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A p-Stable Action of the Automorphism Group
of a Group.

M. D. PÉREZ-RAMOS (*)

SUMMARY - The following Theorem is proved: « Let G be a group and Aut (G)
its automorphism group. If Aut (G) is not p-stable over G, p an odd
prime, then Aut (G} involves SL(2, p) ». This Theorem is a generalization
of a classic result on stability ([4], Th. 3.8.3).

Introduction. Notation.

In this note all groups will be finite. p will denote a prime number,
and 0p(G mod N) the inverse image in G of the p-radical of G/N. If

we assume that A  Aut (G) and H is a subgroup of G which is fixed
by A, then, whenever a E A., we denote [.H’, a] = [x, a] = E .H’~,
[H, a, a] = [[H, a], a], [H, A] = [H, aJI a E A), and [H, A, A] = [[H,
A], A~ . The remainder of the notation is standard, and is taken

mainly from [4]. In particular, II(G) is the set of all primes which
divide the order of the group G.

The first concept concerning stability is the following:

DEFINITION A ([4], 3.8). Let G be a group with no nontrivial normal
p-subgroups, p odd. A faithful representation of G on a vector
sp ace V over GF(pn) will be called p-stable provided no p-element
of has a quadratic minimal polynomial on V. Moreover, G is
said to be p-stable if all such faithful representations of G are p-stable.
(We will say G is p-stable linear to distinguish it from later definitions
of p-stability).

(*) Indirizzo dell’A.: Dept. de Algebra, Universidad de Valencia, Doctor
Moliner 50, 46100 Burjassot (Spagna).
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And the main result on p-stability linear:

THEOREM A ([4], 3.8.3). Let G be a group with no nontrivial normal
p-subgroups, p odd. If G is not p-stable linear, then G involves SL(2, p).

Later we can find other definitions of p-stable groups, ([3], [5])
n-stable groups, n a set of primes, ( [1]), and in general, Y-stable groups,
where Y is either a saturated Formation, ( [2] ) , or a Fitting class, ([8]).
As well, we find the close relationship between the stability of a group G,
and the fact that G does not involve the special affin groups ~S’A(2, p),
for adequated primes p, ([3], [5], [2], [7]).

The aim of this paper is to study the structure of the automor-
phisms group of a group by using these ideas.

We give the following Definition:

DEFINITION 1. Let G be a group. We say that the automorphisms
group of G, Aut (G), is p-estable over G if, whenever .A is a p-subgroup
of Aut (G) and B is a p-subgroup of G, such that B is fixed by .A, (that
is, A c NAut(G)(B) ), and [B, A, A] = 1, then

We obtain the following result:

THEOREM 1. Let G be a group. If Aut (G) is not p-stable over G,
p odd, then Aut (G) involves the special linear group SL(2, p).

First, we give a preliminary result:

LEMMA. For a group G, the following are equivalent:

i) Aut (G) is p-stable over G.

ii) Whenever B is a p-subgroup of G, and x is a p-automorphism
of G which fixes B, and such that [B, x, x] = 1, then

iii) Whenever B is a p-subgroup of G, and z is an automorphism
of G which fixes B, and such that [B, x, x] = 1, then
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PROOF. i) - ii) Let B and x be as in (ii). The conclusion follows
easily by taking A = x~, and using (i).

where is a pi-group, for each
fixes B and satisfies

If

by using (ii). So,

iii) -* i) Let A and B be as in Def. 1. For every x E A, B and x
satisfy the assumptions in (iii). Then, the conclusion is clear.

PROOF OF THEOREM 1. Because of the previous Lemma, if Aut (G)
is not p-stable over G, there exist a p-subgroup P of G, and a p-element
x in NAut(G)(P) such that [P, 0153, 0153] = 1, and

But, from ([5], Th. IX.7.8), this is equivalent to the existence of an
element g E NAut(G)(P) such that x, is not a

p-group.
Let T = x, Let us refine the T-series P &#x3E; 1 to a T-chief

series P = Po &#x3E; Pl ~ ... ~ Pr = 1 (*)
For each, i = 0, ... , r - 1, 9 let Pi = PilPi+,: So, it is clear that

each == 0, ... , r - I, 7 is an abelian p-element group , that is, it_is
a vector space over GF(p), and each = 

i = 0, ... , r - 1, acts faithfully and irreducibly on Pi : Therefore, since
([4], Th. 3.1.3), it follows that 1. 

_

If Pi was a p-group for every i = 0, ... , r - 1, that is, Ti == 1,

then : Whence T would stabilize the series (*) of P,

and we would get a contradiction because is
not a p-group. 

_

Therefore, there exists an i E {0, ... , r - 1} such that 1, that
is, Ti is not p-stable linear, (Def. A). Now, because of Th. A, T, in-
volves and clearly Aut (G) involves SL(2, p).
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Using an argument similar to ([4], Th. 3.8.4), and Th. 1, we get
the following:

COROLLARY. Let G be a group. If one of the following conditions
is verified in Aut (G) :

i) Aut (G) is of odd order.

ii) A Sylow 2-subgroup of Aut (G) is abelian.

iii) A Sylow 2-subgroup of Aut (G) is dihedral.

iv) Aut (G) is isomorphic to .L2(q).

v) Aut (G) is soluble and either p &#x3E; 5 or p = 3 and SL(2, 3) is
not involved in Aut (G).

Then, Aut (G) is p-stable over G.
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