, and which is understood to be oriented
if orientations of and NM are given. Then the 1-forms on M

1  a, b  4, satisfy = (t)4 = 0, COab = - COba and the Cartan struc-
ture equations

and the induced metric is ds2 = C02 + C 1)2. Vice versa, if 1-forms 

coab with these proporties are given on a simply connected surface .D~l
and if the quadratic form ds2 = + co2 is nondegenerated, there exists
an immersion f : .~--~ Q~ with Darboux frame ei , ..., e4 such that Wa,

are the corresponding 1-forms, and this immersion is unique up
to local congruence (e.g. see Spivak [15]). We will call two immersions
f , ,~ : .~C --~ Q~ locally congruent if their lifts to the universal cover 4
are congruent.

where we assume always i,
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Then we have

Now we put

Note that the mean curvature vector so 11 nil || - 
The functions kj: are closely related to the ellipse of curvature which
consists of the normal vectors

where c = cos = sin r for arbitrary angles r. This ellipse is a circle
if and only if (x’ (el, e1 ) and (X( e1, e2 ) are perpendicular and of the same
length, i.e. iff l~+ = 0 or l~_ - 0 at the particular point.

Now we introduce the complex valued 1-forms

Then one easily checks that the Cartan equations (C) are equivalent
to the following set of equations:

REMARK. Under the usual isomorphism of the Lie algebra ~’0 (4)
onto the Lie algebra the connection form co == (Wab) is
mapped onto the pair
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where (i, ~, ij) is the usual basis of Sp (1), viewed as the space of im-
aginary quaternions. The equations (9)-(12) are just a translation
of (0) into the Lie algebra (compare [10]).

Moreover, from the structure equations of the bundles TM and
with induced connections we have

Hence together with (11) and the definition of the "PI we get

where H ’ ° 1Ir¡11 _ 
In particular, the immersion is minimal if and only if ’ijJ+ and Y -

are (1, 0)-forms, i.e. multiples of q. Note that for any conformal co-
ordinate preserving the orientation given by (e1, e2), we
have q = for some complex valued function Iz. Since ds2 = 990 =
- so is the conformal factor.

The mean curvature vector field is parallel if and only if

hence

So by (9), this is equivalent to = Or, in other
words, the (1, 0)-form

the (1, 0)-part of "PI’ satisfies

It is easy to check that for an arbitrary immersion ,
an oriented surface the quartic form
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is independent of the choice of the Darboux frame and hence globally
defined. In fact, its real part is ~R(x) _ x) ~~ 2 - II oc’ (x, JX) 11 2
where J denotes the almost complex structure on M. If the immersion

has parallel mean curvature vector of length .H &#x3E; 0, this form is holo-
morphic : if 99 = P, dz for some conformal coordinate z, putting

we get and from (9)
and (12’):

Therefore, which shows that is a holo-

morphic function. If H # 0, this quartic form splits as 0 == 
where are holomorphic quadratic forms: We may choose in this
case e3 = then e4 are parallel in the normal bundle. So Wa4
vanishes and hence the 2-forms ~t : = are holomorphic quadratic
forms, y by a similar argument as above.

5. Proof of the theorems.

The link between the structure equations (9)-(12) and equations ( 1 ) ,
(4), (7) is given by the following lemma which is essentially an easy
special case of a theorem of Chern [5]. Let (M, ds2) be a surface. A
complex valued function p on M will be called of holomorphic type
if locally p = po pl with po smooth and nowhere vanishing and 
holomorphic for a suitable conformal coordinate z on Clearly
then Ipl is an AYT function.

LEMMA 2. Let p be a smooth complex valued function on M,
and (o a real valued 1-form on M. for some con-

formal coordinate z. Then the equality

is valid if and only if p is of holomorphic type and

Moreover, then
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REMARK. Note that az log p and 4 log (p) I are well defined even
at the zeros of p, if p is of holomorphic type.

PROOF (see [7]). Since w is real, we have co = b dz + for some

complex function b. Thus (*) is equivalent to the differential equa-
tion for p:

Let u be a solution of the inhomogeneous Cauchy-Riemann equation
az u = ib and put po := eu. Then po is a nowhere vanishing solution
of (* *). If p is any other solution of ( ~ ~ ), then is holo-

morphic. So p is of holomorphic type and (**) is equivalent to
b = and hence to (17). Differentiating (17), we get (18).

(a) The local equations (1 ), (4), (7). Now let (M, ds2) be a surface
and f : an isometric immersion with parallel mean curvature
vector field of length H &#x3E; 0. Let e1, ... , e4 be a Darboux frame along f .
Then we may apply Lemma 2 to the forms ’ijJ:t = = re-

placing (*) with (12’). So the function

is A VT (since ¡,ul _ ~ &#x3E; 0), and if 0, we get from (18)

since 4 log £ _ - g (which also follows from (18), using (9) and (13)).
On the other hand, we get from (13) and (14)

and theref ore,

If 0, the form W34 is exact by (16) and therefore 2~ = 0, by (14);
so we get (1). If .H’ = 0, we get (4). If a+a_ = 0 then either a+ n 0
or a_ - 0 since a+, a- are both A VT. If a+ = a_ - 0, the immersion
is totally umbilic (i.e. a’= 0), hence totally geodesic if .H’ = 0. If

a- = 0, a+ =F 0, we have H = 0 (since otherwise a+ = a_) and there-
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fore KN==c-K and ~ == (2(c2013 ~))~ and similarly if a+ = 0,
a_ ~ 0. This proves (7).

(b) Uniqueness. Let be oriented, Qc simply connected and
two isometric immersions, y both with the same normal

curvature KN and with parallel mean curvature vector field of length
H &#x3E; 0. Assume that f , f induce the same holomorphic quartic form 0
on .M. If H # 0, assume further that also 0+ and 0- are the same for
both immersions. We claim that then f == got for some oriented

isometry of 
’ 

In fact, in case 0, the 1-forms ’ijJ+, are the same for both

immersions, so are the same by (12’) and hence the immersions are
congruent. In case .g = 0, 7 let e, 7 e4 and ei, 7 e2 , 7 g3 7 j, be local
oriented Darboux frames along f and f resp. (We consider TM as a
subbundle of f * TQ and Then we have == , k+ 1~-=1~+ k-,
and therefore

f or some real function i. Rotating the normal frame of f by this angle 7:,
we get 1pi:: == 1Jli:: for this new frame. As before, we get and
so f and I are congruent. In both cases, the isometry g of Qf taking
f to f preserves the orientation of both the tangent and the normal
bundle, so it is oriented.

REMARK. In fact, it is not necessary to assume that KN =KN.
We have ~_~_==(c2013-Er)~2013-B~ and we have 

_ ~.KN . In case .KN the immersion f and I diff er by an
orientation reversing isometry. Similar, in the case 0, it is only
necessary to assume that 4% = W and y~3 = where e3, e3 are pointing
in the direction of the mean curvature vector.

(c) Existence. Let (M, dS2) be a simply connected surface,
some number and KN a function which is zero if H &#x3E; 0, such

that

is A VT satisfying
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unless a+ n 0. Let U c M be an open disk and z : t7-~ C a conformal
coordinate. Choose an oriented orthonormal basis e1, e2 on U. Put

Wi = ~ , ei~ and = WI + Then =,udz with jyj _ ~, the con-
formal factor. By (17) we have

(recall that 4 log £ = 2013 .K). Since b :_ ~,4a+a_ is A VT, there exists
a holomorphie function g with b = lgl (see [7], 3.12). In fact we have
b = bolhl I with h holomorphic and bo &#x3E; 0 and d log bo = 0. So log bo
is the real part of a holomorphic function 1 and thus g el - h is holo-
morphic with lgl = b. In fact, g is uniquely determined up to a con-
stant factor ei7:. Choose any such g. Let k+, k- be functions of holo-
morphic type satisfying Ik:i:1 == a:i: and and put "Px ==
= + Hip. Then (10) is automatically satisfied. To satisfy (12’)
and hence (12), according to Lemma 2 we have to put

whenever := is not the zero function. Then we have

On the other hand,

this proves Equation (11). Finitely, put

Since 99 = ,u dz, we get by Lemma 2

and hence W12 = W12; Thus (9) is satisfied.
It remains to consider the case a+ a_ = 0 which implies H = 0.

If a- = 0, that means JE~ -~- K = c, we put "P+, w- as above and

1Jl- = 0, = w_. Then co- still satisfies (11) and hence
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as before. Therefore,

and hence satisfies (11). Equation (12) is valid for co-, as before,
and it is trivial for (9) is satisfied by definition of W12 (as an
intrinsic quantity).

If instead a+ = 0, we argue similarly replacing + with -. If

both a+ and a- are the zero functions, i.e..K = c, KN - 0, we put
1JJ+ = 1JJ- = 0, (0+ = co- = C012, and Equations (9)-(12) are satisfied.

Thus, by the general existence theorem, we get an isometric im-
mersion f : U --~ Q~ with parallel mean curvature vector of length H
(since (12’) is satisfied), together with a Darboux frame e1, ... , e4

along f . In fact, we recover any quartic form 0 and in the case 0

any two quadratic forms 0+ 1 0-, holomorphic with given absolute
values, by choosing the functions g, 1~+, 7 7~_ suitably.

Now cover if by open coordinate balls Ui . Then we get immersions
f t : Choose these so that the corresponding quartic or quad-
ratic forms agree in the intersections Ut n U~. By simple connectivity
of M, this can be achieved. Then for
some proper motion g of by the uniqueness part (b). Thus f and

together define an immersion of Ut u Us . Continuing this process,
we get an immersion f: with the desired properties.

It remains to verify the remark following Theorem 1. If 

is an immersion with parallel mean curvature vector of length 0,
the holomorphic quadratic forms 0+ and ø - have the same absolute
values Ik+1 - Ik-I - (c -~- H2 - K), . So they diff er by a constant

factor of unit length: Say gg+ = Hence ’ = and put-
ting := y~a - haip (see ch. 4), we get 

V+ = e

In other words, the parallel vector $ : = - (sin ~) e3 -~- (cos ~) e4 is

umbilic, i.e. ~~ = 0 (compare [17]). It is easy to see ([17]), that
lies in a totally umbilic hypersurface Q’ c in Q~ with normal vector ~.

Thus a:= ni2 -~-- ð is the angle between the mean curvature vector
17 = He, and $.

On the other hand, if f , f : are isometric immersions with

parallel mean curvature vector of length H &#x3E; 0 with |O| = |O| 1 and
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1p+/ip- = then = e4Ti ø for some constant angle í. Hence

y~t = and so a = .R.* a where RT denotes the rotation by i in
the tangent plane.

Appendix: Mean curvature vector of constant length.

We want to give an example of a surface in 4-space whose mean
curvature vector has constant length but whose quartic form 0 (see
~ch. 4) is not holomorphic (compare ch. 2).

Put e : R2013~C, e(t) = eit. Consider the immersion f : IxJ C2 = R4,
j(s, t) == (e(s), g(s) e(t)) where I, J are open intervals and g: 1 -&#x3E; (0, oo)
some smooth function. Let f, denote the partial derivatives. We
have f t and (1 + g’21’ = : h, ]] = g. Let us put

this is a Darboux frame for the immersion f . For the 2nd fundamental
form a we get in terms of this frame:

Therefore, the mean curvature vector has
constant length if and only if

On the other hand, the corresponding quartic form is
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with

and = ccy -E- iw2 where Wi _ d f, Now putting du = ds
we have and so (u, t) is a conformal coordinate

system for the metric on I X J induced by f, with conformal factor g.
Since its coefficient function is is

holomorphic if and only if (k 3 2+ k4 ) g4 = const, hence iff

Since h2 = 1 + g’ 2, Equations ( A1 ) and (A2) are ~2nd order differential
equations for g. Since they are independent, y one finds a function g
which solves (A1) but not (A2).

To be specific, let e1 = 5 and consider the solution g of

with initial values

Then g solves also (A1 ), and it follows from (A1’ ) that g is even with
g"(0) = 3, g~4~(o) = 78. Instead, from (A2) we would get g(4)(0) = 72,
so g does not solve (A2).
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