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Hölder-Continuity of Solutions
for Some Schrödinger Equations.

GIUSEPPE DI FAZIO (*)

0. Introduction.

Recently the local regularity properties for solutions of Schr6dinger
equations of the form

have been studied by many authors (see e.g. [A-S], [D-M], [C-F-G],
[C-F-Z]) allowing V to be a very singular potential, precisely 
the Stummel-Kato class (see definition 1.1 ) .

Under this assumption in [C-F-G] was established a Harnack ine-
quality and proved a local continuity result for solutions of ( ~ ).

It is easy to see that if SZ is an open bounded set in Rn then

for p &#x3E; n/2 ; hence the result in [C-F-G] generalizes the well
known H61der estimates by Stampacchia [ST], Ladizhenskaia [L-U] etc.

We stress that high integrability of V does not play an essential
role.

In fact also the Morrey space is contained in S for ~ &#x3E; n - 2
and being in L1 ~~(SZ), for any 0 C ~ C n, does not imply any extra
integrability (see e.g. the examples in [P2]).

In this paper we assume V in .L1 ~~(,S~) (A &#x3E; n - 2) and prove local
holder-continuity for solutions of (*) hence, in this special situation,
we improve the continuity result in [C-F-G].

(*) Indirizzo dell’A.: Via del Canalicchio 9 - 95030 Tremestieri Etneo

(Catania), Italy.
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Our technique is very close to the one in [C-F-G] heavily relying
on the exploitation of well known estimates for the Green function of L.

There is however a technical difficulty.
It is impossible to use the usual C°°-approximation for .L and V

(as in [C-F-G]) because functions in Morrey spaces are not close, in
general, to bounded functions in (see [P1] p. 22 for an example
of an function with distance from L°°(SZ) equal to 1). We
overcame this difficulty by developping a representation formula for
solutions of (*) that extends classical results on the Green function
(see e.g. [ST]).

1. Some function spaces.

Let ,S~ be an open bounded set of Rn (n &#x3E; 3).
We will need some mild regularity assumption to be satisfies by

8Q e.g.

where r : 0  r  diam (Q) (1).

DEFINITION 1.1 ( Stummel-.gato clas s ) . W e sa y that 

belongs to the class S iff there exists a non decreasing
functions q(r) &#x3E; 0 with limq(r) = 0 such that

r-+0

Obviously S C 

DEFINITION 1.2 (Morrey spaces). (0  A  n) is the space
of functions f E Ll(92) such that

(1) JEJ denotes the Lebesgue measure of a measurable subset L~’ of 
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LEMMA 1.1. I f u belongs to L1’;’(Q) (n - 2  Â  n) then u belongs
to the Stummel-Kato class and

where C depends only on 2 and n.

Indeed y

REMARK 1.1:

Indeed the inclusion is an immediate consequence of

Lemma 1.1 and the other inclusion is obvious.
We now recall the definitions of the Sobolev spaces 

and 

DEFINITION 1.3. We say that u belongs to

 p  + °°) iff ’U,

.gl~~(S~) is a Banach space under the norm

the closure o f with respect to the norm; 
is the dual space o f where lip + 11q = 1. We have T e H-1,p (Q)
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2. Green’s function and a representation formula.

In the following sections we will consider the operator L - V
where L is the divergence form elliptic operator

satisfying

and V is a function

DEFINITION 2.1. We say that u E is a local weak solution

of the equation

iff

Definition 2.1 is meaningful by the inclusion c S and [S]
p. 138-140.

We recall that under the weaker hypothesis V E S the following
regularity result for weak solutions was proven in [C-F-G].

THEOREM 2.1. There exist two positive constants C = C(v, n), ro =
= ro(v, n, r~) (r¡ from definition 1.1),.and a non decreasing function

lim co(r) = 0 such that, for any local weak solution of Lu + Vu = 0
r-+0

in Q and for every ball Q ( 0  r c ro ) we have :
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We now define a different class of solutions :

DEFINITION 2.2. Let L be such that (2.1 ) holds, let It be a bounded

variation measure in Q and

yYe say that u E is a very weak solution of the equation

i f and only if

for every V E B’o~2(S~) n CO(D) such that Ly E In much the same

way as in [ST] it is possible to show

LEMMA 2.1. Assume p, is a bounded variation measure and T =

I f u E H¿,2(Q) is a weak solution of the equation

then u is the very weak solution of the same equation.

The proof is an easy consequence of the definitions above. We now
recall the definition of fundamental solution.

Let y E SZ and 6, the Dirac mass at y.
Consider the equation

We call its (very weak) solution the Green’s function relative to
the operator L with pole at y and we denote it by y).

By the definition above the solution 99 C of Lq = y~,
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where y E is given by the formula

Consider:

where p is a bounded variation measure, y
have the following

THEOREM 2.2:

is the very weak solution of (2.8).

PROOF. We consider only the case p = 0 (for the case T = 0
see [ST] Th. 8.3 p. 227).
We will show that

satisfies:

such that

Let

Then

We observe that
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Indeed we have :

Then (see [ST] p. 220 (8.6))

By Tonelli and Fubini’s theorems we have:

REMARK 2.1. In the proof above we may differentiate under the

integral; i.e.

In fact, for every we have, using Fubini’s theorem:
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3. Hölder-continuity of local solutions.

We now state the main result of this paper

THEOREM 3.1. There exist positive numbers ro = ro(v, II A, n)
a = a(v, n), C = C(v, n, II A) such that for any local solution u

of Lu = Vu in Q and f or any ball Br (xo ) , with CQ, 0  rro
we have

PROOF. Let V E and u a local weak solution of Lu = Vu
i.e. ~c E such that :

It is easy to see that uq is such that

holds.

Therefore, by Lemma 2.1, is a very weak solution of
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By Theorem 2.2 we have

Now we such that 0 c g~ c 1, = 1 in 

supp (g~) ~ B2r(’ x0 ) ~ I where 0  and ro is determined by
the local boundedness theorem 1.4 in [C-F-G].

Obviously, for every we have:

We begin estimating I.

Where N is a positive number to be fixed later.
To estimate A we use the inequality (see [G-T] p. 200 Th. 8.22

and Harnack’s Theorem)
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hence

and by Lemma 1.1

To estimate B we use Lemma 1.1 and the following bound

proven in [L-S-W].
We obtain:

and therefore

Now, if we choose we obtain

Estimating II and III as in [C-F-G] we obtain
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and

The theorem now follows.
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