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Cohen-Macaulay and Gorenstein Finitely Graded Rings.

CLAUDIA MENINI (*)

Introduction.

Let G be a group, with identity element e, R ~ ~ I~a a graded
oeG

ring of type G..R is called finitely graded if Ra = 0 for almost every
a E Gx. In particular .1~ is finitely graded whenever G is finite.

The main purpose of this paper is to characterize Cohen-Macaulay
and Gorenstein finitely graded rings. Our starting point was the fol-
lowing. Graded rings over G = Z/2Z are the so called semi-trivial
extensions and a particular case of semi-trivial extensions are the

trivial ones (see Section 3 for details). Now a complete description
of Gorenstein trivial extensions, essentially due to I. Reiten ([R]),
can be found in [FGR]. In [F2] R. Fossum investigates the general
situation of commutative extensions. Part of his results is found also
in [F1] where it appears as the algebraic basis of the well known Fer-
rand’s construction. Ferrand’s construction itself has been extensively
used in studying set theoretic complete intersections. In this setting
trivial extensions still provide answers to specific questions (see, for
example [BG]).

Our first idea was to study Gorenstein semi-trivial extensions.
From the very beginning it looked more appropriate to regard this
case as a particular case of finitely graded rings than as a generalization

(*) Indirizzo dell’A.: Dipartimento di Matematica, Via Roma, 1-67100

L’Aquila (Italy).
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of trivial extensions. The main point is that, in general, a semitrivial
extension, unlike a trivial one, of a local ring is not a local ring. On
the other hand we already had found in [M4] some technical tools
which looked very useful for this general investigation. In faet, together
with some basic commutative algebra, they led us to a complete so-
lution of our problem. At the end this solution appears as a sophisticate
generalization of Reiten’s results, y even if the employed techniques
are quite different.

We now give a short description of the content of the paper.
In section 0 we recall some basic notions of graded ring and module

theory. The reader, which is not too familiar with it, is suggested to
refer to Nistgseseu and Van Oystaeyen’s book [NV].

Always in section 0 we essentially quote from our paper the
above mentioned results.

In the following sections all rings are assumed to be commutative,
but the group G of the gradation is not.

In section 1 we prove, first of all, the following basic result: a
finitely graded ring R = ~ .R~ is gr-local (i.e. it has a unique gr-maximal

QEG

ideal, y that is a unique graded ideal which is maximal among graded
ideals of .R) iff JSg is local (i.e. it has a unique maximal ideal).

After that, the characterization of Cohen-Macaulay and Gorenstein
finitely graded rings is easily reduced (Lemma 1.10) to that of gr-local
ones.

Another basic result proved in Section 1 is the following. If
M = 0 Ma is a graded module over a gr-local and noetherian finitely

QEG

graded _ ~ .R~ and T = Re , then the socle of RM is not zero
«eG

iff ~M contains a copy of every simple R-module iff TM eontains a
copy of the unique simple T-module. Using this result it is not dif-
ficult to prove that when is Cohen-Macaulay, one can find elements
ti ... , tn E T, n = dim (.R), which form a regular R-sequence. This
fact leads us to the following characterization of Cohen-Macaulay
gr-local finitely graded rings (Theorem 1.12): Let be a

cEG

noetherian gr-local finitely graded ring of type G, T = Re . Then R

is a Cohen-Macaulay ring iff I~ is a Cohen-Macaulay T-module iff,
for every or ~ Gg B, is a Cohen-Macaulay T-module and dim =

- dim (T).
Section 2 is devoted to the study of Gorenstein gr-local finitely

graded rings. Our main tools are the local cohomology functors
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on R-mod with respect to the maximal spectrum S~ of I~, the
local cohomology functors H§(Nl’s on T-mod with respect to the
maximal ideal m of T and a functor XR: T-mod - R-gr which had
already been very useful in After proving several technical
results we give, in Theorem 2.13, a complete description of Gorenstein
gr-local finitely graded rings.

Unfortunately, y part of this theorem (perhaps the deepest one),
involves too many details to be quoted in this introduction. Thus

we state here only the following one. Let .R == @ Rj be a noetherian~ 

cec

finitely graded ring of type G, T = Assume that .R is gr-local
and let n == dim (.R). Then I~ is a Gorenstein ring iff .R is a Cohen-
Macaulay ring and H)(R) is an injective R-module iff R is equidi-
mensional and there is a cr E G such that Rj is a canonical module
for T and 7~ ~ HOMT (.R, in R-mod iff .R is equidimensional, T
has a canonical module g and in R-mod. The

particular case when R is Gorenstein and artinian is further investigated
in Proposition 2.15.

In section 3 we specialize our results to the case of semi-trivial
extensions. In particular we get, as a Corollary, the above mentioned
Reiten’s result on trivial extensions.

0. Notations and preliminaries.

All rings are associative with identity 1 ~ 0 and all modules are
unital. Let 1~ be a ring. R-mod will denote the category of left R-
modules. The notation will be used to emphasize that M is a
left R-module. Moreover if R and T are two rings we will write RXT
to mean that if is an R-T-bimodule (left R-module and right T-
module). Maps between modules will be written on the opposite side
to that of the scalars only in the non-necessarily commutative case.
If L, if c R-mod, the group M) will be also written as

HomR (RL, or Hom (RL, RM).
If RLT is an R- T-bimodule and if RM E R-mod, then we will often

consider HomR (RL, RM) with its left T-module structure defined by
setting

where pt is the right multiplication by t on RL. In this case we will
also write Hom, (ILI If M e R-mod, we will denote by Socn (M)
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or simply by Soc (M) the socle of RM and we will say that M has finite
socle if Soc (l~) has finite length.

or simply will denote the injective envelope of M
in R-mod. If Z we set

If I c l~ we set

Let G be a multiplicative group with identity element e. Let
be a graded ring of type G. Recall (see [NV]) that this

means that is a family of additive subgroups of the ring B
such that R splits-as an abelian group-into the direct sum of the

a e G, and for every a, t e G, BaR, 9 B,,,. An M E R-mod is
said to be a left if there is a family (1 E 6~} of
additive subgroups of M such that and c 

for all a, r e G. The notion of graded right fi-module is analogous.
Note that if G is not abelian one has to distinguish between graded
left and right R-modules even it R is commutative ! t

Let X and N be graded left modules over the graded ring
For every 7: E G we set

o~6?

N)t is an additive subgroup of the group N)
of all R-linear maps from Minto N.

An f e HOMR (M, is called a graded morphism of degree z.

is a graded abelian group of type G.
We denote by R-gr the category of left (right) R-modules

where the morphisms are the graded morphisms of degree e, i.e.

for every M, N Ë R-gr.
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The forgetful f unctor R-mod will be denoted by or by 
A ring homomorphism f : R - S between two graded rings of type G

is called a graded ring homomorphism if f (.Ra) C ,Sa for all a E G.
If is a graded left R-module and cr E G then 

is the graded left module obtained from if by setting 
the graded left module is called the c-suspension of M. If M,
N Ë .R-gr, f c N) and J G G, then we denote by l(a) the
morphism f regarded as an element of HomR.gr ( ~VI (~), N(a) ). If .M =

Let N be a graded submodule of .M~. N is called gr-essential in M
if N is essential in if as a subobject of if in R-gr. N is gr-essential
in if iff F(N) is essential in F(M) (see [NV] Lemma 1.2.8). if is called

gr-injective if 1V1 is an injective object in R-gr. If F(M) is injective
in R-mod then if is gr-injective. The converse is not true in general
(see [NV] Corollary 1.2.5 and Remark 1.2.6.1).

A graded module S E R-gr is called gr-simple if 0 and S are its only
graded submodules.

If if E .R-gr, the gr-socle of M is the sum of its gr-simple graded
submodules.

A graded module if e R-gr is called gr-noetherian (left gr-
artinian) if if satisfies the ascending (descending) chain condition
on graded left R-submodules of M.

Let be a graded ring of type is called strongly

graded if = for all a, r e G. is called

f initely graded if Ma = 0 for almost every or E G. If RR is finitely graded,
.R is called a finitely graded ring. If R is commutative and 1 is a graded
ideal of R, 7 is called gr-maximal if I is maximal among graded ideals
of R and R is called gr-local if .R has exactly one gr-maximal ideal.

Let .R be a commutative ring. We denote by Spec (R) and by
Spec Max (.R) the prime spectrum and the maximal spectrum of R
respectively. If I is an ideal of R, ht (1) will denote the height of I.
If M e R-mod, dim (M) will denote the Krull dimension of M.

If .Z~ is a commutative local noetherian ring and M is a finitely
generated R-module, depthR (M) or simply depth(M) will denote the
depth of .M~ with respect to the maximal ideal of R.
N will denote the set of non negative integers, Z the ring of in-

tegers.
We end this section recalling some notations and results from
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which we will use often in the paper. Let be a graded

ring of type C~, T = Re, N E T-mod. If 1~ is finitely graded then the
left JR-module pY = TN) has a natural structure of graded
R-module defined by

We denote this graded R-module by X(N). It is easy to check that
the assignement N - X(N) yields a functor X : Let
X = FoX: T-mod -* R-mod. Moreover for every N E T-mod we set

0.1. PROPOSITION. Let l be a finitely graded ring of type G,
T = Re . Then :

a) I f L is an essential T-submodule of N E T-mod, then L is a
gr-essential B-submodule of X(N) and hence F(L) is an essential R-
submodule of X(N).

° b) If S is a simple te f t T-module, then g is a gr-simple te f t R-
module. Hence is an artinian semisimple le f t T-module and

the le f t has f inite length.

c) If .E E T-mod is injective in T-mod, then X(E) is injective in
R-mod.

d) If E E T-mod is a cogenerator of T-mod, then X(E) is a cogen-
erator in .R-mod.

e) If E has a f inite essential socle, then X(E) has a f inite essential
Bocla.

PROOF. See [M4] Lemmata 1.2, 1.3 and 1.4.

0.2. Let be a finitely graded ring of type G, T = B,

and let be a graded left R-module. Fix a G G. For every

T E G and x E let
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be the map defined by

Clearly e Romp 
Following proposition generalizes Proposition 4.3 of 

0.3. PROPOSITION. Let. be a f initely graded ring of type G,

and let. be a 

the notations of 0.2, the mapping x H Mi, detines a morphism
o f 
is a graded essential submodule of

PROOF. It is trivial to check that Itm: is a mor-

phism of graded left .R-modules.
Let i E G and let 0 ~ ~ E = Hom, (RaT-t, Ma). Then

there is an r E so that 0 ~ (r) ~. Let y = (r) ~ E Ma and consider
E Romp (T, Then r ~ ~ == (y) lz’. In fact also Romp (T,
and for every t E T it is:

Thus Im (~) is graded essential in Let 

and let T E G such that x E Mr . Then !x),u~ = 0

and hence x = 0. Contradiction.
If M = R we will simply write pj instead of for every d E G.

1. Finitely graded Cohen-Macaulay rings.

1.1. LEMMA. Let ; be a graded ring of type G, T = R8

and let be a graded Ze f t If M is le f t gr-noetherian

(left gr-artinian) then, for every a E G, T(Ma) is te f t noetherian (left artinian).

PROOF. If a E G and ,H is a left submodule of T(Ma), then L =
is a graded submodule of RM with gradation defined by

Lr = for every 7: e G. The proof follows straightforward from
this remark.



130

1.2. COROLLARY. Let Ra be a graded ring of type G, T = Re

and let.
aeu

Ma be a finitely graded Ze f t Then the following
statements are equivalent :

(a) RM is left gr-noetherian (Ze f t gr-artinian).

(b) I’or every a E G, is left noetherian (left artinian).

(e) F(M) is le f t noetherian (le f t artinian).

1.3. LEMMA. Let be a finitely graded ring of type G

and assume that T = .Re has a unique simple left T-submodule S. Let

V E R-gr be a gr-simple left R-module. Then F(V) is isomorphie to

F(S) in R-mod.

PROOF. Let E be the injective envelope of S in T-mod. Then E
is the minimal injective cogenerator of T-mod and, by Proposition 0.1,
X(E) is an injective cogenerator of .R-mod. As V e ..R-gr is gr-simple,
F(V) is finitely generated in R-mod so that

(see [NV] Corollary I.2.11 ).
Thus, as X(E) is a cogenerator of R-mod, there is a z E G and an

f 0 0. As TT(z) is gr-

simple too, f is injective.
By Proposition 0.1, S is gr-simple and gr-essential in X(E). It

follows that V(T) is isomorphic to S in .R-gr and hence F(V) = 
is isomorphic to .F(S) in R-mod.

From now on, i f not otherwise expressely stated, we will consider
only commutative rings.

1.4. PROPOSITION. Let - be a finitely graded ring of type G.

Then B is gr-local i f f T local.

PROOF. If T = Re is local, then 2~ is gr-local by Lemma 1.3. Con-

versely if B is gr-local then all non invertible elements of T must be
contained in the unique gr-maximal ideal X of R. Thus M r1 T is
the unique maximal ideal of T.
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1.5. PROPOSITION. -Let be a finitely graded ring of type G

and assume that X = I~e is a field. Then for every M E Spec Max (R),
K-vector space of f inite dimension and hence the R/M-vector

space Homx X) is one-dimensional. Moreover Spec Max (R) is

finite.

PROOF. By Proposition 0.1, X(K) is an injective cogenerator of
R-mod whose socle is contained in F(Jt) and moreover is an

artinian semisimple K-module i.e. a finite dimensional JB,-vectûr space.
Let .M E Spec Max (1~). Then, as X(K) is a cogenerator of R-mod,

Soc (X(K)) contains an R-module isomorphic to .R/M and hence R/M
is a finite dimensional K-vector space. In particular Spec Max (R)
is finite.

Note now that if .L is a finite dimensional K-algebra then dimx (L) _
= dim K (Homx(L, K)) and hence, if .L is a field, HomK(KLL, X) is

a one-dimensional L-vector space.

1.6. PROPOSITION. Let r be a finitely graded ring of type G,

T = Re. Let xrt E Spec Max (T), S = TIm. T hen m is contained only
in a f inite number of distinct maximal ideals of R, say M,,, ... , and

PROOF. Let 1Vl E Spec Max (1-~). Then

Thus Hom, X(,S)) ~ 0 iff m c 111 and in this case

where == lVl = and K - T /m so that Proposition 1.5
applies.

1.7. COROLLARY. Let. be a finitely graded ring. If T = Re

is semilocal and E is the minimal (injective) cogenerator of then
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X(E) is the minimal (injective) cogenerator of R-mod and every maximal
ideal of R contains a maximal ideal of T.

PROOF. Let m1, ... , be the distinct maximal ideals of T. Then

Let M E Spec Max (R). Then cannot contain two distinct max-
imal ideals of T (as they are coprime!). Thus, by Proposition 1.6,
Soc (X (E)) splits into the direct sum of distinct simple R-modules.
By Proposition 0.1, X(E_) is a cogenerator of R-mod with essential
socle. It follows that X(E) is the minimal cogenerator of R-mod.
Moreover as X(E) cogenerates R-mod, Soc (X(E) ) contains a copy
of every for every .lIT E Spec Max (R). Thus, by Proposition 1.6,
if M E Spec Max (R), then M must contain some 

1.8. PROPOSITION. Let be a finitely graded ring of type G,
T = Then R is a noetherian (resp. artinian) ring iff R is a noetherian
(resp. artinian) I f R is noetherian then

a) dim (R) = dim (T).

b) For every P E Spec (.1~), P E Spec Max (R) iff

PROOF. Apply Corollary 1.2 and note that if l~ is a noetherian

T-module, then 1~ is an integral extension of T. Thus a) and b) follow
from [M3] Theorem 20 page 81 and [AM] Corollary 5.8 page 61.

1.9. LEMMA. L et be a finitely graded ting of type G.

.Assume that R is gr-local and noetherian. Let be a graded

(Ze f t) Then the following statements are equivalent :

(a) Socp (~I) # 0.

(b) M contains a copy of every simple 

(c) SOCR (M) =1= 0.
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PROOF. (a) =&#x3E; (b). Let 0 ~ x E h(.~) and such that x E Soc, (~VI).
Then Rr is a finite vector space over T/m, where m is, by Proposition 1.4,
the unique maximal ideal of T. Thus Rr is an R-module of finite

length. Hence Rr can be also regarded as an object of finite length
in .R-gr. It follows that Rr contains a gr-simple R-module V. Let

Then by Proposition 0.1 contains SocR (X(~’) ). By
Lemma 1.3 .F’( V) is isomorphic to in R-mod. The conclusion
now follows from Proposition 1.6 and Corollary 1.7.

(b) ~ (c) is trivial.

(c) =&#x3E; (a) is trivial in view of Corollary 1.7 (or Proposition 1.8).

We will say that a commutative noetherian ring I~ is 
caulay (resp. Gorenstein) iff, for every ME Spec Max (R), is a local

Cohen-Macaulay ring (resp. a local Gorenstein ring). Similarly, if N
is a finitely generated R-module, we will say that N is a Cohon-Macaulay
R-module iff NM is a Cohen-Macaulay RM-module for every M E

E Spec Max (.l~). For the definition of local Cohen-Macaulay ring and
of Cohen-Macaulay module over a local noetherian ring see [SI]
or or [HK]. For the definition of local Gorenstein ring see [B]
or [HK].

1.10. LEMMA. Zet be a noetherian finitely graded ring

of type G, T = Re. Then R is Cohen-Macaulay (Gorenstein) iff .Rm
is Cohen-Macaulay (Gorenstein) for every m E Spec Max (T).

PROOF. Let M e Spec Max (.R). Then m - X n T E Spec Max (T)
by Proposition 1.8. Let R’= .Rm and M’== lVIRm . Then R’, f~~ 
Apply now theorem 1 in [B] and Theorem 30 page 107 in [M3].

1.11. REMARK. Let be a graded ring, T = m e

E Spec Max (T). Then the ring is a graded ring of type G with
gradation defined by

Thus, in view of Proposition 1.4, if I~ is finitely graded, Rm is a gr-local
ring and by Lemma 1.10 the characterization of Cohen-Macaulay and
Gorenstein rings is reduced to that of gr-local ones.
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1.12. THEOREM..Let R = EB Ra be a noetherian gr-local finitely
"’6G

graded ring of type G, T = Re . Then the following statements are equi-
valent:

(a) .R is a Cohen-Maca2clay ring.

(b) R is a Cohen-Maeaulay T-module.

(c) For every G, .Ra is a Cohen-Macaulay T-module and
dim (R,) = dim (T).

If these conditions are satis f ied then, for every M E Spec Max (.R),
ht (M) = dim (R) = dim (T) = n and there are elements tl, ..., tn E T
which form a regular R-sequence.

PROOF. (a) ~ (b) By Proposition 1.8, dim (R) = dim (T). Let
d = dim (T) and let n be the depth of the T-module R. Let m be the
maximal ideal of T and let tl , ... , tn Em be a maximal regular R-
sequence. Set

Clearly R is a graded quotient ring of R and (R)e = T. In particular k
is gr-local and, by the maximality of the sequence tl, ..., tn, ~ 0.

Thus, by Lemma 1.9, .R contains a copy of every simple .R-module
and hence every maximal ideal of 1~ is associated to 0 so that R is
artinian. By Proposition 1.8 and 1.4 every maximal ideal of 1~
contains m and hence it contains tl, ... , tn . From the foregoing con-
siderations it follows that every .M E Spec Max (.) is associated to the
ideal spanned by tl, ... , tn in 1~. It follows (see Theorem 155 page 133
in [K]) that

ht(M) = n for every SpecMax (R) .

Thus n = d and R is a Cohen-Macaulay R-module.

(b) =&#x3E; (c) Let t E T. Then t is regular on .R iff t is regular on
each Ra . Thus we get

dim (T) ~ depth depth (TB) = dim (TB) = dim (T ) .
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(c) =&#x3E; (b) Let i e N. Then Ra).
aeG

By Proposition 6 page IV-14 in [S] we get depth (pR) = dim (T). As

.R ~ T, = dim ( T ) .

(b) + (a) Let be a regular R-sequence. Then

t1, ... , tn , regarded as elements of R, still form a regular R-sequence.
Moreover, y by Proposition 1.8 the elements tl , ... , tn are contained in
the Jacobson radical of R and dim (R) = = dim (T).

1.13. THEOREM. -Let be a noetherian f initely graded

ring, T = T hen the following statements are equivalent:

(a) R is a Cohen-Macaulay ring.

(b) .R is a Cohen-Macaulay

(e) For every a E G, Rc is a Cohen-Macaulay T-module and, for
every nt E Spec Max (T), dim = dim (Tm).

PROOF. It follows by Proposition 1.4, Lemma 1.10, Remark 1.11
and Theorem 1.12.

1.14. COROLLARY. Let be a noetherian finitely graded

ring, T = .Re and assume that every .Ra is a projective T-module. Then
R is a Cohen-Macaulay ring iff T is a Cohen- Macaulay ring.

1.15. COROLLARY. Let . be a strongly graded noetherian

ring of type G, G a f inite group. Then .R is a Cohen-Macaulay ring
iff T is a Cohen-Macaulay ring.

PROOF. Apply Corollary 1.3.3 page 15 in [NV] and Corollary 1.14
above.

2. Finitely graded Gorenstein rings.

In all this section, when is a noetherian gr-local finitely

graded ring of type G, T will denote Re , m will be the maximal ideal
of T and E = E(Tfm) the injective envelope of in T-mod.
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2.1. Let R be a commutative noetherian ring, U an ideal of R,
A = V(9t) = {~ e Spec (~): (T D 5H}. For every i E N, let H£(N) denote
the i-th local cohomology functor on .R-mod with respect to A i.e.
the i-th right derived functor of the functor FA: R-mod -* R-mod
defined by setting, for every 

’ 

If ~’ 3 a noetherian gr-local finitely graded ring of type (~,
for every i E N we denote by .8’m(-) the i-th local cohomology functor
on T-mod with respect to and by H1(-) the i-th local cohomology
functor on R-mod with respect to S~ = Spec Max (1~) = (see
Proposition 1.8).

2.2. LEMMA. Let be a noetherian gr-local f initely graded

ring of type G, i E N, Then has a natural

structure of graded Ze f t R-module and

PROOF. It is well known that there is a natural isomorphism of
I-modules

{see e.g. [8,] Theorem 4.3).
For every -r E (~, let qr: Mr -* M be the canonical injection. Then

is a natural isomorphism (see [S2] Theorem 3.2). For every set

Then it is enough to show that for every 0’y r E G
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Let r E Rj and let a : X ---&#x3E; M be the multiplication by r on ~. Then
is the multiplication by r on Thus

we have to show that

As the fPk’s are natural isomorphisms, this is equivalent to prove that
where for every 7: E G.

Let ’JlT: M --~ M T be the canonical projection. Then

for every ~ E 
Since _ is equal to the identity on

iff ~ = e and is equal to zero otherwise, we get Lat:

2.3. Let R be a noetherian ring, % an ideal of 1~, r1, ... , rn a system
of generators of = Y(~~), M Ë R-mod. For every i EN, let 
be the i-th cohomology functor of If with respect to r = ~rl, ... , rn~
(see [H] page 19 or [HK] Def. 4.6 for the definition). Then, for every
i E N there is a natural isomorphism 4(M) between and

H£(M) (see [H] Theorem 2.3). Moreover it is easy to check (see
e.g. [M2] Theorem 10) that naturally identifies with lim 

vEN

where, 7 for every rp if = ri .~1-f- ... -E- rn M and the transition
morphisms

in the direct limit are given by

2.4. PROPOSITION. Let R = 0 be a noetherian gr-local finitely
graded ring of type G. Assume that R is a Cohen-Macaulay ring, n =
= dim (R) and let tl , ... , tn E T be a regular R-sequence (see Theorem 1.12 ) ;
t = fti ... , tn~..Endow with its graded te f t R-module structure
(see Lemma 2.2) and each BITYR, v E 1~T, with graded quotient ring struc-
ture. Then
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and f or every v E N the transition morphisms yvt == in the direct
limit are injective.

PROOF. First of all note that the are morphisms in
R-gr so that is an inductive system in and
hence we can consider the direct limit of this system in .R-gr. This
is nothing else that the usual direct limit in R-mod endowed with the
gradation defined by setting, for every t e G,

(see [NV] page 4).
Let T E G and let .R be the canonical injection. Then

(see 2.3) we have the commutative diagram

This means that if we identify with then 

identifies with J’EN

;ëÑ
Now it is easy to check that if we identify with lim 

;ëÑ
then the isomorphism induces the identity on
lim R/tv R.
yeS

By Theorem 8. (1) the are injective.

In the sequel we will identify, y for every ar E G, with
and set

2.5. LEMMA. Let .R == ffi Ra be a noetherian gr-local f initely graded
aeG

ring of type G. Assume that R is a Gorenstein ring of Krull dimension n.
Then there is a o~ E G such that Xa: .H~(R) --~ (a~1) is injective.
Moreover, for every a E G such that X, is injective, Xa is an isomorphism
in .R-gr, .Hm(.Ra) ^~ E so that is injective in R-mod.
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PROOF. Our proof will be essentially a modification of that one
of Satz 5.9 in [HK] to our case. Let t be as in Prop. 2.4. First of all,
for every v E 1~T, is an artinian Gorenstein ring and hence it is
self-injective (see [B]). Then, as in the proof of Satz 5.9 in [HK],
a standard argument using Artin-Rees Lemma shows that .H~(.R)
is injective in R-mod. By Proposition 2.4 we can identity 
with lim Rftv R in .R-gr and moreover, the transition morphisms in

vEN

this direct limit are injective. Thus it is easy to check that

As is gr-injective (Corollary 1.2.5 in [NV]), gr-local and artinian,
it has a gr-simple and essential socle. It follows that also has
a gr-simple and essential socle. Now, by Proposition 0.3 n Ker (/r) = 0

T~(?

and the X/s are morphisms in R-gr. Therefore there must be a u E G
such that Ker = 0. Let now a be any element of G such that

Ker (x6) = 0. Since, by Proposition 0.3, Im (xa) is gr-essential in

and since H’b(R) is injective we get that x6 is an

isomorphism. Thus is injective in R-mod and hence,
by Proposition 0.1, = so that 
is injective in T-mod. Clearly Hm(Ra) is indecomposable in T-mod,
otherwise would be decomposable in while this is impos-
sible as it has a gr-.simple and essential socle. As is an artinian
T-module (Lemma 1.1), by a classical Matlis’ result (see [.M1]) we get

= E.
The last statement follows from Proposition 0.1.

Following [FGR] we shall say that a finitely generated module
K # 0 over a noetherian ring R is a, canonical module for R if for every
P E Spec (R)

where is the residue field of the localization Rp of 1~ at the prime
ideal P. Thus K is a canonical module for R iff g is a Gorenstein
module of rank 1 in the sense of Sharp 

The results in the next theorem are essentially in and in [HK],
but see also [FGR] Theorem 5.6.

2.6. THEOREM..Let R be a noetherian ring and let K =1= 0 be a finitely
generated R-module. Then
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a) I f K is a canonical module for .R then R and K are Cohen-
Macaulay.

b) If Spec (R) is connected, K is a canonical module for Riff
.gm is a canonical module for Rm, for every m E Spec Max (1~).

c) If R is local with maximal ideal xrt and Krull dimension n
then :

c1 ) K is a canonical module for .R i f f

c2) K is a canonical module for R i f f R is Cohen-Macaulay
and

as .R-modules, where R is the m-adic completion of Rand E = E(Rjm).
Not knowing any adequate reference, we give a proof of the fol-

lowing two results, even if we suspect it is already available in the
literature.

2.7. LEMMA. Let T be a local complete Cohen-Macaulay noetherian
ring, xrt its maximal ideal, E = E(Tjm), n = dim (T)..Let H(-) be

the n-th local cohomology functor of T with respect to and set K =

= HomT (.H(T), E). Then

1 ) The canonical morphism tp: HomT (H(T), E) @ .H~(T) -~ E,
T

de f ined by setting V(f Ox h) = f (h) for every f E HOMT (H(T), E) and
T 

_

h E H(T), is an isomorphism. Thus E.

2) For every 1tl E T-mod the assignement f yields an

isomorphism between HOMT and HomT (H(M), H(K)).
PROOF. 1 ) As it is well known, the canonical morphism T -

is an isomorphism ( see e_.g. [M2] Theorem 14) so that,
by Matlis’ duality ([Ml]), also is canonically isomorphic
to T. Now let
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be the obvious canonical isomorphism, co: the canonical

morphism and set

Then it is easy to check that

is exactly the canonical morphism. Thus, by above considerations,
ponow is an isomorphism. On the other hand m is an isomorphism
too (see [.M1] ) and hence we get that 77 = is also an iso-

morphism. By Matlis’ duality we finally get that 1p is an isomorphism.

2) Let M e T-mod. Let

be the canonical isomorphism. Set

Then it is easy to check that for every ==

- f ~ 1H(T). As the functor .Jq’ is naturally equivalent to the functor
- ;; .H(T ) (see e.g. [M2] Theorem 10), we get the conclusion.

T

2.8. PROPOSITION. Let T local noetherian ring, n its Krull di-
mension, m its maximal ideal, E = K a finitely generated
T-module. Then K is a canonical module for T iff T is Cohen-Macaulay
and .g’; (~K) --~ E.

PROOF. If g is a canonical module for T, then, by Theorem 2.6 a),
T is Cohen-Macaulay. Thus we can assume w. 1. o. g. that T is Cohen-
Macaulay. Let T’ be the m-adic completion of T, m = mT and set
.l~ = and K = E) = E). _

Then, in view of Theorem 2.6 c2), it is enough to show 
in iff .8’m(g) ^~ L~’.
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Now, by Lemma 2.7, iff in T-mod. As

H)(K) = and, by Lemma 2.7, E we get the con-
clusion.

2.9. Let 1~ = @ Rj be a commutative graded ring of type G and
QEG

let Assume that M where the lVla’s are suitable
aEG

subgroups of .,M. Then, i f G is not commutative, we still have to dis-
tinguish between if being a left or right graded R-module, as we said
in Section 0. In fact if for every (1, 7: E G we have that if
is a graded left -R-module while if for every or, 7: e G then M
will be a graded right R-module.

Now let R == @ Rq be a commutative graded ring of type G,
ceC

a finitely graded left R-module, N E T-mod .

Then, for every a E G, we can define a natural structure of graded
right R-module, which depends on c~, on Homp (M, N). Denoting
by Homp(M(a), N) this graded right R-module we have that the
gradation on it is defined by setting

In fact note that if ~, re G, then r f E
E Romp If a: .lVl2 is a graded morphism between
finitely graded R-modules, then the transposed morphism

can be regarded as a graded morphism, which we will denote by
between the graded right modules 

and Hom, (.Dlx(cr), N).
Now, for every cr c G, we denote by Ra)

the morphism of graded (right) R-modules defined by setting, for

every E E G, x E RE

be the map defined by setting = xa for every a E 

Clearly if C is commutative, N ) _ and = #(1
defined in 0.3.
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Recall that a commutative noetherian ring R is called equidimen-
sional if given any two maximal ideals m and n in .R, dim (Rm) =
=== dim 

2.10. LEMMA. Let R == (D Rc be a noetherian gr-local finitely graded
_ 

cEG 
_ _

ring o f type G. Let T be the m-adic completion of T, m, = =

is a 

c) The maximal ideals of R are exactly those of the form n =
= xt Q l’ = xt~ f or n E Spec Max (R).

m

d) I f n E Spec Max (R), and

e) -ll is equidimensional iff R is equidimensional.

f) Cohen-Macaulay ring R is a Cohen-Macaulay ring.

g) For every _ 

PROOF. a) Is clear. b) Is well known. Let û be a maximal ideal
of R and set n == R. By Proposition 1.8 b) it contains m and hence
n contains Clearly n is a prime ideal of .R
thus, by Proposition 1.8 b) n is a maximal ideal of R. Conversely
let n be a maximal ideal of R and sets = n = Then, as T

_ 
T 

_

is a flat T-module, 1tjfi ~ Q T. Now (Rjn) so

- 
T T

that n is a maximal ideal of R.

d) Follows from c) and e) follows from d).

f ) Follows from Theorem 1.12 and g) is well known.

2.11. LEMMA. Let be a noetherian gr-local f initely graded

ring o f type G, T the m-adic completion of T. Assume that .R is equi-
dimensional, that T has a canonical module K and that R = HOMT (R, K)
in R-mod. Then 1-~ = R Q9 T is a Gorenstein ring and hence it is also
Cohen-Macaulay. T
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PROOF. Let n E Spec Max (R), it = nil. Then, by Lemma 2.10,
(Homp (1~, K Q 1 ))tt and hence by Theorem 2.6 and by [HK]~ 

T 
n 

_

Definition 5.6 and Satz 5.12 and 5.9, Rfi is Gorenstein. Thus, by
Lemma 2.10, R is Gorenstein .

2.12. PROPOSITION. Let .R be a noetherian gr-local finitely
aeG

graded ring of type G, n = dim E G. Then the following statements
are equivalent:

(a) R is Cohen-Macaulay, E and

is an isomorphism (in .R-gr).

(b) R is equidimensional, T is Cohen-Macaulay, .H"~m(.I~a) ^J E and

is an isomorphism.

(c) .R is equidimensional, RC1 is a canonical module for T and

is an isomorphism (in gr-R).

PROOF. Let T be the m-adic completion of T. Then, as T is a
faithiully flat T-module, as the morphisms xa and ~6 are natural and
by Lemma 2.10 it is easy to check that we can assume w. 1. o. g. T = ll~.

Set .L = H1J(R), Zy = and

Let (j): .1~ -~ Romp (Xn(La), La ) be the morphism defined by setting

for every E E Homp (R, La), x E R.
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Clearly ro is a morphism in gr-R and hence also R -
- Homp (L(a), L,,) is a morphism in gr-R and for every T E G, r 7

= Zz-~~ we have

Let cx: Ra ) --~ Homp (L( a), be the morphism defined
by setting

Then a is a morphism in and it is easy to check that the diagram

is commutative.
Assume now (b) is fulfilled. Then, as xa is an isomorphism in .R-gr,

~,a is an isomorphism in Moreover as

La is a noetherian T-module and T is complete in the m-adic
topology, by Matlis’ duality m is an isomorphism. Now by Propo-
sition 2.8, is a canonical module for T so that, by Lemma 2.7 a is
an isomorphism (in fact recall that when regarded as a T-module,

coincides with .gm(l~) ). Thus Q,, is an isomorphism too and
(c) holds.

c) =&#x3E; (a) By Theorem 2.6 and Lemma 2.7, a is an isomorphism.
By Proposition 2.8, so that m is an isomorphism too and
by Matlis’ duality xa = HOMT (Åa 1La)((jl) is also an isomorphism.
By Lemma 2.11, R is Cohen-Macaulay.

(a) =&#x3E; (b) By Theorem 1.12.

2.13. THEOREM. Let R _ @ .R6 be a noetherian finitely graded
0’6G

ring of type G, T = that R is gr-local, i.e. that T is a local
ring, and tet m be the maximat ideal of T, E = E(Tjm), n = dim (T)

Then the following statements are eguivatent :

(a) R is a Gorenstein ring.
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(b) Cohen-Macaulay ring and E G such that
E and

is an isomorphism (in .R-gr).

(c) R is equidimensional, T is Cohen-Macaulay and the1 e is a
a E G such that E and

is an isomorphism (in R-gr).

(d) R is a Cohen-Macaulay ring and H’D(R) is an injective R-
module.

(e) .R is equidimensional and there is aGE G such that Ra is a
canonical module for T and .R ~ HOMT Ra ) is an

isomorphism (in gr-R).

(f) R is equidimensional and the1 a is aGE G such that Ra is a
canonical module for T and HOMT (R, Ra) in R-mod.

(g) R is equidimensional, T has a canonical module K and

R ~ HOMT (R, g), I in .R-mod.

PROOF.

(g) + (c) Let T be the m-adic completion of T. By Lemma 2.11,
.R = R is a Gorenstein ring and hence by Lemma 2.5 and Prop-

T

osition 2.12 (c) holds for JR. Then as T is faithfully flat and Xr is natural,
using Lemma 2.10 it is easy to see that (c) holds also for 1~.

(b) =&#x3E; (d) by Proposition 0.1.

(d) + (a) Let tl .... , tn E T be a regular R-sequence (see
Theorem 1.12) and let H = H’(B). Then, by Proposition 2.4,
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RI(t,, ..., ..., tn). As H is an injective R-module it
follows that R = ... , tn ) .R is an injective .R-module. Hence R is
a Gorenstein ring (see [B]) and thus l~ is a Gorenstein ring too.

2.14. LEMMA. Let R = + Rt be a noetherian gr-local finitely graded
tEG

ring of type G. Let a E G and assume that E. Then P,:R
an isomorphism when it is injective.

PROOF. By Theorem 207 page 157 in T is artinian. For every
finitely generated T-module M, let denote the length of if and
recall (see [HK] Korollar 1.36) that the T-module Romp (M, E) has
finite length equal to As ,u6 is injective, for every r E G we have

we get that p6 must be surjective.

2.15. PROPOSITION. Let R = 0+ Ra be a noetherian gr-local finitely
cEG

graded ring of type G, T = Be, m the maximal ideal of T. Then the

following statements are equivalent :

(a) .R is Gorenstein and artinian.

(b) R is self-injective.

(c) There is a a E G such that Ita is injective and B, - E.

(d) There is a a~ E G such that Ita is an isomorphism and Ra E.

(e) There is a a E G such that in R-gr.

(f) 1~ ~ XR(E) in R-mod.

PROOF. (a) ~ (b) is well known (see [B]).
(a) « (d) by Theorem 2.13.

(d) ~ (e) ~ (f) is trivial.

(f) ~ (b)by Proposition 0.1.

(d) ~ (c) is trivial.

(c) ~ (d) by Lemma 2.14.
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2.16. PROPOSITION. Let .R = EÐ Ra be a noetherian finitely graded
aeB

ring of type G, T = .Re and assume that every 1~a is a projective T-module.
Then :

a) 1 f R is Gorenstein then T is Gorenstein.

b) If T is Gorenstein and there is E G such that T and ~O~
is an isomorphism, then .R is Gorenstein.

PROOF. Apply Lemma 1.10, Theorem 2.13, Corollary 1.14 and
Theorem 1.12 and recall that if a free module is a canonical module
then it must be of rank 1.

Part of the following result is due to C. Nastasescu (see [N] Co-
rollary 2.9 ).

2.17. COROLLARY. Let , be a noetherian strongly graded

ring o f type G, G a finite group, T = R,,: Then B is Gorenstein iff T
is Gorenstein.

PROOF. is an isomorphism as (~)~:T2013~
T) is an isomorphism ( see [NV] Corollary 1.3.5).

3. Semi-trivial extensions.

Let T be a not necessarily commutative ring and let H be a
T-T-bimodule. Assume that

is a T-T-bilinear map satisfying

Define a multiplication on the abelian group T X .H’ by setting

for all t, h, 
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In this way T X H becomes a ring which will be denoted by T x Hk

and called the semi-trivial extension of T by H and A. The ring R ==
,H can be considered as a graded ring of type G = {- 

by setting .R1 = T and .R_1 = H. Moreover every ring of type G =

= (- 1, 11 is of this form.
If 2 - 0 then T x .g’ is usually denoted by T p .H and called thek

trivial extension of T by H.
It is easy to see that is a commutative ring iff T is a com-

k

mutative ring, the left and the right T-module structures on coincide
and [hl, h2] _ [h2, h,] for every hl, h2 E H i.e. if the form Â is sym-
metric.

[ , ] is said to be non-degenerate iff y E B and [h, X] = 0 for
every h E H implies X - 0.

[ , ] is said to be strongly non-degenerate iff the assignement
[h, - ] yields an isomorphism between .~’ and HOMT (H, T).

For the definition of fll and see 0.3 and for those of (21 and (2-1
see 2.9.

3.1. LEMMA. Assume that R = T X H is eommutactive. Then :

1 ) = el is injective iff [ , ] is non-degenerat.?.

2) fll = ~O1 is an isomorphism iff [ , ] is strongly non degenerate

3) fl-l == e-1 is injective iff TB’ is faithful.

4) ,u_1= ~O_1 is an isomorphism iff End (TH) is canonically iso-
morphic to T.

PROOF. Straightforward.

3.2. PROPOSITION. Assume that 1~ = T X H is commutative. Then:
i

a) R is gr-local iff T is local.

b) R is noetherian iff T and TB’ a1’e noetherian. In this case

dim (.R) = dim (T).

c) R is Cohen-Macaulay iff T is a Cohen-Macaulay ring, TB’ is
a Cohen-Macaulay T-module and for every m E Spec Max (T),
dim ( Tm) = dim (Hm).

PROOF. a) Follows from Proposition 1.4, b) follows from Prop-
osition 1.8, c) follows from Theorem 1.13.
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3.3. PROPOSITION. Assume that R = T X H is commutative, gr-localk

and noetherian. Then the f oltowing statement are equivalent :

(a) R is Gorenstein.

(b) .R is equidimensional and either H is a canonical module for
T or [ , ] is strongly non-degenerate and T is Gorenstein.

PROOF. See Theorem 2.13 and Lemma 3.1 and recall that if H

is a canonical module for T then Romp (H, H) is canonically isomorphic
to T (see Theorem 2.6 and Lemma 2.7 or [HK] Satz 6.1 ).

3.4. PROPOSITION. In tht hypothesis of Proposition 3.3 the following
statements are equivalent :

(a) R is sel f -injective.

(b) Either H = E( T /rrt ) or T is seZ f -inj eetive and [ , ] is non-

degenerate.

PROOF. See Proposition 2.15 and Lemma 3.1.

Following result is essentially due to I. Reiten (see [R] ) but see
also [FGR] Theorem 5.6.

3.5. COROLLARY. Let T be a commutative noetherian ring, H a
finitely generated T-module, R = T ix .g..Let

Then :

(a) R is a Gorenstein ring iff, for every xrt E .Hm is a canonical
module for Tm and, for every ~t E SZ2 , Tm is Gorenstein.

(b) .R is self-injective iff, for every xrt E Ql, Hm is the injective
envelope, of in Tm-mod and for every rrt E Q2, Tm is
self-injective.

PROOF. FIRST of all note that when 2 = 0 then 2 is non-degenerate
iff 13 = 0. Let m E Spec Max ( T) . Then Rm = Tm IX .gm is a local

ring with maximal ideal mTm xHm. The conclusion now follows by
Lemma 1.10 and Propositions 3.3 and 3.4.
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3.6. AN EXAMPLE. We give now an example of a gr-local Gorenstein
ring R = T x H where T.g is not faithful (and hence it is not a canonicalk

module for T !). Let X be a Gorenstein local ring, T = Jt[x]/(x2),
~ = x + (x2) E T. Set L --- T[z]I (z2 - x, xz) x = z + (z2 - x, xz) E L
and let H be the cyclic T-submodule spanned by ~ in L.

Let A = [ , ]: N 0 H - T be the T-bilinear map defined by
T

Then [ , ] satisfies condition (*) and it is easy to check that

Clearly TH is not faithful as ~E = 0. Anyway [ , ] is strongly non-
degenerate. In fact if 0 =1= X E H then X = kit where 0 ~ 1~ e K and
then = Clearly = Tx and hence every mor-

phism f E Romp (,R, T) is of the form [h, -], h E H.
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