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Cohen-Macaulay and Gorenstein Finitely Graded Rings.

CLAUDIA MENINI (*)

Introduction.

Let G be a group, with identity element e, R == R, a graded

ceG

ring of type @G. R is called finitely graded if R, = 0 for almost every
g€ @. In particular R is finitely graded whenever G is finite.

The main purpose of this paper is to characterize Cohen-Macaulay
and Gorenstein finitely graded rings. Our starting point was the fol-
lowing. Graded rings over G = Z/2Z are the so called semi-trivial
extensions and a particular case of semi-trivial extensions are the
trivial ones (see Section 3 for details). Now a complete description
of Gorenstein trivial extensions, essentially due to I. Reiten ([R]),
can be found in [FGR]. In [F,] R. Fossum investigates the general
situation of commutative extensions. Part of his results is found also
in [F,] where it appears as the algebraic basis of the well known Fer-
rand’s construction. Ferrand’s construction itself has been extensively
used in studying set theoretic complete intersections. In this setting
trivial extensions still provide answers to specific questions (see, for
example [BG]).

Our first idea was to study Gorenstein semi-trivial extensions.
From the very beginning it looked more appropriate to regard this
case as a particular case of finitely graded rings than as a generalization

(*) Indirizzo dell’A.: Dipartimento di Matematica, Via Roma, I-67100
L’Aquila (Italy).

This paper was written while the author was a member of the G.N.S.A.G.A.
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of trivial extensions. The main point is that, in general, a semitrivial
extension, unlike a trivial one, of a local ring is not a local ring. On
the other hand we already had found in [M,] some technical tools
which looked very useful for this general investigation. In fact, together
with some basic commutative algebra, they led us to a complete so-
lution of our problem. At the end this solution appears as a sophisticate
generalization of Reiten’s results, even if the employed techniques
are quite different.

We now give a short description of the content of the paper.

In section 0 we recall some basic notions of graded ring and module
theory. The reader, which is not too familiar with it, is suggested to
refer to Nistdsescu and Van Oystaeyen’s book [NV].

Always in section 0 we essentially quote from our paper [M,] the
above mentioned results.

In the following sections all rings are assumed to be commutative,
but the group G of the gradation is not.

In section 1 we prove, first of all, the following basic result: a
finitely graded ring B = P Rsis gr-local (i.e. it has a unique gr-maximal

oeq
ideal, that is & unique graded ideal which is maximal among graded

ideals of R) iff R, is local (i.e. it has a unique maximal ideal).

After that, the characterization of Cohen-Macaulay and Gorenstein
finitely graded rings is easily reduced (Lemma 1.10) to that of gr-local
ones.

Another basic result proved in Section 1 is the following. If
M = @ M, is a graded module over a gr-local and noetherian finitely

ceq

graded ring, R = @ R, and T = R,, then the socle of M is not zero

oEG
iff x M contains a copy of every simple R-module iff ;M contains a

copy of the unique simple 7-module. Using this result it is not dif-
ficult to prove that when R is Cohen-Macaulay, one can find elements
tyy ey tn€T, n = dim (R), which form a regular R-sequence. This
fact leads us to the following characterization of Cohen-Macaulay
gr-local finitely graded rings (Theorem 1.12): Let R = @ Rs be a

ceq
noetherian gr-local finitely graded ring of type ¢, T = R,. Then R
is a Cohen-Macaulay ring iff B is a Cohen-Macaulay T-module iff,
for every ce @, Rs is a Cohen-Macaulay 7-module and dim (Rs;) =
= dim (7).
Section 2 is devoted to the study of Gorenstein gr-local finitely
graded rings. Our main tools are the local cohomology functors
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HLH(N)’s on R-mod with respect to the maximal spectrum £ of R, the
local cohomology functors H:(N)’s on T-mod with respect to the
maximal ideal m of 7 and a functor Xj,: 7-mod — R-gr which had
already been very useful in [M,]. After proving several technical
results we give, in Theorem 2.13, a complete description of Gorenstein
gr-local finitely graded rings.

Unfortunately, part of this theorem (perhaps the deepest one),
involves too many details to be quoted in this introduction. Thus

we state here only the following one. Let B = (P Rs be a noetherian
oeqd

finitely graded ring of type G, T = R,. Assume that R is gr-local
and let » = dim (R). Then R is a Gorenstein ring iff R is a Cohen-
Macaulay ring and H9(R) is an injective R-module iff R is equidi-
mensional and there is a o€ G such that R, is a canonical module
for T and B ~ Hom, (R, R;) in R-mod iff E is equidimensional, T
has a canonical module K and R =~ Hom.(R,K) in R-mod. The
particular case when R is Gorenstein and artinian is further investigated
in Proposition 2.15.

In section 3 we specialize our results to the case of semi-trivial
extensions. In particular we get, as a Corollary, the above mentioned
Reiten’s result on trivial extensions.

0. Notations and preliminaries.

All rings are associative with identity 140 and all modules are
unital. Let R be a ring. R-mod will denote the category of left R-
modules. The notation M will be used to emphasize that M is a
left R-module. Moreover if B and T are two rings we will write My,
to mean that M is an R-T-bimodule (left R-module and right T-
module). Maps between modules will be written on the opposite side
to that of the scalars only in the non-necessarily commutative case.
If L, M e R-mod, the group Homg(L, M) will be also written as
Homg (L, xrM) or Hom (pL, xR M).

If zL; is an R-T-bimodule and if .M € R-mod, then we will often
consider Homy (rL, p M) with its left 7-module structure defined by
setting

t6 =p0,& tel, £€ Homg(zL, M)

where g, is the right multiplication by ¢ on L. In this case we will
also write Homg (g Lz, prM). If M € R-mod, we will denote by Socg (M)
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or simply by Soc (M) the socle of ;M and we will say that M has finite
socle if Soc (M) has finite length.

Ex(M) or simply E(M) will denote the injective envelope of M
in R-mod. If Zc M we set

Anng(Z) = {reR:vZ = 0} .
If Ic R we set
Anny (I) = {we M: Ir = 0} .

Let G be a multiplicative group with identity element e. Let
R = @ R; be a graded ring of type G. Recall (see [NV]) that this

oe@

means that {R,}sq is a family of additive subgroups of the ring R
such that R splits—as an abelian group—into the direct sum of the
Rs’s, 0 €@, and for every o, 1€ @, RsR:C Rs:. An M € R-mod is
said to be a graded left R-module if there is a family {M,, o€ G} of

additive subgroups of M such that M = @ M, and R;M.C M,
oeq

for all o, 7€ @. The notion of graded right E-module is analogous.
Note that if G is not abelian one has to distinguish between graded
left and right R-modules even if R is commutative!

Let M and N be graded left modules over the graded ring
R=@R;. For every 1€ @ we set

ceR

HOM;(M,N); = {f: M - N: f is R-linear and f(M;)C Ny Vo€ G}.

HOM, (M, N), is an additive subgroup of the group Homg (M, N)
of all R-linear maps from M into N.
An fe HOM; (M, N), is called a graded morphism of degree z.

HOM, (M, N) = @ HOM, (M, N),

7€G

is a graded abelian group of type G.
We denote by R-gr (gr-R) the category of left (right) R-modules
where the morphisms are the graded morphisms of degree e, i.e.
Hompg., (M, N) = HOM; (M, N),

for every M, N e R-gr.
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The forgetful functor R-gr — R-mod will be denoted by Fj or by F.

A ring homomorphism f: B — § between two graded rings of type G
is called a graded ring homomorphism if f(Rs) C S5 for all ¢ € G.

If M =@ M, is a graded left R-module and o€ G then M(c)

Ae@

is the graded left module obtained from M by setting M(c); = M,.;
the graded left module M(c) is called the o-suspension of M. If M,
N € R-gr, fe Homp (M, N) and o€ @, then we denote by f(o) the
morphism f regarded as an element of Hompg.,, (M(c), N(s)). If M =
=@ Ms€ R-gr we set (M) = U M.

ceR ce@

Let N be a graded submodule of M. N is called gr-essential in M
if N is essential in M as a subobject of M in R-gr. N is gr-essential
in M iff F(N)is essential in F(M) (see [NV] Lemma I.2.8). M is called
gr-injective if M is an injective object in R-gr. If F(M) is injective
in R-mod then M is gr-injective. The converse is not true in general
(see [NV] Corollary 1.2.5 and Remark 1.2.6.1).

A graded module S € R-gr is called gr-simple if 0 and § are its only
graded submodules.

If M € R-gr, the gr-socle of M is the sum of its gr-simple graded
submodules.

A graded module M € R-gr is called left gr-noetherian (left gr-
artintan) if M satisfies the ascending (descending) chain condition
on graded left R-submodules of M.

Let R = @ R; be a graded ring of type G. R is called strongly

ceq

graded if RsR:= Rs: for all o, €. M = @ Ms€ R-gr is called
oeG

finitely graded it M; = 0 for almost every o € G. If xR is finitely graded,
R is called a finitely graded ring. If R is commutative and I is a graded
ideal of R, I is called gr-maximal if I is maximal among graded ideals
of R and R is called gr-local if R has exactly one gr-maximal ideal.

Let R be a commutative ring. We denote by Spec(R) and by
Spec Max (R) the prime spectrum and the maximal spectrum of R
respectively. If I is an ideal of R, ht(I) will denote the height of I.
If M e R-mod, dim (M) will denote the Krull dimension of M.

If R is a commutative local noetherian ring and M is a finitely
generated R-module, depthg (M) or simply depth (M) will denote the
depth of M with respect to the maximal ideal of E.

N will denote the set of non negative integers, Z the ring of in-
tegers.

We end this section recalling some notations and results from
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[M,] which we will use often in the paper. Let B = (P R, be a graded

oeR

ring of type @, T = R,, N € T-mod. If R is finitely graded then the
left B-module ;Y = Homy (rRz, »N) has a natural structure of graded
R-module defined by

Ys = Hom;(Rs»,N) oc€@G.

‘We denote this graded R-module by X(N). It is easy to check that
the assignement N — X(N) yields a functor X: 7-mod — R-gr. Let

X = FoX: T-mod — R-mod. Moreover for every N € T-mod we set

N=(X(¥N))e and N=@R.N.

ceq

0.1. PROPOSITION. Let R = @ Rs be a finitely graded ring of type G,
T—=R,. Then: oeq

a) If L is an essential T-submodule of N € T-mod, then L is a
gr-essential R-submodule of X(N) and hence F(L) is an essential R-
submodule of X(N).

b) If 8 is a simple left T-module, then 8 is a gr-simple left R-

module. Hence @Rag is an artinian semisimple left T-module and
oEG

the left R-module F(8) has finite length.
¢) If Be T-mod is injective in T-mod, then X(E) is injective in
R-mod.

d) If E € T-mod is a cogenerator of T-mod, then X(E) is a cogen-
erator in R-mod.

¢) If E has a finite essential socle, then X(E) has a finite essential
socle.

ProOF. See [M,] Lemmata 1.2, 1.3 and 1.4.

0.2. Let R = @ R: be a finitely graded ring of type G, T = R,
T€G
and let M = @ M. be a graded left R-module. Fix o€ G. For every

7€G

7€ @ and e M, let

(w)yg’: Ry — M,
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be the map defined by
(") (@) ud) =rx  for every r € Roer.

Clearly (w)ps € Homy (r(Roe-1), 2(Ms)).
Following proposition generalizes Proposition 4.3 of [M,].

0.3. PROPOSITION. Let R = () R: be a finitely graded ring of type G,

7€G

T =R, and let M = P M. be a graded left R-module. Then, within

1€@
the notations of 0.2, the mapping x— (x)uy , © € M+, defines a morphism
of graded left R-modules ugy: M — Xp(Ms)(o~Y). Moreover Im (uY)
is a graded essential submodule of Xn(Ms)(0!) and () Ker (u¥) = 0.
[o{=led

Proor. It is trivial to check that uj: M — Xp(M,)(0~?) is a mor-
phism of graded left R-modules.

Let € G and let 05~ £ € (Xa(Ms)(07%)): = Hom; (Ror-1, Ms). Then
there is an r € R,,-» so that 0 (r)§. Let y = (r)& € M, and consider
(y)pus € Homy (Ty Ms). Then r-& = (y)uy. In fact also r& € Homy (7,
M;) and for every te T it is:

@)(ré) = ()€ =1-(r)é =ty = ((y)u7) -

Thus Im (u¥) is graded essential in Xz(Ms)(0~1). Let 0% ze
€ MM)N [ Ker (ug) and let 7 € G such that # € M.. Then (z)u} =0

ce@
and hence x = 0. Contradiction.

If M = R we will simply write us instead of uy, for every o€ G.

1. Finitely graded Cohen-Macaulay rings.

1.1. LeMMA. Let R = @ Rs; be a graded ring of type G, T = R,

oe@d

and let M = ) M, be a graded left R-module. If M 1is left gr-noetherian

ceR
(left gr-artinian) then, for every o € G, p(Ms) is left noetherian (left artinian).

Proor. If o€ G and H is a left submodule of r(M,), then L =

=@ R.H is a graded submodule of ;M with gradation defined by
T€q
L; = Ry-.H for every v € G. The proof follows straightforward from

this remark.
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1.2. COROLLARY. Let R = @ Rs be a graded ring of type G, T = R,

oe@l

and let M = @ M be a finitely graded left R-module. Then the following

cEG
statements are equivalent:

(@) M is left gr-noetherian (left gr-artinian).
(b) For every o € G, r(Ms) is left noetherian (left artinian).

() F(M) is left noetherian (left artinian).

1.3. LEMMA. Let R = Rs be a finitely graded ring of type G

oe@
and assume that T = R, has a unique simple left T-submodule S. Let

V € R-gr be a gr-simple left R-module. Then F(V) is isomorphic to
F(8) in R-mod.

Proor. Let F be the injective envelope of § in 7-mod. Then E
is the minimal injective cogenerator of 7-mod and, by Proposition 0.1,
X(BE) is an injective cogenerator of R-mod. As V € R-gr is gr-simple,
F(V) is finitely generated in R-mod so that

Homg (F(V), X(E)) = HOM, (V, X(E))

(see [NV] Corollary I1.2.11).

Thus, as X(E) is a cogenerator of R-mod, there is a 7€ G and an
f € Homp ,(V(z), X(E)) = HOMg(V, X(H)),, f#0. As V(r) is gr-
simple too, f is injective.

By Proposition 0.1, § is gr-simple and gr-essential in X(E). It
follows that V(r) is isomorphic to § in R-gr and hence F(V) = F(V (7))
is isomorphic to F(S) in R-mod.

From now on, if not otherwise expressely stated, we will consider
only commutative rings.

1.4. PROPOSITION. Let R = (P Ry be a finitely graded ring of type G-

oe@

Then R is gr-local iff T = R, is local.

Proor. If T = R, is local, then R is gr-local by Lemma 1.3. Con-
versely if R is gr-local then all non invertible elements of T' must be
contained in the unique gr-maximal ideal M of R. Thus M N T is
the unique maximal ideal of 7.
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1.5. ProposITION. Let R = @ Rs be a finitely graded ring of type G

oEG
and assume that X, = R, is a field. Then for every M € Spec Max (R),
R|M is a X-vector space of finite dimension and hence the R|M-vector
space Homy (R M, X) is one-dimensional. Moreover Spec Max (R) is
finite.

ProOF. By Proposition 0.1, X(¥) is an injective cogenerator of
R-mod whose socle is contained in F(J¥) and moreover F(X) is an
artinian semisimple J-module i.e. a finite dimensional J-vector space.

Let M e Spec Max (R). Then, as X(X) is a cogenerator of R-mod,
Soc (X (X)) contains an R-module isomorphic to R/M and hence R/M
is a finite dimensional J{-vector space. In particular Spec Max (R)
is finite.

Note now that if L is a finite dimensional Ji-algebra then dimy, (L) =
= dimy, (Homy (L, X)) and hence, if L is a field, Homyx (xL;, X) is
a one-dimensional L-vector space.

1.6. PROPOSITION. Let R = () Rs be a finitely graded ring of type @,

ce@
T = R,. Let meSpecMax(T), 8§ = T/m. Then m is contained only
in a finite number of distinct maximal ideals of R, say M, ..., M,, and

Socg (X(8)) ~ R/ M,®...® R/ M, .
ProoF. Let M € Spec Max (E). Then

Homy (R/M, Homy (z Rz, T/m)) o
~ Hom, (R/M, Hom, (R/mR, T/m)) ~
=~ Homy, (R/M (X) R/mR, T/m) = Hom; (R/(M + mR), T|m) .
R

Thus Hom, (R/M, X(8))# 0 iff mC M and in this case
Hom, (R/M, X(8)) = Homgz (R/M, Xz(X)) ~ Homy, (R/M, X)

where B = R/mR, M = M/mR and ¥ = T/m so that Proposition 1.5
applies.

1.7. COROLLARY. Let R = @ Rs be a finitely graded ring. If T = R,
oe@
is semilocal and E is the minimal (injective) cogenerator of T-mod then
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X(B) is the minimal (injective) cogenerator of R-mod and every mawimal
ideal of R contains a maximal ideal of T.

ProoF. Let m,, ..., m, be the distinct maximal ideals of 7. Then
n
E = @ E(8;) where, for every i=1,..,n, 8;= T/m,;. Clearly
_ i=1 n __
X(8) =~ QX(B(S,).

Let M € Spec Max (E). Then M cannot contain two distinct max-
imal ideals of 7' (as they are coprime!). Thus, by Proposition 1.6,
Soc (X(E)) splits into the direct sum of distinet simple R-modules.
By Proposition 0.1, X(F) is a cogenerator of R-mod with essential
socle. It follows that X () is the minimal cogenerator of R-mod.
Moreover as X(E) cogenerates R-mod, Soc (X(E)) contains a copy
of every R/M for every M € Spec Max (R). Thus, by Proposition 1.6,
if M e Spec Max (R), then M must contain some ut;.

1.8. PROPOSITION. Let R = @ R be a finitely graded ring of type G,

cEG
T = R,. Then R is a noctherian (resp. artinian) ring iff R is a noetherian

(resp. artinian) T-module. If R is noetherian then
a) dim (R) = dim (7).
b) For every P € Spec(R), P € Spec Max (R) iff

PN TeSpecMax (T).

ProoF. Apply Corollary 1.2 and note that if B is a noetherian
T-module, then R is an integral extension of 7. Thus a) and b) follow
from [M,] Theorem 20 page 81 and [AM] Corollary 5.8 page 61.

1.9. LeMMA. Let R= P R be a finitely graded ring of type G-.

ceqd

Assume that R is gr-local and noetherian. Let M = () Mo be a graded
ceq

(left) R-module. Then the following statements are equivalent:
(a) Socy (M) 0.
(b) M contains a copy of every simple R-module.

(¢) Socg (M)~ 0.
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PrROOF. (a) = (b). Let 03 xe h(M) and such that x € Socy (M).
Then Rz is a finite vector space over T'/m, where m is, by Proposition 1.4,
the unique maximal ideal of 7. Thus Rz is an R-module of finite
length. Hence Rx can be also regarded as an object of finite length
in R-gr. It follows that Rz contains a gr-simple E-module V. Let
8 = T/m. Then by Proposition 0.1 F(S) contains Socs (X(8)). By
Lemma 1.3 F(V) is isomorphic to F(S) in R-mod. The conclusion
now follows from Proposition 1.6 and Corollary 1.7.

(b) = (e) is trivial.
(¢) = (@) is trivial in view of Corollary 1.7 (or Proposition 1.8).

We will say that a commutative noetherian ring R is Cohen-Ma-
caulay (resp. Gorenstein) iff, for every M € Spec Max (R), Ry is a local
Cohen-Macaulay ring (resp. a local Gorenstein ring). Similarly, if N
is a finitely generated R-module, we will say that N is a Cohen- Macaulay
R-module iff N, is a Cohen-Macaulay R,-module for every M e
€ Spec Max (R). For the definition of local Cohen-Macaulay ring and
of Cohen-Macaulay module over a local noetherian ring see [S,]
or [M;] or [HK]. For the definition of local Gorenstein ring see [B]
or [HK].

1.10. LEMMA. Let R = P Rs be a noetherian finitely graded ring
oe@

of type G, T = R,. Then R is Cohen-Macaulay (Gorenstein) iff R,
is Cohen- Macaulay (Gorenstein) for every m € Spec Max (T').

Proor. Let M € Spec Max (R). Then m = M N T € Spec Max (T')
by Proposition 1.8. Let R'= R,, and M'= MR,. Then R, =~ R,.
Apply now theorem 1 in [B] and Theorem 30 page 107 in [M;].

1.11. REMARK. Let R = @ R; be a graded ring, T = R,, me

ce@

€ Spec Max (7). Then the ring R,, is a graded ring of type G with
gradation defined by

(Rm)e = (Ro)m  for every ce @ .

Thus, in view of Proposition 1.4, if R is finitely graded, R,, is a gr-local
ring and by Lemma 1.10 the characterization of Cohen-Macaulay and
Gorenstein rings is reduced to that of gr-local ones.
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1.12. THEOREM. Let R = @ R; be a noctherian gr-local finitely

oe@

graded ring of type G, T = R,. Then the following statements are equi-
valent:

(@) R is a Cohen-Macaulay ring.
(b) R is a Cohen-Macaulay T-module.

(¢) For every c€@, Rs; is a Cohen-Macaulay T-module and
dim (Rs) = dim (7).

If these conditions are satisfied then, for every M € Spec Max (R),
ht (M) = dim(R) = dim(T) = n and there are elements t,,...,t, €T
which form a regular R-sequence.

Proor. (a) = (b) By Proposition 1.8, dim (R) = dim (7). Let
d = dim (T) and let » be the depth of the T-module E. Let m be the
maximal ideal of T and let ?,,...,t,€em be a maximal regular R-
sequence. Set

T - R
P EE— and R=—u——
(Try oeey Tn) (t1y eeey ta) R

T =
Clearly R is a graded quotient ring of R and (R), = 7. In particular B
is gr-local and, by the maximality of the sequence ¢, ..., t,, Soez (R) 7 0.
Thus, by Lemma 1.9, B contains a copy of every simple R-module
and hence every maximal ideal of R is associated to 0 so that E is
artinian. By Proposition 1.8 and 1.4 every maximal ideal M of R
contains m and hence it contains ¢, ..., ?,. From the foregoing con-
siderations it follows that every M € Spec Max (R) is associated to the
ideal spanned by t,, ..., #, in R. It follows (see Theorem 155 page 133
in [K]) that

M(M)=mn for every M e SpecMax (R).

Thus » = d and R is a Cohen-Macaulay R-module.

(b) = (¢) Let teT. Then ¢ is regular on R iff ¢ is regular on
each E;. Thus we get

dim (T) > depth (;Rs) > depth (zR) = dim (zR) = dim (T) .
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(¢) = (b) Let ieN. Then Exty(T/m, R) ~ @ Ext} (T/m, R,).
ceq
By Proposition 6 page IV-14 in [S] we get depth(,R) = dim (7). As
R>T, dim (,R) = dim (T).

(b) = (a) Let t,,...,t,em be a regular R-sequence. Then
1y ...y tay Tegarded as elements of R, still form a regular R-sequence.
Moreover, by Proposition 1.8 the elements %, ..., ¢, are contained in
the Jacobson radical of R and dim (R) = dim (R) = dim (T).

1.13. THEOREM. Let R = P Rs be a noetherian finitely graded

oeq
ring, T = R,. Then the following statements are equivalent:

(a) R is a Cohen- Macaulay ring.
(b) R is a Cohen-Macaulay T-module.

(¢) For every o€ @, Rs is a Cohen-Macaulay T-module and, for
every m € Spec Max (T), dim ((Rq)y) = dim (T'y,)-

Proor. It follows by Proposition 1.4, Lemma 1.10, Remark 1.11
and Theorem 1.12.

1.14. COROLLARY. Let R = @ Rs; be a noetherian finitely graded
cEG
ring, T = R, and assume that every Rs 18 a projective T-module. Then

R is a Cohen-Macaulay ring iff T is a Cohen-Macaulay ring.

1.15. COROLLARY. Let R = (P Rs; be a strongly graded noetherian

oeG
ring of type G, G a finite group. Then R is a Cohen- Macaulay ring
iff T is a Cohen-Macaulay ring.

Proor. Apply Corollary 1.3.3 page 15 in [NV] and Corollary 1.14
above.

2. Finitely graded Gorenstein rings.

In all this section, when R = P R: is a noetherian gr-local finitely
TeG
graded ring of type G, T will denote R,, m will be the maximal ideal

of T and E = E(T/m) the injective envelope of 7/m in 7-mod.
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2.1. Let R be a commutative noetherian ring, 9 an ideal of R,
A = V(A) = {T eSpec(R): 2 A}. For every ie N, let H,(N) denote
the 4-th local cohomology functor on R-mod with respect to A i.e.
the ¢-th right derived functor of the functor I',: R-mod — R-mod
defined by setting, for every M € R-mod,

I'(M) = {w e M: In € N\ {0} such that Arz = 0}

(see [HK]).
If R = @ Ry is a noetherian gr-local finitely graded ring of type &,
oeq

for every ¢ € N we denote by H},(—) the i-th local cohomology functor
on T-mod with respect to {m} and by Hg(—) the i-th local cohomology
functor on R-mod with respect to £2 = Spec Max (R) = V(mR) (see
Proposition 1.8).

2.2. LEMMA. Let R = (P Rs be a noetherian gr-local finitely graded
(=4
ring of type G, i€ N, M = P Ms€ R-gr. Then Hio(M) has a natural
CEG

structure of graded left R-module and

(Ha(M))s = Hin(Ms)  for every g€ G .

Proor. It is well known that there is a natural isomorphism of
T-modules

@ Ho(M) — Hin(M)

(see e.g. [S,] Theorem 4.3).
For every 7€ @, let 5.: M. — M be the canonical injection. Then

D Hin(ne): D Hin( M) — Hin( M)

TEG

is a natural isomorphism (see [S;] Theorem 3.2). For every 7 € G set
Ne = (¢h) (Hialo) (Hin(M))) .
Then it is enough to show that for every o, 1€ G

RsN:CNor.
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Let r € Ry and let a: M — M be the multiplication by r on M. Then
Hi(x): Hy(M) — Hy(M) is the multiplication by r on Hy(M). Thus
we have to show that

H})(“)N-[C_:Nar.

As the ¢¥’s are natural isomorphisms, this is equivalent to prove that
Hi ()(Lz) € Loz, where Lr = Hi(n.)(Hy(M,)) for every e @.
Let n:: M — M. be the canonical projection. Then

(Hin(ovg)o Hinle))(Le) = (Hin(mwgoons) ) (Hin(M)) = 0

for every & e N\ {ot}.
Since Hiy(me)oHs(n,) = Hin(meon,) is equal to the identity on
H;,(M)) iff £ = g and is equal to zero otherwise, we get Hyy(a)(Lz) C Lor:

2.3. Let R be a noetherian ring, 2 an ideal of R, ry, ..., 7, & system
of generators of A, A = V(A), M € R-mod. For every ¢ € N, let Hi(M)
be the i-th cohomology functor of M with respect to r = {ry, ..., 7.}
(see [H] page 19 or [HK] Def. 4.6 for the definition). Then, for every
i€ N there is a natural isomorphism Ai(M) between H}(M) and

“(M) (see [H] Theorem 2.3). Moreover it is easy to check (see

e.g. [M,] Theorem 10) that Hy(M) naturally identifies with lim (M /r* M)
veN
where, for every eeN, r"M =r; M + ... +r, M and the transition

morphisms

, M M
v a7 e

in the direet limit are given by
(YH(M)) (@ + rPM) =7, ...17,0 4 M for every ze M.

2.4. PROPOSITION. Leét R = @ Rs be a noetherian gr-local finitely
graded ring of type G. Assume that R is a Cohen-Macaulay ring, n =
= dim (R) and lett,, ..., t, € T be a regular R-sequence (see Theorem 1.12);
t = {tiy ..., ta}. BEndow HH(R) with its graded left R-module struciure
(see Lemma 2.2) and each R[&’R, v € N, with graded quotient ring struc-
ture. Then

HYR) ~lim R/¢R  naturally in R-gr

VE]
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and for every v e N the transition morphisms w; = yi(R) in the direct
limit are imjective.

Proor. First of all note that the w:’s, »€ N, are morphisms in
R-gr so that {R/t’R, y;, ve N} is an inductive system in R-gr and
hence we can consider the direct limit of this system in R-gr. This
is nothing else that the usual direct limit in R-mod endowed with the
gradation defined by setting, for every 7 € @G,

(lim R/¢'R). = lim (Rt R); ~ lim (R./¢’ R:)
ek vl vel

(see [NV] page 4).
Let 7 €@ and let #,: B, — R be the canonical injection. Then
(see 2.3) we have the commutative diagram

Hiy(Re) 20, g (R)
22(Ry) Tz Tz H(R)
2

Hi(Re) 29, pom)
This means that if we identify Hp(R) with lim R/¢’(R), then Hy(R.)
identifies with lim R./¢*R,. veN

VE,
Now it is easy to check that if we identify Hg(R) with h_rﬁn R/vR
VE.

then the isomorphism ¢%: Ho(R) — Hy,(R) induces the identity on
li_lﬁn R/vR.
VE.

By [M.] Theorem 8. (1) the yi’s are injective.

In the sequel we will identify, for every oe @, (H%H(R))s with
Hp(R,) and set

Xy = UEEP: HH(R) — X (Hm(Ro))(071)  (see 0.3).

2.5. LEMMA. Let R = @ Rs be a noetherian gr-local finitely graded

4=
ring of type G. Assume that R is a Gorenstein ring of Krull dimension n.

Then there is a o € G such that y,: Hy(R) — X(Hp(R,))(071) is injective.
Moreover, for every o € G such that ys is injective, xs is an isomorphism
in R-gr, Hy(Rs) == E so that Hy(R) is injective in R-mod.
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Proor. Our proof will be essentially a modification of that one
of Satz 5.9 in [HK] to our case. Let t be as in Prop. 2.4. First of all,
for every ve N, R/t’R is an artinian Gorenstein ring and hence it is
self-injective (see [B]). Then, as in the proof of Satz 5.9 in [HK],
a standard argument using Artin-Rees Lemma shows that HG(R)
is injective in R-mod. By Proposition 2.4 we can identity HG(R)

with lim B/¢#R in R-gr and moreover, the transition morphisms in
veN
this direct limit are injective. Thus it is easy to check that

Socy (lim R/’ R) = Soc, (R[tR) .

VE]

As R[tR is gr-injective (Corollary 1.2.5 in [NV]), gr-local and artinian,
it has a gr-simple and essential socle. It follows that also H%(R) has

a gr-simple and essential socle. Now, by Proposition 0.3 () Ker (y:) = 0
T€@

and the x.’s are morphisms in E-gr. Therefore there must be a 0 € @
such that Ker (ys) = 0. Let now ¢ be any element of G such that
Ker(ys) = 0. Since, by Proposition 0.3, Im(y,) is gr-essential in
Xz(Hm(R,))(07t) and since H9(R) is injective we get that xs is an
isomorphism. Thus X(H&(R,)) is injective in R-mod and hence,
by Proposition 0.1, Xn(Hm(R,)) = Xa(B(Hp(R,))) so that Hp(R,)
is injective in 7-mod. Clearly Hp(R,) is indecomposable in 7-mod,
otherwise H(R) would be decomposable in R-gr while this is impos-
gible as it has & gr-simple and, essential socle. As Hy,(R,) is an artinian
T-module (Lemma 1.1), by a classical Matlis’ result (see [M,]) we get
Hy(R;) = E.
The last statement follows from Proposition 0.1.

Following [FGR] we shall say that a finitely generated module
K + 0 over a noetherian ring R is a canonical module for R if for every
P € Spec (R)
dimyg(p) Extl, (K(P), Kp) = 0;,n(p)

where JU(P) is the residue field of the localization R, of B at the prime
ideal P. Thus K is a canonical module for R iff K is a Gorenstein
module of rank 1 in the sense of Sharp [S;].

The results in the next theorem are essentially in [S,] and in [HK],
but see also [FGR] Theorem 5.6.

2.6. THEOREM. Let R be a noetherian ring and let K == 0 be a finitely
generated R-module. Then
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a) 1If K is a canonical module for B then R and K are Cohen-
Macaulay.

b) If Spec(R) is connected, K is & canonical module for R iff
K, is a canonical module for R, for every m € Spec Max (R).

¢) If R is local with maximal ideal m and Krull dimension n

then:
¢,) K is a canonical module for R iff
dimpm, (Extk (R/m, K)) =6, ,
¢,) K is a canonical module for R iff R is Cohen-Macaulay
and

K ® R ~ Homj (H:(R), E) = Homy, (H%(R), E)
R

as R-modules, where R is the m-adic completion of R and E = E(R/m).

Not knowing any adequate reference, we give a proof of the fol-
lowing two results, even if we suspect it is already available in the
literature.

2.7. LEMMA. Let T be a local complete Cohen-Macaulay noetherian
ring, m its maximal ideal, B = E(T|/m), n = dim (T'). Let H(—) be
the n-th local cohomology functor of T with respect to {m} and set K =
= Hom, (H(T), E). Then

1) The camonical morphism vw:Hom, (H(T), E)® H(T) - E,
T
defined by setting w(f @ h) = f(k) for every fe Homy (H(T),E) and
T
he H(T), is an isomorphism. Thus H(K) ~ E.

2) For every M e T-mod the assignement f H(f) yields an
isomorphism between Homy (M, K) and Hom, (H(M), H(K)).

ProoF. 1) As it is well known, the canonical morphism T —
— End, (H(T)) is an isomorphism (see e.g. [M,] Theorem 14) so that,
by Matlis’ duality ([M,]), also End;(K) is canonically isomorphic
to I. Now let

¢: Hom, (Hom, (H(T), B) @ H(T), E) —
T

— Hom, (Hom, (H(T), E), Hom, (H(T), B))
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be the obvious canonical isomorphism, w: 7' — End, (&) the canonical
morphism and set

n = Homy(p,15): Homy (B, ) — Homy(Hom, (H(T), E) (T@H(T), E).
Then it is easy to check that
gonow: T — Hom, (Homy (H(T), E), Hom, (H(T), E)) = End, (K)

is exactly the canonical morphism. Thus, by above considerations,
pgonow is an isomorphism. On the other hand o is an isomorphism
too (see [M,]) and hence we get that = Hom; (v, 1;) is also an iso-
morphism. By Matlis’ duality we finally get that y is an isomorphism.

2) Let M € T-mod. Let
¢: Hom, (M, Hom, (H(T), E)) — Hom, (M ® H(T), B)
T
be the canonical isomorphism. Set y = Homg(lyg mr)s ¥),

T HomT(M ® H(T), Hom, (H(T), E) ®H(T)) —
T T
— Homg (M ® H(T), E) .
T

Then it is easy to check that for every fe Hom, (M, K) (ytop)(f) =
= f® 1g(r). As the functor H is naturally equivalent to the functor
— ® H(T) (see e.g. [M,] Theorem 10), we get the conclusion.

T

2.8. PROPOSITION. Let T be a local noetherian ring, n its Krull di-
mension, m its maximal ideal, B = E(T|m), K a finitely generated
T-module. Then K is a canonical module for T iff T is Cohen-Macaulay
and Hp(K) ~ E.

Proor. If K is a canonical module for 7', then, by Theorem 2.6 a),
T is Cohen-Macaulay. Thus we can assume w. 1. 0. g. that T is Cohen-
Macaulay. Let 7' be the m-adic completion of 7, m = m7 and set
R=EK®T and K = Hom, (Hy(T), E) = Hom, (H(T), E). 3

Then, in view of Theorem 2.6 ¢,), it is enough to show that K ~ K
in T-mod iff H*(K) ~ E.
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Now, by Lemma 2.7, K ~ K iff H4(K) >~ Hj(K) in T-mod. As
H'(K) = H%(KR) and, by Lemma 2.7, H3(K) >~ E we get the con-
clusion.

2.9. Let R = @ Rs be a commutative graded ring of type G and

oe@

let M € R-mod. Assume that M = @ M, where the M,’s are suitable

ce@
subgroups of M. Then, if @ is not commutative, we still have to dis-

tinguish between M being a left or right graded R-module, as we said
in Section 0. In fact if Re M.C My, for every o, v € G we have that M
is a graded left B-module while if R M, C M.c for every o, v € G then M
will be a graded right R-module.

Now let R = @ Rs be a commutative graded ring of type G,

ceG

T=R,, M= Ms a finitely graded left E-module, N € 7-mod.
OEG
Then, for every o€ @, we can define a natural structure of graded

right R-module, which depends on ¢, on Homj, (M, N). Denoting
by Hom;(M(c), N) this graded right R-module we have that the
gradation on it is defined by setting

Hom, (M(s), N): = Homy (M4, N) for every r€@.

In fact note that if & v€@, re R:, f€ Homy(M,-1,, N) then rfe
€ Homyp (M g-1p-14y N). If a: M, — M, is a graded morphism between
finitely graded RE-modules, then the transposed morphism

Homy(a«,1y5): Homy(M,, N) - Homy (M,, N)

can be regarded as a graded morphism, which we will denote by
Hom;(«(0),1x), between the graded right modules Homg(M,(s), N)
and Homg (M,(o), N).

Now, for every se€@, we denote by g¢s: R — Homz(R(c), Rs)
the morphism of graded (right) R-modules defined by setting, for
every £e @, xe€ R,

06(®): Rg-1p > R
be the map defined by setting (os(2))(a) = @a for every a€ Rg,.

Clearly if G is commutative, Hom, (R(c), N) = X(N)(0~?) and s = o
defined in 0.3.
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Recall that a commutative noetherian ring R is called equidimen-
sional if given any two maximal ideals m and n in R, dim(R,) =
= dim (R,).

2.10. LEMMA. Let B = @ Rs be a noetherian gr-local finitely graded
ce@

ring of type G. Let T be the m-adic completion of T, m = mR, R =
=RQ®T. Then
T
a) R= ®(R:®T) is a noetherian gr-local finitely graded ring
T

ceq

of type & and R,=T.
b) Ey(T[m) = BEx(T|m).
¢) The maximal ideals of R are exactly those of the form i =
=n®T =nT for neSpec Max (R).
T
d) If neSpecMax(R), Rz ~ R, ®T and dim (R;) = dim (R,).
T

e) R is equidimensional iff R is equidimensional.
f) R is a Cohen-Macaulay ring iff R is a Cohen- Macaulay ring.
g) For every o€ @, H'(R,) = Hx(R,).

ProoF. a) Is clear. b) Is well known. Let n be a maximal ideal
of R and set n = i N R. By Proposition 1.8 b) fi contains it and hence
n contains MN R =mN T =m. Clearly n is a prime ideal of R
thus, by Proposition 1.8 b) n is a maximal ideal of E. Conversely
let 11 be a maximal ideal of R and set fi = n @ T = nT. Then, as 7'

T
is a flat T-module, R/fi ~ (Rm)Q@T. Now (Bn)®T = Rn so
T T
that i is & maximal ideal of R.
d) Follows from ¢) and e) follows from d).

f) Follows from Theorem 1.12 and g) is well known.

2.11. LEMMA. Let R = @ R; be a noetherian gr-local finitely graded
oe@

ring of type G, T the m-adic completion of T. Assume that R is equi-
dimensional, that T has & canonical module K and that R ~ Hom, (E, K)
in R-mod. Then B = R @ T is a Gorenstein ring and hence it is also
Cohen- Macaulay. T
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ProOF. Let neSpec Max(R), i = nE. Then, by Lemma 2.10,
R; ~ (Homf, (R, EQRT ))ﬁ and hence by Theorem 2.6 and by [HK]
T

Definition 5.6 and Satz 5.12 and 5.9, R; is Gorenstein. Thus, by
Lemma 2.10, R is Gorenstein.

2.12. PROPOSITION. Let B = @ Rs be a noetherian gr-local finitely
(L=

graded ring of type @, n = dim (R), 0 € G. Then the following statements
are equivalent:

(@) R is Cohen- Macaulay, Hp(R,) =~ F and
Ao: Ho(R) - Xp(Hin(Ro)) (07
is an isomorphism (in R-gr).
(b) R is equidimensional, T is Cohen-Macaulay, Hy(Rs) ~ E and
Kot Ho(R) — Xp(Hm(Rs))(0™)
is an isomorphism.
(¢) R is equidimensional, Rs; is a canonical module for T and
0s: B — Homy (R(0), Rs)

i8 an isomorphism (in gr-R).

ProOF. Let T' be the m-adic completion of 7. Then, as 7' is a
faithfully flat T-module, as the morphisms y, and g, are natural and
by Lemma 2.10 it is easy to check that we can assume w. 1. 0. g. T = 7.

Set L = H(R), Ls = Hp(Rs) and

As = Homy (xs(0), 1z,) : Homg (Xz(Ls), Ls) = Homy (L(c), Ls) .
Let w: R — Homy (Xz(Ls), Ls) be the morphism defined by setting
(0(@))(8) = &)

for every & e Hom, (R, Ls;), ® € R.
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Clearly ® is a morphism in gr-R and hence also Asow: R —
—Hom (L(s), Ls) is a morphism in gr-R and for every v € @, r € Ry,
2 €(L(0)): = L,1, we have

[(Asow)(r))(x) = ra .

Let «: Homy(R(c), Rs) — Homy (L(s), Ls) be the morphism defined
by setting

alf) = Hulf), feHomz(R(o), Ro) .

Then « is a morphism in gr-R and it is easy to check that the diagram

R—2sHomy (Xa(Ls), Lo) 2o s Hom, (L(0), L)

X A
) N Hom, (R(0), Ro) y

is commutative.

Assume now (b) is fulfilled. Then, as y. is an isomorphism in R-gr,
As = Homy (ys(0), 15,) is an isomorphism in gr-R. Moreover as
Ls ~~ B, R is a noetherian 7'-module and T is complete in the m-adic
topology, by Matlis’ duality w is an isomorphism. Now by Propo-
sition 2.8, Rs is a canonical module for 7T so that, by Lemma 2.7 « is
an isomorphism (in fact recall that when regarded as a 7-module,
HY(R) coincides with Hy(R)). Thus gs is an isomorphism too and
(¢) holds.

¢) = (a) By Theorem 2.6 and Lemma 2.7, « is an isomorphism.
By Proposition 2.8, Hy,(Rs) =~ E so that w is an isomorphism too and
by Matlis’ duality xs = Homgy(As 1z)(c~%) is also an isomorphism.
By Lemma 2.11, R is Cohen-Macaulay.

(@) = (b) By Theorem 1.12.

2.13. THEOREM. Let R = @ Rs be a moetherian finstely graded

oe@

ring of type G, T = R,. Assume that R is gr-local, i.e. that T is a local
ring, and let m be the maximal ideal of T, E = E(T|m), n = dim (T)
(= dim (R)). Then the following statements are equivalent:

(a) R is a Gorenstein ring.
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(b) R is a Cohen-Macaulay ring and there is a o € G such that

Hy(R,) >~ F and
Aot HA(R) — Xa(Hn(Rs))(07)
is an isomorphism (in R-gr).

(¢) R s equidimensional, T is Cohen-Macaulay and there is a
oe G such that Hy(Rs) ~ FE and

Lot Ho(R) = Xp(H(Rs)) (a7 1)
is an isomorphism (in R-gr).

(d) R is a Cohen-Macaulay ring and HYH(R) is an injective R-
module.

(e) R is equidimensional and there is a o€ G such that Rs is a
cononical module for T and gs: R — Homy (R(c), Rs) is an
isomorphism (in gr-R).

(f) R is equidimensional and there is a o€ G such that Rs is a
canonical module for T and R ~ Homg (R, RBs;) in R-mod.

(9) R is equidimensional, T has a canonical module K and
R ~ Hom, (R, K), in R-mod.

PRroOF.

(@) = (b) by Lemma 2.5.

(b) <= (¢) <= (¢) by Proposition 2.12.

() = (f) = (g) is trivial.

~ (9) = (¢) LetT be the m-adic completion of 7. By Lemma 2.11,
R = R®T is a Gorenstein ring and hence by Lemma 2.5 and Prop-
T

osition 2.12 (¢) holds for B. Then as 7' is faithfully flat and ys is natural,
using Lemma 2.10 it is easy to see that (¢) holds also for R.

() = (d) by Proposition 0.1.

(d) = (@) Let t,...,t,€T be a regular R-sequence (see
Theorem 1.12) and let H = H%j(R). Then, by Proposition 2.4,
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R/(tyy ...y tn) B ~ Anng(ty, ..., 8,). As H is an injective ER-module it
follows that R = R/(t,,..., t,) R is an injective R-module. Hence R is
a Gorenstein ring (see [B]) and thus R is a Gorenstein ring too.

2.14. LEMMA. Let B = @ RB: be a noetherian gr-local finitely graded

TG

ring of type G. Lot o€ G and assume that Ry ~ E. Then us:R —
— Xp(Rs)(071) is an isomorphism when it is injective.

Proor. By Theorem 207 page 157 in [K], T is artinian. For every
finitely generated T-module M, let (M) denote the length of M and
recall (see [HK] Korollar 1.36) that the T-module Hom, (M, E) has
finite length equal to I(M). As us is injective, for every v € G we have

URr) = U(po(Rr)) <l(Homy (Rort, Ro)) = URor1) -

As U(R) = S UR,) = D URs-) we get that us must be surjective.

TG TEG

2.15. PROPOSITION. Let R = @ Rs be a moetherian gr-local finitely

OER
graded ring of type G, T = R,, m the maximal ideal of T. Then the
following statements are equivalent:

(@) R is Gorenstein and artinian.
(b) R is self-injective.
(¢) There is a o € G such that us is injective and Ry ~ E.
(d) There is a o € G such that us is an isomorphism and R; ~ E.
(¢) There is a o € G such that R(c) >~ Xz(E) in R-gr.
(f) R =~ Xn(E) in R-mod.
ProOF. (a) <> (b) is well known (see [B]).
(#) <= (d) by Theorem 2.13.
(d) = (e) = (f) is trivial.
(f) = (b)by Proposition 0.1.
(d) = (e) is trivial.

(¢) = (d) by Lemma 2.14.
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2.16. PROPOSITION. Let B = @ Rs be a noetherian finitely graded

cEB
ring of type @, T = R, and assume that every Rs is a projective T-module.

Then:

a) If R is Gorenstein then T is Gorenstein.

b) If T is Gorenstein and there is a o € G such that Rs ~ T and g4
is an isomorphism, then R is Gorenstein.

Proor. Apply Lemma 1.10, Theorem 2.13, Corollary 1.14 and
Theorem 1.12 and recall that if a free module is a canonical module
then it must be of rank 1.

Part of the following result is due to C. N#stidsescu (see [N] Co-
rollary 2.9).

2.17. COROLLARY. Let R = @ Rs be a noetherian strongly graded

ce@
ring of type @, G a finite group, T = R,: Then R is Gorenstein iff T
is Gorenstein.

Proor. ¢,: R —Hom;(R,T) is an isomorphism as (g.).: T —
— Hom, (T, T') is an isomorphism (see [N'V] Corollary I1.3.5).

3. Semi-trivial extensions.

Let T be a not necessarily commutative ring and let H be a
T-T-bimodule. Assume that

A=[——]: HC;<)H——>T
is a T-T-bilinear map satisfying
(%) [hyy Bo]hy = hy[hs, By]  for all hy, by, Rye H.
Define a multiplication on the abelian group T X H by setting
(&, B)(t', B') = (8¢’ 4 [k, B'], th’ -+ ht')

for all ¢,t'e T, h, k'€ H.
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In this way T'x H becomes a ring which will be denoted by 7' H
and called the semi-trivial ewtension of T by H and A. The ring R =
=T >1<H can be considered as a graded ring of type G = {— 1,1}
by setting R, = T and R_, = H. Moreover every ring of type G =
= {—1, 1} is of this form.

If 2 =0 then T>Z<H is usually denoted by 7 [xH and called the
trivial extension of T by H.

It is easy to see that T>A<H is a commutative ring iff 7' is a com-
mutative ring, the left and the right 7-module structures on H coincide
and [h,, h,] = [h,, h,] for every h,, h,€ H i.e. if the form A is sym-
metrie.

[,] is said to be non-degenerate iff y € H and [k, y] = 0 for
every he H implies y = 0.

[,] is said to be strongly non-degemerate iff the assignement
h +— [h, —] yields an isomorphism between H and Homg(H, T).

For the definition of x4, and p_, see 0.3 and for those of g, and p_,
see 2.9.

3.1. LemMA. Assume that R =T >Z<H is commutative. Then:
1) u, = o, is injective iff [, ] is non-degenerats.
2) m = o1 s an tsomorphism iff [,] is strongly non degenerate
3) p_y= o_, 18 injective iff +H is fasthful.

4) u_,= o_, ts an isomorphism iff End (cH) is canonically iso-
morphic to T.

Proor. Straightforward.

3.2. PROPOSITION. Assume that R = T >1<H is commutative. Then:
a) R is gr-local iff T is local.

b) R is noetherian iff T and pH are moectherian. In this case
dim (R) = dim (T').

¢) R is Cohen-Macaulay iff T is a Cohen-Macaulay ring, -H is
a Cohen- Macaulay T-module and for every m € Spec Max (T'),
dim (T,,) = dim (H,,).

ProoF. a) Follows from Proposition 1.4, b) follows from Prop-
osition 1.8, ¢) follows from Theorem 1.13.
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3.3. PROPOSITION. Assume that B = T>§H is commutative, gr-local
and noetherian. Then the following statement are equivalent:

(@) R is Gorenstein.

(b) R is equidimensional and either H is a canonical module for
T or [,] is strongly non-degenerate and T is Gorenstein.

ProoF. See Theorem 2.13 and Lemma 3.1 and recall that if H
is a canonical module for T then Hom, (H, H) is canonically isomorphic
to T (see Theorem 2.6 and Lemma 2.7 or [HK] Satz 6.1).

3.4. PROPOSITION. In the hypothesis of Proposition 3.3 the following
statements are equivalent:

(a) R s self-injective.

(b) Either H = E(T|m) or T 1is self-injective and [,] is non-
degenerate.

PRrROOF. See Proposition 2.15 and Lemma 3.1.

Following result is essentially due to I. Reiten (see [R]) but see
also [FGR] Theorem 5.6.

3.5. COROLLARY. Let T be a commutative moetherian ring, H @
finitely generated T-module, R = T |x H. Let

0, = {m e SpecMax (T): Hyp # 0}, £, = SpecMax (T)\ 2, .

Then:

(a) R is a Gorenstein ring iff, for every m € £, H,, is a canonical
module for Ty, and, for every m € 2,, T, is Gorenstein.

(b) R is self-injective iff, for every m e £y, H,, is the injective
envelope of T, /mT,, in Ty-mod and for every me ,, Ty, is
self-injective.

ProOF. FIRST of all note that when 4 = 0 then A is non-degenerate
iff H=0. Let meSpecMax(T). Then R, = T, X H,, is a local
ring with maximal ideal mT,, X H,,. The conclusion now follows by
Lemma 1.10 and Propositions 3.3 and 3.4.
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3.6. AN EXAMPLE. We give now an example of a gr-local Gorenstein
ringR=1T X H where H is not faithful (and hence it is not a canonical
module for T'!). Let J be a Gorenstein local ring, T = X[x]/(x?),
z=ux+ (x)eT. Set L =T[:]/(2*— @, 22) =2+ (2* — 2, 2)€ L
and let H be the cyclic 7-submodule spanned by # in L.

Let A=[,]:H®H — T be the T-bilinear map defined by

T

[ty to 2] = ity by, t,eT.
Then [, ] satisfies condition (x) and it is easy to check that

TxH~ %2 p
2 (x2, 22 — @, @2)

Clearly H is not faithful as zH = 0. Anyway [, ] is strongly non-
degenerate. In fact if 0 = y € H then y = k+ where 0 ke X and
then [y, #] = k=% 0. Clearly Ann;(+) = T« and hence every mor-
phism fe€ Homy (H, T) is of the form [k, —], he H.

REFERENCES

[AM] M. F. A11vAH - I. G. MACDONALD, Introduction to Commutative Algebra,
Addison-Wesley, London, 1969.

[B] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschr., 82 (1963)
pp- 8-28.

[BG] M. BORATYNSKI - S. GRECO, When does an ideal arise from the Ferrand
construction?, Rapporto interno del Dipartimento di Matematica del
Politecnico di Torino N. 2, (1985).

F,] D. FERrAND, Courbes gauches et fibrés de rang 2, C.R. Acad. Sci. Paris,
281 (1975), pp. 345-347.

[F,] R. FossuM, Commutative extensions by canonical modules are Gorenstein
rings, PAMS, 40 (1973), pp. 395-400.

[FGR] R. M. FossuMm - P. A. GrirritH - I. REITEN, Trivial Extensions of
Abelian Categories, LNM 456, Springer-Verlag, Berlin-Heidelberg-New
York, 1975.

[H] R. HARTSHORNE, Local Cohomology, LNM 41, Springer-Verlag, Berlin-
Heidelberg-New York, 1967.



152
[HK]
[K]
M,]
[M]

[M,]
M,]

[N]
[NV]
[R]
[84]
[S.]

[S5]

Claudia Menini

J. HerzoG - E. Kunz, Der Kanonische Modul eines Cohen-Macaulay
Rings, LNM 238, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
I. KapLANSKY, Commutative rings, The University of Chicago Press,
Chicago and London, 1974.

E. Mariis, Injective modules over Noetherian rings, Pacific J. Math.,
8 (1958), pp. 511-528.

E. Marris, The Higher Properties of R-Sequences, J. of Algebra, 50
(1978), pp. 77-112.

H. MaTsuMURA, Commutative Algebra, Benjamin, New York, 1970.

C. MENINI, Finitely graded rings, Morita duality and self-injectivity,
Comm. in Algebra, 15 (1987), pp. 1357-1364.

C. NisTAsEscu, Strongly graded rings of finite groups, Comm. in Alge-
bra, 11 (1983), pp. 1033-1071.

C. NAsTAsESCU - F. VAN OYSTAEYEN, Graded Ring Theory, North-
Holland, Amsterdam-New York-Oxford, 1982.

I. REITEN, The converse to a theorem of Sharp on Gorenstein modules,
Proc. of A.M.S., 32 (1970), pp. 417-420.

J. P. SERRE, Algebre Locale. Multiplicités, LNM 11, Springer-Verlag,
Berlin-Heidelberg-New York, 1965.

R. Y. SHARP, Local Cohomology Theory in Commutative Algebra, Quart.
J. Math. Oxford (2), 21 (1970), pp. 425-434.

R. Y. SHARP, Gorenstein Modules, Math. Z., 115 (1970), pp. 117-139.

Manoscritto pervenuto in redazione il 17 marzo 1987.



