RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

PAUL C. EKLOF Saharon Shelah

A calculation of injective dimension over valuation domains

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 279-284

http://www.numdam.org/item?id=RSMUP_1987_78_279_0

© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Calculation of Injective Dimension over Valuation Domains.

PAUL C. EKLOF - SAHARON SHELAH (*)

This paper takes up a problem which was posed in a paper by S. Bazzoni [B], about the injective dimension of certain direct sums of divisible modules over a valuation domain. We refer the reader to that paper for the motivation for the problem. We shall make use of the same notation as in [B], which we now proceed to review.

Let R be a valuation domain of global dimension n + 1, where $n \ge 2$. Let $\{L_{\alpha} : \alpha \in \Lambda\}$ be a family of archimedean ideals of R, where Λ is a set of cardinality $\ge \aleph_{n-2}$. For each α let I_{α} be the injective envelope of R/L_{α} . Let $I = \prod_{\alpha \in \Lambda} I_{\alpha}$, and for each $1 \le k \le n$, let D_{n-k} be the submodule of I consisting of those elements having support of cardinality $< \aleph_{n-k}$, i.e. for all $y \in I$, y belongs to D_{n-k} if and only if the cardinality of

$$\{\alpha \in \Lambda : y(\alpha) \neq 0\}$$

is strictly less than \aleph_{n-k} .

Bazzoni proves in [B] that the injective dimension of D_{n-k} is at most k. She also shows that the injective dimension of D_{n-1} is exactly 1 and that it is consistent with ZFC that the injective dimension of

(*) Indirizzo degli AA.: P. C. EKLOF: University of California, Depart. of Math., Irvine; S. SHELAH: Hebrew University and Rutgers University, New Brunswick, New Jersey, 08903 - U.S.A.

Partially supported by N.S.F. Grant DMS-8600451.

 D_{n-2} is exactly 2. It is the main purpose of this paper to prove this latter result in ZFC. In fact we prove:

THEOREM. The injective dimension of D_{n-k} is ≥ 2 if $2 \leq k \leq n$.

Before proving the theorem we prove some lemmas. The first of these is a combinatorial fact. (Compare [Sh; § 6].)

LEMMA 1. Let \varkappa be a regular cardinal. There exists a family $\{w_r^{\alpha}: \alpha < \varkappa^+, \nu < \varkappa\}$ of subsets of \varkappa^+ satisfying for all $\alpha < \varkappa^+$:

- (1) $\alpha = \bigcup_{\nu < \varkappa} w_{\nu}^{\alpha};$
- (2) for all $\nu < \mu < \varkappa$, $w_{\nu}^{\alpha} \subseteq w_{\mu}^{\alpha}$;
- (3) for all $\nu < \varkappa$ and all $\beta < \alpha$, $\beta \in w_{\nu}^{\alpha} \Rightarrow w_{\nu}^{\beta} = w_{\nu}^{\alpha} \cap B$;
- (4) for all $\nu < \varkappa$, the cardinality of w_{ν}^{α} is $< \varkappa$.

PROOF. We shall define the w_{ν}^{α} for all ν by induction on α . Let $w_{\nu}^{\alpha} = \emptyset$ for all ν . Now suppose that w_{ν}^{β} has been defined for all $\beta < \alpha$. If α is a successor ordinal, say $\alpha = \gamma + 1$, then let $w_{\nu}^{\alpha} = w_{\nu}^{\gamma} \bigcup \{\gamma\}$ for all ν . It is easy to see that (1)-(4) hold for α if they hold for γ .

If α is a limit ordinal, let $\lambda =$ the cofinality of α , and let $\eta: \lambda \to \alpha$ be a strictly increasing function such that the supremum of its range is α . Define a function $f: \lambda \to \alpha$ by the rule:

$$f(\mu) = ext{the least } \nu < arkappa ext{ such that}$$
 for all $au < \sigma \leqslant \mu, \ \eta(au) \in w_r^{\eta(\sigma)}.$

It is easy to see that f is well-defined because of (1) and (2) and because \varkappa is regular and $\gg \lambda > |\mu|$. Now for each $\nu < \varkappa$ let

$$w_{\nu}^{\alpha} = \bigcup \left\{ w_{\nu}^{\eta(\mu)} \colon \mu < \nu \text{ and } f(\mu) \leq \nu \right\}.$$

Conditions (2) and (4) are easily verified. To see that (1) holds, suppose $\gamma < \alpha$ and choose μ such that $\eta(\mu) > \gamma$. Then $\gamma \in w_{\tau}^{\eta(\mu)}$ for some τ , so if $\nu > \max \{\tau, \mu, f(\mu)\}$, then $\gamma \in w_{\tau}^{\alpha}$: To prove (3), let us fix α and ν and let $Y = \{\mu < \nu : f(\mu) \le \nu\}$. Thus

$$w_{\nu}^{\alpha} = \bigcup_{\mu \in Y} w_{\nu}^{\eta(\mu)}$$
.

Notice first that if $\tau < \mu$ and $\mu \in Y$, then $\eta(\tau) \in w_{\nu}^{\eta(\mu)}$; so by induction $w_{\nu}^{\eta(\tau)} = w_{\nu}^{\eta(\mu)} \cap \eta(\tau)$. Now if $\beta \in w_{\nu}^{\alpha}$ then $\beta \in w_{\nu}^{\eta(\mu)}$ for some $\mu \in Y$; in this case it is easy to see, using the previous observation, that $\beta \in w_{\nu}^{\eta(\tau)}$ for any $\tau \in Y$ such that $\beta < \eta(\tau)$. Clearly

$$w^{eta}_{m{
u}}=w^{\eta(\mu)}_{m{
u}}\capeta\subseteq w^{lpha}_{m{
u}}\cap B\,,$$

so we are left with proving the opposite inclusion. Suppose $\gamma \in w_{\nu}^{\alpha} \cap \beta$; then $\gamma \in w_{\nu}^{\eta(\tau)}$ for some $\tau \in Y$. As above, $\gamma \in w_{\nu}^{\eta(\sigma)}$ for any $\sigma \in Y$ such that $\gamma < \eta(\sigma)$, so without loss of generality $\beta < \eta(\tau)$. But then $\gamma \in w_{\nu}^{\eta(\tau)} \cap \cap \beta = w_{\nu}^{\beta}$, since $\beta \in w_{\nu}^{\eta(\tau)}$.

The second lemma will be used to show that for certain submodules $K' \supseteq K$ of I_{α} , the quotient K'/K has sufficiently large cardinality. (K and K' will have the form $\{u \in I_{\alpha}: ru = 0\}$ for an appropriate r.) Here $\mathfrak{T}(\gamma)$ is the set of all subsets of γ .

LEMMA 2. Let $\{r_r: \nu < \gamma\}$ be a sequence of elements of R, and let N be a pure-injective module such that for all $\mu < \gamma$ there exists an element $a_{\mu} \in N$ such that $r_{\mu}a_{\mu} = 0$ and $r_{\mu+1}a_{\mu} \neq 0$. Then for each $S \in \mathcal{F}(\gamma)$ there exist an element x_s of N such that

(*) for all $\beta < \gamma$ and all $S, T \in \mathfrak{I}(\gamma)$, if $S \cap \beta = T \cap \beta$, then $r_{\beta+1}(x_S - x_T) = 0$ if and only if $S \cap (\beta+1) = T \cap (\beta+1)$.

PROOF. The idea of the construction is that x_s should « be » $\sum_{\mu \in S} a_{\mu}$. The actual construction is by induction on γ . If γ is finite and $S \subseteq \gamma$, let $x_s = \sum_{\mu \in S} a_{\mu}$. (We let $x_{\phi} = 0$.) Now suppose that for all $\delta < \gamma$ and all $S \subseteq \delta$ we have defined x_s so that (*) holds. We consider two cases.

Case 1: $\gamma = \delta + 1$ for some δ . We let $x_s = x_{s \cap \delta}$ if $\delta \notin S$, and we let $x_s = x_{s \cap \delta} + a_{\delta}$ if $\delta \in S$. It is easy to check, using the inductive hypothesis, that (*) holds.

Case 2: $\gamma = \lambda$, a limit ordinal. Here we use the fact that since N is pure-injective it is algebraically compact: see, for example, [FS; p. 215]. For any $S \subseteq \lambda$ we let x_s be a solution of the set of equations

$$\{r_{\beta+1}(x-x_{S\cap(\beta+1)})=0:\beta<\lambda\}$$

in the single unknown x. (The elements $x_{S \cap (\beta+1)}$ of N have been defined by induction.) This system of equations is finitely solvable

in N: indeed, for any finite subset F of λ , if $\delta > \sup(F)$, then $x_{S \cap \delta}$ is a solution of

$$\{\beta_{+1}(x - x_{S \cap (\beta+1)}) = 0 : \beta \in F\}$$
.

Hence by algebraic compactness there is a global solution, x_s . It remains to check that (*) is satisfied. So suppose that S and T are subsets of λ , and $\beta < \lambda$ such that $S \cap \beta = T \cap \beta$. We have:

$$x_{s} - x_{T} = (x_{s} - x_{s \cap (\beta+1)}) + (x_{s \cap (\beta+1)} - x_{T \cap (\beta+1)}) + (x_{T \cap (\beta+1)} - x_{T})$$

so $r_{\beta+1}(x_S - x_T) = 0 + r_{\beta+1}(x_{S \cap (\beta+1)} - x_{T \cap (\beta+1)}) + 0$; hence we are done by induction. \Box

The third lemma will guarantee us the existence of the elements a_{μ} in Lemma 2 provided that $r_{\mu+1} \notin r_{\mu} R$. (Of course, over a valuation domain, injective = pure-injective + divisible.)

LEMMA 3. Suppose L is an archimedean ideal and N is a divisible module containing R/L. Suppose also that r, s, t are elements of R such that t is a non-unit and r = st. Then there exists $a \in N$ such that ra = 0 and $sa \neq 0$.

PROOF. We shall let \overline{b} denote the coset, b + L of $b \in R$ in $R/L \subseteq N$. Since L is archimedean there is an element $b \in L \setminus tL$. If $bt^{-1} \in R$, let $a \in N$ such that $sa = bt^{-1} + L$. Then $ra = \overline{b} = 0$, but $sa \neq 0$ since $bt^{-1} \notin L$ (because $b \notin tL$). If $tb^{-1} \in R$, let $a \in N$ such that $s(tb^{-1})a = \overline{1}$. Then $ra = \overline{b} = 0$, but $sa \neq 0$ since $tb^{-1}(sa) = \overline{1}$. \Box

We are now ready to give the:

PROOF OF THE THEOREM. Let $D = D_{n-k}$. As Bazzoni observes, we can assume that $|A| = \bigotimes_{n-k}$ since we can replace D by the direct summand of D consisting of elements whose support lies in a fixed subset of A of size \bigotimes_{n-k} . It suffices to prove that $\operatorname{Ext}^1(J, D) \neq 0$ for some ideal J of R, for then $\operatorname{Ext}^2(R|J, D) \neq 0$ (cf. [FS; VI.5.2]). For this it suffices to prove that the canonical map: Hom $(J, I) \rightarrow$ \rightarrow Hom (J, I/D) is not surjective. In fact we shall show that this map is not surjective whenever J is an ideal of R which is not generated by a set of size \bigotimes_{n-k} but is generated by a set of size \bigotimes_{n-k+1} ; there is such an ideal because gl. dim R > n - k + 2 (cf. [0] or [FS; IV.2.3].)

Let $\{j_{\alpha_{+1}}: \alpha < \aleph_{n-k+1}\}$ be a set of generators of J ordered so that for all $\beta < \alpha$, $j_{\beta_{+1}} \in Rj_{\alpha_{+1}}$ and $j_{\alpha_{+1}} \notin Rj_{\beta_{+1}}$. Thus for every pair of ordinals $\beta < \alpha$ we have a non-unit r_{β}^{α} of R such that $r_{\beta}^{\alpha}j_{\alpha+1} = j_{\beta+1}$. Moreover, for all $\beta < \gamma < \alpha$ we have $r_{\beta}^{\alpha} = r_{\beta}^{\gamma}r_{\gamma}^{\alpha}$.

Let $\varkappa = \bigotimes_{n=k}$. We may as well suppose that $\Lambda = \varkappa$. So defining $f: J \to I/D$ amounts to choosing, for each $\nu < \varkappa$, elements $x_r^{\alpha} \in I_r$ $(\alpha < \varkappa^+ = \bigotimes_{n=k+1})$ so that for all $\beta < \alpha$, $|\{\nu < \varkappa: r_{\beta}^{\alpha} x_r^{\alpha} \neq x_{\nu}^{\beta}\}| < \varkappa$; for then we can define $f(j_{\alpha+1}) = x^{\alpha} + D$, where $x^{\alpha} = \langle x_r^{\alpha}: \nu < \varkappa \rangle \in I$. We are going to use the sets w_r^{α} ($\alpha < \varkappa^+, \nu < \varkappa$) constructed in Lemma 1 in order to define the x_r^{α} 's; in fact, we shall construct them so that $r_{\beta}^{\alpha} x_r^{\alpha} = x_{\nu}^{\beta}$ if $\beta \in w_r^{\alpha}$. Then f will be defined because, by (1) of Lemma 1, for any $\beta < \alpha$ there exists $\mu < \varkappa$ so that $\beta \in w_{\mu}^{\alpha}$, and hence by (2), the set of ν such that $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$ is contained in μ , and thus has cardinality less than \varkappa .

In order to make f not liftable to a homomorphism into I we shall also require that the x_r^{α} be chosen so that if $\sup(w_r^{\alpha}) + \varkappa < \beta < \alpha$, then $r_{\beta}^{\alpha}x_r^{\alpha} \neq x_r^{\beta}$. (The sum is ordinal addition.) Indeed, if there were a $g: J \to I$ which lifted f, then we would have $g(j_{\alpha}) = y^{\alpha}$ for some $y^{\alpha} \in I$ such that $y^{\alpha} = x^{\alpha} + d^{\alpha}$ for some $d^{\alpha} \in D$, for all $\alpha < \varkappa^+$. For each $\mu < \varkappa$, let

$$Y_{\mu} \stackrel{\text{def}}{=} \{ \alpha < \varkappa^+ \colon \mu \notin \text{supp } (d^{\alpha}) \} ;$$

then for some $\nu < \varkappa$, Y_{ν} is a stationary subset of \varkappa^+ since $\bigcup Y_{\mu} = \varkappa^+$ (cf. [J; Lemma 7.4]). Now by (4), $\sup(w_{\nu}^{\alpha}) < \alpha$ if cf $(\alpha) = \varkappa$, so by Fodor's Lemma ([J; p. 59]) there is a stationary subset Y' of Y_{ν} and an ordinal γ such that for all $\alpha \in Y'$ $\sup(w_{\nu}^{\alpha}) = \gamma$. Hence there are elements β , α of Y' such that $\gamma + \varkappa < \beta < \alpha$. But then $y^{\alpha}(\nu) = x_{\nu}^{\alpha}$ and $y^{\beta}(\nu) = x_{\nu}^{\beta}$, and by construction $r_{\beta}^{\alpha} x_{\nu}^{\alpha} \neq x_{\nu}^{\beta}$, which means that gis not a homomorphism.

Thus it remains only to construct for each ν the elements x_{ν}^{α} of I_{ν} so that for all $\beta < \alpha < \varkappa^{+}$:

(i)
$$r^{\alpha}x_{\nu}^{\alpha} = x_{\nu}^{\beta}$$
 if $\beta \in w_{\nu}^{\alpha}$;

(ii)
$$r^{\alpha}_{\beta} x^{\alpha}_{\nu} \neq x^{\beta}_{\nu}$$
 if $\beta > \sup(w^{\alpha}_{\nu}) + \varkappa$.

We shall do this for each fixed ν by induction on α . Let $x_{\nu}^{0} = \overline{1}$. Suppose now that x_{ν}^{β} has been defined for all $\beta < \alpha$ so that (i) and (ii) hold where defined. In order to satisfy (i) it is enough to choose x_{ν}^{α} to be a solution, z, of the system of equations

(†)
$$\{r^{\alpha}_{\beta}z = x^{\beta}_{\nu}; \beta \in w^{\alpha}_{\nu}\}.$$

 $\mathbf{283}$

Since I is pure-injective, it suffices to show that this system is finitely solvable in I_{ν} . If F is a finite subset of w_{ν}^{α} and $\sigma = \max(F)$, we claim that any z such that $r_{\sigma}^{\alpha} z = x_{\nu}^{\sigma}$ will be a solution of

$$\{r^{\alpha}_{\beta} z = x^{\beta}_{\nu} \colon \beta \in F\}$$
.

In fact, if $\beta \in F$ and $\beta < \sigma$, then since σ , $\beta \in w_r^{\alpha}$, (3) implies that $\beta \in w_r^{\sigma}$, so $r_{\beta}^{\sigma} x_r^{\sigma} = x_r^{\beta}$ and hence $r_{\beta}^{\alpha} z = r_{\beta}^{\sigma} r_{\sigma}^{\alpha} z = r_{\beta}^{\sigma} x_r^{\sigma} = x_r^{\beta}$.

Now consider (ii). Let $\delta = \sup(w_r^{\alpha})$. Let z be a fixed solution of (†). Then (i) will hold if x_r^{α} is of the form z + u where $r_{\delta}^{\alpha} u = 0$. Let $\beta = \delta + z + 1$. It suffices to choose u so that $r_{\delta}^{\alpha} u = 0$ and for each γ such that $\beta \leqslant \gamma < \alpha$, $r_{\beta}^{\alpha} u \neq r_{\beta}^{\nu} x_{r}^{\nu} - r_{\beta}^{\alpha} z$. (We let $r_{\beta}^{\beta} = 1$.) For then, since $r_{\beta}^{\alpha} = r_{\beta}^{\nu} r_{\gamma}^{\alpha}$, we have that $r_{\gamma}^{\nu}(z + u) \neq x_{\gamma}^{\nu}$. But Lemma 2 (with $r_r = r_{\delta+r}^{\alpha}$ for $\nu < z$) in conjunction with Lemma 3 implies that the quotient group

$$\{u \in I_{\nu} \colon r^{\alpha}_{\delta} u = 0\} / \{u \in I_{\nu} \colon r^{\alpha}_{\beta} u = 0\}$$

has cardinality $\ge 2^{\varkappa}$. Thus there certainly is a *u* with the desired properties. This completes the inductive step of the construction, and hence completes the proof of the theorem. \Box

COROLLARY. If gI, dim $(R) \ge 3$, and for each $n \in \omega$, I_n is an injective nodule containing R/L_n for some archimedean ideal L_n of R, then the injective dimension of $\bigoplus_{n \in \omega} I_n$ is ≥ 2 . \Box

REFERENCES

- [B] S. BAZZONI, Injective dimension of some divisible modules over a valuation domain, to appear in Proc. Amer. Math. Soc.
- [FS] L. FUCHS L. SALCE, Modules over Valuation Domains, Marcel Dekker, 1985.
- [J] T. JECH, Set Theory, Academic Press, 1978.
- [O] B. OSOFSKY, Global dimension of valuation rings, Trans. Amer. Math. Soc., 127 (1967), pp. 136-149.
- [Sh] S. SHELAH, Uncountable constructions for B.A. e.c. groups and Banach spaces, Israel. J. Math., 51 (1985), pp. 273-297.

Manoscritto pervenuto in redazione il 14 marzo 1987.