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On Endomorphism Algebras
over Admissible Dedekind Domains.

GIORGIO PIVA (*)

0. Introduction.

In 1963 A. L. S. Corner proved the following noteworthy

THEOREM A (cf. [C], Theorem A, p. 688). Every countable, reduced
and torsion- f ree ring is isomorphic with the endomorphism ring of some
countable., reduced and torsion- f ree group.

Some years later (1969) A. Orsatti generalized this result to the
class of locally countable, y reduced and torsion-free rings; precisely
he established

THEOREM B (cf. [0], Theorem A*, p. 143). Let A be a locally
countable., redueed and torsion- f ree ring; then A is isomorphic with the
endomorphism ring of some locally countable, reduced and torsion-free
group G, having the same cardinality as A.

In proving this result the Author substantially used Corner’s
methods but he simplified them by the introduction of a local-global
argument.

Now, by means of this technique, y we aim to extend Theorem B
to a class of algebras over particular Dedekind domains. We first
give the following

DEFINITION. Let R be a Dedekind domain (not a field) and let Q
be the set of its non-zero prime ideals; .R will be called « admissible »

(*) Indirizzo dell’A.: Via A. Minto 3 - 35028 Piove di Sacco (Padova),
Italy.
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if its P-adic completion has uncountable transcendence degree over Rp
for each P E Q.

We also recall that R == n Rp where R is the natural comple-
_ 

tion of 1~, Rp the P-adic completion of R or, equivalently, the na-
tural completion of .Rp for each P E S~.

We are now in position to state our

THEOREM C. Let R be an admissible Dedekind domain; then if A
is any R-algebra locally of countable rank which is reduced and torsion-
free as an R-module, there exists a reduced, torsion- f ree R-module M
locally of countable rank and of the same (global) rank as A such that
A = EndR(M).

Recently several authors obtained « Corner-type » results on endo-
morphism algebras; the sharpest one has been achieved in 1985 by
Corner himself and R. G6bel using a combinatorial argument due to
S. Shelah (see [CG] ) . We refer to this paper also for a full bibliography
on above cited works.

Nevertheless our Theorem C cannot be derived from the Main
Theorem of [CG]. Infact in § 6 of [CG] every R-algebra considered
in the statement of Theorem C (apart from countable case which is
not treated by Corner and G6bel) is realized as the endomorphism
algebra of a suitable R-module M, but the rank of M ( = rk M) results
not less than the cardinality of A, i.e. hence one gets
rk A  rk .M~ whenever rk A and the « global rank requirement »
of Theorem C is not satisfied.

1. Preliminaries.

Throughout .R denotes an admissible Dedekind domain, S~ the set
of its maximal ideals and, for each P Rp is the localization of R
at P: Rp is a discrete valuation ring. All modules considered are tor-
sion-free. Let .M be an R-module ; M is said to be divisible if rM = M
for every non-zero r ~VI is said to be reduced when it admits no

divisible submodules other than zero.
Now let L be a sub-.R-module of ll ; we recall that L is pure in M

when rL = L n r~l for every r E R, and .L is P-pure in M when
for every n E N
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Given a subset X of M we denote by .X~~ the intersection of all
pure submodules of M containing X; ~.X ~,~ X&#x3E; for
some r e R, r # 01, where (X) is the submodule generated by X.

For each P we set and form the quotient

which results a reduced, torsion-free R-module. Next we
endow M with the natural topology defined by taking the family of
submodules (r E 1~, r ~ 0) as a basis of neighbourhoods of 0: M
is Hausdorff whenever In particular a torsion-

free module is Hausdorff in its natural topology if and only if it is
reduced. All homomorphisms between modules endowed with their
natural topologies are continuous.

From now on we suppose M to be reduced and torsion-free and
consider its natural completion 0i (that is the completion of .~ provided
with the natural topology). 1fl is complete, y Hausdorff, reduced, tor-
sion-free R-module containing M as a dense topological submodule;
moreover its topology coincides with the natural topology.

Following the nomenclature adopted for groups and rings in [0],
we introduce for each P E SZ the Hausdorff P-localization MP of M
setting

(tensor product of R-modules) ;

is in a natural way an .Rp-module and it is Hausdorff in its natural
topology.

We now consider the projection the inclusions

ip : ~f~ -~~~ (ip exists by definition of natural

completion) and form the pair of homomorphisms 
M - .Mp putting

then by means of the diagonal-homomorphisms cp and ip of the fa-
milies P E E ,52~ we make the following diagrams com-
mutative :
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(where 6, and np are the P-projections and
= = for each x c -3f).

For the sake of convenience we put (also called

natural pre-completion of M) and It may be proved

that M = H where both natural topologies of if* and H

coincide with the product-topologies of the natural topologies of the
components. H is in a natural way an R-module as well as each com-
ponent kg is an .RP-module; moreover extends uniquely to a topo-
logical -ll-isomorphism ’Ø: 0i - H.

We conclude this section listing some technical results useful in
the following.

LEMMA 1 (cf. [0], Lemma 2, p. put M(P) = Im g~p
for each P E 92; then the following hotd :

ii) the pure 8ubmodule of M; generated by M(P) coincides with

LEMMA 2 (originally due to Corner, cf. [C], Lemma 2.1., p. 699,
and adapted to our context by R. B. Warfield Jr., cf. [W], Lemma 6,
pp. 298-299~. Let .R be a discrete valuation ring, .R its natural completion
and suppose that the transcendence degree of Rover R is uncountable.
Given a reduced, torsion- f ree R-algebra A of countable rank there exists
a sub-R-algebra L of .R such that L has countable rank and if

where the gj are elements of .R linearly independent over L, aj E A, n E ~
then the aj all vanish.

LEMMA 3 (adapted from [0], Lemma 3, p. 146 )..Let P E S~ and sup-
pose that .L is a P-pure of the reduced, torsion- f ree Rp-
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module K; then Z0jRp (as canonically isomorphic with
the pure sub-R-module o f K generated by L (in symbols L~* _ Z0 Rp) .

LEMMA 4 (cf. [LD], Lemma 1, p. 218)..Let Q be the quotient field
and suppose that Q is countably generated as an R-module; then,

given ac torsion-free R-module M, the following assertions are equivalent :

i) M is countably generated;

ii) 1 M is of countable rank.

2. The proof of Theorem C.

By convention, we put np(a) = ap for every~ a e Â.
Now let X be a maximal linearly independent subset of A ; evidently

IXI = rk A. Define Xp = x E ~~ ; then Xp is a subset of A(P)
such that A(P) _ Xp~* and since Ap = A(P)~* (via Lemma 1)
we have also Ap = ~~p~* (  ~ * now considered in AP ) .
A locally of countable rank means that has countable

rank as an R-module for each P e Q. This implies that has countable
rank too (infact and Rp has rank 1). As a con-
sequence it is possible to choose a countable subset Cp of A p such
that Cp&#x3E;* = A;. Given c G Cp there exist r(c) e 0, n(c) E N
such that

where a(c, i) E Xp, r(c, i) E .R; then we define

Bp is a countable subset of .XP and it is easy to recognize that
~B p~ * = ~. Next, for each b E Bp, we choose x E X such that x, = b
and define AP to be the set of all x so selected : clearly JAP _ IB pi 
Set B = U AP. B is a subset of X and 

PEQ 
_

Notice that .Rp fulfils all conditions of Lemma 2 so I~p contains
a sub-Rp-algebra Lp with the properties there described. Since Lp
has countable rank, the transcendence degree of fip over Lp is un-
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countable, then it is possible to choose a subset flp(a): a E AP~
of Rp algebraically independent over Lp for each P E S~ and construct
in 1~ a family ~a(b), /3(b) : b E B} of elements defined component-wise
as follows:

In Â (considered as an R-module) we pick the elements e(b) = cx(b)l +
+ fl(b) b, where b E B; of course e(b)p = a(b)P1P + so we have

= 0 Whenever b E AP.
We are now in position to build the R-module if required in our

theorem; infact in A we set

Note that because the Ae ( b ) have all the same rank
as A and In order to show that .DI is locally of countable
rank it is convenient to introduce the pure sub-R-module MP of

Ap (P c ,~) by means of the position

We now refer to the situation displayed in diagrams (**) to note
that .l~P ^-’ moreover is P-pure in so we can

apply Lemma 3 and get the isomorphism (np(M))* which will
allow us to show that M~ = lVlp. Infact on the one hand 
and contains .A(P), A(P) e(b)P where be B, hence MP by
definition of .MP; on the other hand let x E M and 0 be such

that where a, ai E A, by projection

on the P-component one gets that is x, E MP

whence np(M) C MP and MP which provides the required
inclusion C MP. Then = MP.

Next, as the inclusion MP C ~. p , b E A.P~* holds and
since A* and the are of countable rank while their «index-

ing-set » AP is countable, y we may infer that MP is of countable
rank.
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We have therefore proved that .M~ is locally of countable rank.
The proof of our theorem will be complete when we show that
EndR (M). Since AM = M, the monomorphism (’A which

associates to each a E A the left multiplication by a in If provides
the inclusion In order to show the opposite inclusion
we prove the following assertions:

(a) if q c- EndR (M) then 21 coincides with the left multiplication
by 

(b) E A.

(It is evident that (a) together with (b) imply 
To prove (a) it is enough to show that each 27 E End,, (MP) coincides

with the left multiplication by infact it can be proved that each
q E End., (M) extends uniquely E End, (.M*) (recall the situation
displayed in diagrams (*)) and

because every ~P is fully invariant in M*.
Then letq e EndR (.l~CP) ; r~ extends in a unique way to n E Endi,,, (.1;),

so we have for each b E AP

E MP so there exist r 0, n E N such that

where the bi are pairwise distinct elements of AP, bi = b (for simplicity)
and u, v, Z9 ui, vi, zi E A (P).
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1) being torsion-free, substitution of (ii) in (i) gives

Since are algebraically independent over Lp and ~, v, z,
ui, E A(P) C Ap, Lemma 2 provides the equalities ’U1 = 
while the remaining u, u i , v i , z i all vanish.

Therefore = v, = vbp and finally

Moreover 1)(lp) E A* because ~ is pure in MP and MP is torsion-free.
So far we have seen that ?7 coincides over Bp with the left multi-

plication by 1)(lp); but Bp~,~ = AP and A* is dense in MP so we may
conclude that q coincides over .llTp with the left multiplication by
1)(lp) .

This completes the proof of (a). 
’

-- 

We now remark that for and each the

P-component of lies in A p so . Of course

E if too, thus in order to prove (b) it suffices to verify that
A* n if = A. Clearly A* n M D A. Conversely let g E A* then

there exist r e R - 0, n E N such that where a,

ai Ë A, b e B ; in particular Now by

projection on the P-component (P Ë S~) we get cp = 0: this is obvious
whenever ... , bn~ = 0 otherwise it follows by a further ap-
plication of Lemma 2 to the equality
since the ap(bi), are algebraically independent over Lp and aip7
bip, cp E This holds for every P E S2 therefore c = 0 that is rg =
- a E A and finally g E A because A is pure in .M. Hence A* 0 .DT == A
and the theorem is proved.
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3. Applications.

In this section we show that some previous results of Orsatti,
A. Le Donne and Warfield are an easy consequence of Theorem C.

First of all we prove Orsatti’s Theorem B (see Introduction).
Proof of Theorem B.
Put R = Z; then Theorem C provides a group (= Z-module) if

satisfying all requirements of the assertion. Note infact that locally
countable means that is for every P E S2;
this implies that .M~ is countable because (see definitions
of llTp and AP in §2).

Being MP = this is equivalent to say that M is locally count-
able and the conclusion is reached.

From Theorem C can also be derived the following

COROLLARY 1 (improved form of [LD], Corollario, p. 224). Let R
be an admissible Dedekind domain such that Q is countable; if A is a
reduced, torsion-free R-algebra locally of countable rank then there exists
a locally countably generated, reduced, torsion-free R-module M such
that EndR (M). Moreover A and M have the same (global) rank.

PROOF. Q being countable, the quotient field Q of R is countably
generated as an R-module (cf. [S], Proposizione 4, p. 60). This enables
us to apply Lemma 4 and obtain that each torsion-free R-module
is locally of countable rank if and only if it is locally countably gen-
erated. Then the conclusion follows easily by Theorem C.

A slightly modified version of Corollary 1 is the

COROLLARY 2 (cf. [W], Theorem, p. 296). Let R be a discrete va-

luation ring such that jS has uncountable transcendence degree over R;
then if A is any countably generated, reduced and torsion- f ree R-algebra
there exists a countably generated, reduced and torsion-free R-module M
such that A ~ End,, ( M) .

PROOF. R is clearly an admissible Dedekind domain and Q is
countable (infact IQI = 1). Now A is of countable rank and  a for-
tiori &#x3E;&#x3E; locally of countable rank so by Corollary 1 there exists a re-
duced, torsion-free R-module M of countable rank such that A ctz

but by Lemma 4 M is also countably generated and
the conclusion is reached.
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