Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Paul C. Eklof
 SAHARON SHELAH
 A calculation of injective dimension over valuation domains

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 279-284
http://www.numdam.org/item?id=RSMUP_1987__78_279_0
© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A Calculation of Injective Dimension over Valuation Domains.

Paul C. Eklof - Saharon Shelah (*)

This paper takes up a problem which was posed in a paper by S. Bazzoni [B], about the injective dimension of certain direct sums of divisible modules over a valuation domain. We refer the reader to that paper for the motivation for the problem. We shall make use of the same notation as in [B], which we now proceed to review.

Let R be a valuation domain of global dimension $n+1$, where $n \geqslant 2$. Let $\left\{L_{\alpha}: \alpha \in \Lambda\right\}$ be a family of archimedean ideals of R, where Λ is a set of cardinality $\geqslant \boldsymbol{\aleph}_{n-2}$. For each α let I_{α} be the injective envelope of R / L_{α}. Let $I=\prod_{\alpha \in \Lambda} I_{\alpha}$, and for each $1 \leqslant k \leqslant n$, let D_{n-k} be the submodule of I consisting of those elements having support of cardinality $<\boldsymbol{\aleph}_{n-k}$, i.e. for all $y \in I, y$ belongs to D_{n-k} if and only if the cardinality of

$$
\{\alpha \in \Lambda: y(\alpha) \neq 0\}
$$

is strictly less than $\boldsymbol{\aleph}_{n-k}$.
Bazzoni proves in [B] that the injective dimension of D_{n-k} is at most k. She also shows that the injective dimension of D_{n-1} is exactly 1 and that it is consistent with ZFC that the injective dimension of
(*) Indirizzo degli AA.: P. C. Eklof: University of California, Depart. of Math., Irvine; S. Shelah: Hebrew University and Rutgers University, New Brunswick, New Jersey, 08903 - U.S.A.

Partially supported by N.S.F. Grant DMS-8600451.
D_{n-2} is exactly 2 . It is the main purpose of this paper to prove this latter result in ZFC. In fact we prove:

Theorem. The injective dimension of D_{n-k} is $\geqslant 2$ if $2 \leqslant k \leqslant n$.
Before proving the theorem we prove some lemmas. The first of these is a combinatorial fact. (Compare [Sh; § 6].)

Lemma 1. Let x be a regular cardinal. There exists a family $\left\{w_{v}^{\alpha}\right.$: $\left.\alpha<\varkappa^{+}, v<\chi\right\}$ of subsets of \varkappa^{+}satisfying for all $\alpha<\varkappa^{+}$:
(1) $\alpha=\bigcup_{v<x} w_{\nu}^{\alpha} ;$
(2) for all $\nu<\mu<x, w_{\nu}^{\alpha} \subseteq w_{\mu}^{\alpha}$;
(3) for all $\nu<x$ and all $\beta<\alpha, \beta \in w_{\nu}^{\alpha} \Rightarrow w_{\nu}^{\beta}=w_{\nu}^{\alpha} \cap B$;
(4) for all $\nu<\mu$, the cardinality of w_{v}^{α} is $<\varkappa$.

Proof. We shall define the w_{ν}^{α} for all ν by induction on α. Let $w_{\nu}^{0}=\emptyset$ for all ν. Now suppose that w_{ν}^{β} has been defined for all $\beta<\alpha$. If α is a successor ordinal, say $\alpha=\gamma+1$, then let $w_{\nu}^{\alpha}=w_{\nu}^{\nu} \cup\{\gamma\}$ for all ν. It is easy to see that (1)-(4) hold for α if they hold for γ.

If α is a limit ordinal, let $\lambda=$ the cofinality of α, and let $\eta: \lambda \rightarrow \alpha$ be a strictly increasing function such that the supremum of its range is α. Define a function $f: \lambda \rightarrow \varkappa$ by the rule:

$$
\begin{aligned}
& f(\mu)=\text { the least } \nu<\varkappa \text { such that } \\
& \text { for all } \tau<\sigma \leqslant \mu, \eta(\tau) \in w_{\nu}^{\eta(\sigma)}
\end{aligned}
$$

It is easy to see that f is well-defined because of (1) and (2) and because \varkappa is regular and $\geqslant \lambda>|\mu|$. Now for each $\nu<\varkappa$ let

$$
w_{\nu}^{\alpha}=\bigcup\left\{w_{\nu}^{\eta(\mu)}: \mu<\nu \text { and } f(\mu) \leqslant \nu\right\}
$$

Conditions (2) and (4) are easily verified. To see that (1) holds, suppose $\gamma<\alpha$ and choose μ such that $\eta(\mu)>\gamma$. Then $\gamma \in w_{\tau}^{\eta(\mu)}$ for some τ, so if $\nu>\max \{\tau, \mu, f(\mu)\}$, then $\gamma \in w_{\tau}^{\alpha}$: To prove (3), let us fix α and ν and let $Y=\{\mu<\nu: f(\mu) \leqslant \nu\}$. Thus

$$
w_{\nu}^{\alpha}=\bigcup_{\mu \in Y} w_{v}^{\eta(\mu)}
$$

Notice first that if $\tau<\mu$ and $\mu \in Y$, then $\eta(\tau) \in w_{v}^{\eta(\mu)}$; so by induction $w_{\nu}^{\eta(\tau)}=w_{\nu}^{\eta(\mu)} \cap \eta(\tau)$. Now if $\beta \in w_{\nu}^{\alpha}$ then $\beta \in w_{\nu}^{\eta(\mu)}$ for some $\mu \in Y$; in this case it is easy to see, using the previous observation, that $\beta \in w_{v}^{\eta(\tau)}$ for any $\tau \in Y$ such that $\beta<\eta(\tau)$. Clearly

$$
w_{v}^{\beta}=w_{v}^{\eta(\mu)} \cap \beta \subseteq w_{\nu}^{\alpha} \cap B,
$$

so we are left with proving the opposite inclusion. Suppose $\gamma \in w_{\nu}^{\alpha} \cap \beta$; then $\gamma \in w_{\nu}^{\eta(\tau)}$ for some $\tau \in Y$. As above, $\gamma \in w_{\nu}^{\eta(\tau)}$ for any $\sigma \in Y$ such that $\gamma<\eta(\sigma)$, so without loss of generality $\beta<\eta(\tau)$. But then $\gamma \in w_{\nu}^{\eta(\tau)} \cap$ $\cap \beta=w_{v}^{\beta}$, since $\beta \in w_{\nu}^{\eta(\tau)}$.

The second lemma will be used to show that for certain submodules $K^{\prime} \supseteq K$ of I_{α}, the quotient K^{\prime} / K has sufficiently large cardinality. (K and K^{\prime} will have the form $\left\{u \in I_{\alpha}: r u=0\right\}$ for an appropriate r.) Here $\mathscr{T}(\gamma)$ is the set of all subsets of γ.

Lemma 2. Let $\left\{r_{\nu}: \nu<\gamma\right\}$ be a sequence of elements of R, and let N be a pure-injective module such that for all $\mu<\gamma$ there exists an element $a_{\mu} \in N$ such that $r_{\mu} a_{\mu}=0$ and $r_{\mu_{+1}} a_{\mu} \neq 0$. Then for each $S \in \mathscr{J}(\gamma)$ there exist an element x_{s} of N such that
(*) for all $\beta<\gamma$ and all $S, T \in \mathscr{T}(\gamma)$, if $S \cap \beta=T \cap \beta$, then $r_{\beta_{+1}}\left(x_{S}-\right.$ $\left.-x_{r}\right)=0$ if and only if $S \cap(\beta+1)=T \cap(\beta+1)$.
Proof. The idea of the construction is that x_{S} should «be» $\sum_{\mu \in S} a_{\mu}$. The actual construction is by induction on γ. If γ is finite and $S \subseteq \gamma$, let $x_{s}=\sum_{\mu \in S} a_{\mu}$. (We let $x_{\phi}=0$.) Now suppose that for all $\delta<\gamma$ and all $S \subseteq \delta$ we have defined x_{S} so that (*) holds. We consider two cases.

Case 1: $\gamma=\delta+1$ for some δ. We let $x_{S}=x_{S \cap \delta}$ if $\delta \notin S$, and we let $x_{S}=x_{S \cap \delta}+a_{\delta}$ if $\delta \in S$. It is easy to check, using the inductive hypothesis, that (*) holds.

Case 2: $\gamma=\lambda$, a limit ordinal. Here we use the fact that since N is pure-injective it is algebraically compact: see, for example, [FS; p. 215]. For any $S \subseteq \lambda$ we let x_{S} be a solution of the set of equations

$$
\left\{r_{\beta_{+1}}\left(x-x_{S \cap(\beta+1)}\right)=0: \beta<\lambda\right\}
$$

in the single unknown x. (The elements $x_{S \cap(\beta+1)}$ of N have been defined by induction.) This system of equations is finitely solvable
in N : indeed, for any finite subset F of λ, if $\delta>\sup (F)$, then $x_{S \cap \delta}$ is a solution of

$$
\left\{\beta_{+1}\left(x-x_{S \cap(\beta+1)}\right)=0: \beta \in F\right\} .
$$

Hence by algebraic compactness there is a global solution, x_{s}. It remains to check that $(*)$ is satisfied. So suppose that S and T are subsets of λ, and $\beta<\lambda$ such that $S \cap \beta=T \cap \beta$. We have:

$$
x_{S}-x_{r}=\left(x_{S}-x_{S \cap(\beta+1)}\right)+\left(x_{S \cap(\beta+1)}-x_{T \cap(\beta+1)}\right)+\left(x_{T \cap(\beta+1)}-x_{T}\right)
$$

so $\quad r_{\beta+1}\left(x_{S}-x_{T}\right)=0+r_{\beta+1}\left(x_{S \cap(\beta+1)}-x_{T \cap(\beta+1)}\right)+0$; hence we are done by induction.

The third lemma will guarantee us the existence of the elements a_{μ} in Lemma 2 provided that $r_{\mu_{+1}} \notin r_{\mu} R$. (Of course, over a valuation domain, injective $=$ pure-injective + divisible.)

Lemma 3. Suppose L is an archimedean ideal and N is a divisible module containing R / L. Suppose also that r, s, t are elements of R such that t is a non-unit and $r=$ st. Then there exists $a \in N$ such that $r a=0$ and $s a \neq 0$.

Proof. We shall let \bar{b} denote the coset, $b+L$ of $b \in R$ in $R / L \subseteq N$. Since L is archimedean there is an element $b \in L \backslash t L$. If $b t^{-1} \in R$, let $a \in N$ such that $s a=b t^{-1}+L$. Then $r a=\bar{b}=0$, but $s a \neq 0$ since $b t^{-1} \notin L$ (because $b \notin t L$). If $t b^{-1} \in R$, let $a \in N$ such that $s\left(t b^{-1}\right) a=\overline{\mathrm{I}}$. Then $r a=\bar{b}=0$, but $s a \neq 0$ since $t b^{-1}(s a)=\overline{\mathbf{I}}$.

We are now ready to give the:
Proof of the Theorem. Let $D=D_{n-k}$. As Bazzoni observes, we can assume that $|\Lambda|=\boldsymbol{N}_{n-k}$ since we can replace D by the direct summand of D consisting of elements whose support lies in a fixed subset of Λ of size $\boldsymbol{\aleph}_{n-k}$. It suffices to prove that $\operatorname{Ext}^{1}(J, D) \neq 0$ for some ideal J of R, for then $\operatorname{Ext}^{2}(R / J, D) \neq 0$ (cf. [FS; VI.5.2]). For this it suffices to prove that the canonical map: $\operatorname{Hom}(J, I) \rightarrow$ \rightarrow Hom $(J, I \mid D)$ is not surjective. In fact we shall show that this map is not surjective whenever J is an ideal of R which is not generated by a set of size $\boldsymbol{\aleph}_{n-k}$ but is generated by a set of size $\boldsymbol{\aleph}_{n-k+1}$; there is such an ideal because gl. $\operatorname{dim} R>n-k+2$ (cf. [0] or [FS; IV.2.3].)

Let $\left\{j_{\alpha_{+1}}: \alpha<\boldsymbol{N}_{n-k+1}\right\}$ be a set of generators of J ordered so that for all $\beta<\alpha, j_{\beta_{+1}} \in R j_{\alpha_{+1}}$ and $j_{\alpha_{+1}} \notin R j_{\beta_{+1}}$. Thus for every pair of
ordinals $\beta<\alpha$ we have a non-unit r_{β}^{α} of R such that $r_{\beta}^{\alpha} j_{\alpha_{+1}}=j_{\beta_{+1}}$. Moreover, for all $\beta<\gamma<\alpha$ we have $r_{\beta}^{\alpha}=r_{\beta}^{\gamma} r_{\gamma}^{\alpha}$.

Let $\varkappa=\boldsymbol{\aleph}_{n-k}$. We may as well suppose that $\Lambda=\varkappa$. So defining $f: J \rightarrow I \mid D$ amounts to choosing, for each $v<x$, elements $x_{v}^{\alpha} \in I_{v}$ $\left(\alpha<\varkappa^{+}=\aleph_{n-k+1}\right)$ so that for all $\beta<\alpha,\left|\left\{\nu<x: r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{v}^{\beta}\right\}\right|<x$; for then we can define $f\left(j_{\alpha_{+1}}\right)=x^{\alpha}+D$, where $x^{\alpha}=\left\langle x_{\nu}^{\alpha}: v<x\right\rangle \in I$. We are going to use the sets $w_{v}^{\alpha}\left(\alpha<\varkappa^{+}, \nu<\varkappa\right)$ constructed in Lemma 1 in order to define the x_{v}^{α} s; in fact, we shall construct them so that $r_{\beta}^{\alpha} x_{\nu}^{\alpha}=x_{v}^{\beta}$ if $\beta \in w_{\nu}^{\alpha}$. Then f will be defined because, by (1) of Lemma 1, for any $\beta<\alpha$ there exists $\mu<\varkappa$ so that $\beta \in w_{\mu}^{\alpha}$, and hence by (2), the set of v such that $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$ is contained in μ, and thus has cardinality less than x.

In order to make f not liftable to a homomorphism into I we shall also require that the x_{ν}^{α} be chosen so that if $\sup \left(w_{\nu}^{\alpha}\right)+\varkappa<\beta<\alpha$, then $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$. (The sum is ordinal addition.) Indeed, if there were a $g: J \rightarrow I$ which lifted f, then we would have $g\left(j_{\alpha}\right)=y^{\alpha}$ for some $y^{\alpha} \in I$ such that $y^{\alpha}=x^{\alpha}+d^{\alpha}$ for some $d^{\alpha} \in D$, for all $\alpha<\chi^{+}$. For each $\mu<\mu$, let

$$
Y_{\mu} \xlongequal{\text { def }}\left\{\alpha<\chi^{+}: \mu \notin \operatorname{supp}\left(d^{\alpha}\right)\right\} ;
$$

then for some $\nu<\varkappa, Y_{\nu}$ is a stationary subset of \varkappa^{+}since $\bigcup Y_{\mu}=\varkappa^{+}$ (cf. [J; Lemma 7.4]). Now by (4), sup $\left(w_{\nu}^{\alpha}\right)<\alpha$ if $\mathrm{cf}(\alpha)=\varkappa$, so by Fodor's Lemma ([J; p. 59]) there is a stationary subset Y^{\prime} of Y_{ν} and an ordinal γ such that for all $\alpha \in Y^{\prime} \sup \left(w_{\nu}^{\alpha}\right)=\gamma$. Hence there are elements β, α of Y^{\prime} such that $\gamma+x<\beta<\alpha$. But then $y^{\alpha}(\nu)=x_{v}^{\alpha}$ and $y^{\beta}(\nu)=x_{\nu}^{\beta}$, and by construction $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$, which means that g is not a homomorphism.

Thus it remains only to construct for each ν the elements x_{ν}^{α} of I_{ν} so that for all $\beta<\alpha<\boldsymbol{\varkappa}^{+}$:
(i) $r^{\alpha} x_{v}^{\alpha}=x_{\nu}^{\beta}$ if $\beta \in w_{v}^{\alpha}$;
(ii) $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$ if $\beta>\sup \left(w_{\nu}^{\alpha}\right)+\varkappa$.

We shall do this for each fixed ν by induction on α. Let $x_{\nu}^{0}=\overline{1}$. Suppose now that x_{ν}^{β} has been defined for all $\beta<\alpha$ so that (i) and (ii) hold where defined. In order to satisfy (i) it is enough to choose x_{ν}^{α} to be a solution, z, of the system of equations

$$
\left\{r_{\beta}^{\alpha} z=x_{v}^{\beta}: \beta \in w_{\nu}^{\alpha}\right\} .
$$

Since I is pure-injective, it suffices to show that this system is finitely solvable in I_{ν}. If F is a finite subset of w_{ν}^{α} and $\sigma=\max (F)$, we claim that any z such that $r_{\sigma}^{\alpha} z=x_{\nu}^{\sigma}$ will be a solution of

$$
\left\{r_{\beta}^{\alpha} z=x_{\nu}^{\beta}: \beta \in \boldsymbol{F}\right\}
$$

In fact, if $\beta \in F$ and $\beta<\sigma$, then since $\sigma, \beta \in w_{\nu}^{\alpha}$, (3) implies that $\beta \in w_{\nu}^{\sigma}$, so $r_{\beta}^{\sigma} x_{\nu}^{\sigma}=x_{v}^{\beta}$ and hence $r_{\beta}^{\alpha} z=r_{\beta}^{\sigma} r_{\sigma}^{\alpha} z=r_{\beta}^{\sigma} x_{\nu}^{\sigma}=x_{\nu}^{\beta}$.

Now consider (ii). Let $\delta=\sup \left(w_{v}^{\alpha}\right)$. Let z be a fixed solution of (\dagger). Then (i) will hold if x_{ν}^{α} is of the form $z+u$ where $r_{\delta}^{\alpha} u=0$. Let $\beta=\delta+\varkappa+1$. It suffices to choose u so that $r_{\delta}^{\alpha} u=0$ and for each γ such that $\beta \leqslant \gamma<\alpha, r_{\beta}^{\alpha} u \neq r_{\beta}^{\gamma} x_{\nu}^{\gamma}-r_{\beta}^{\alpha} z$. (We let $r_{\beta}^{\beta}=1$.) For then, since $r_{\beta}^{\alpha}=r_{\beta}^{\gamma} r_{\gamma}^{\alpha}$, we have that $r_{\gamma}^{\alpha}(z+u) \neq x_{\nu}^{\gamma}$. But Lemma 2 (with $r_{v}=r_{\delta+\nu}^{\alpha}$ for $\nu<\varkappa$) in conjunction with Lemma 3 implies that the quotient group

$$
\left\{u \in I_{\nu}: r_{\delta}^{\alpha} u=0\right\} /\left\{u \in I_{\nu}: r_{\beta}^{\alpha} u=0\right\}
$$

has cardinality $\geqslant 2^{x}$. Thus there certainly is a u with the desired properties. This completes the inductive step of the construction, and hence completes the proof of the theorem.

Corollary. If $g I$, $\operatorname{dim}(R) \geqslant 3$, and for each $n \in \omega, I_{n}$ is an injective nodule containing R / L_{n} for some archimedean ideal L_{n} of R, then the injective dimension of $\oplus I_{n}$ is $\geqslant 2$.

REFERENCES

[B] S. Bazzoni, Injective dimension of some divisible modules over a valuation domain, to appear in Proc. Amer. Math. Soc.
[FS] L. Fuchs - L. Salce, Modules over Valuation Domains, Marcel Dekker, 1985.
[J] T. Jech, Set Theory, Academic Press, 1978.
[0] B. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc., 127 (1967), pp. 136-149.
[Sh] S. Shelah, Uncountable constructions for B.A. e.c. groups and Banach spaces, Israel. J. Math., 51 (1985), pp. 273-297.

Manoscritto pervenuto in redazione il 14 marzo 1987.

