RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

John D. O'NEILL

A theorem on direct products of Slender modules

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 261-266

http://www.numdam.org/item?id=RSMUP_1987__78__261_0
© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A Theorem on Direct Products of Slender Modules.

John D. O’Neill (*)

1. Introduction.

Let R be a ring. A class \mathcal{C} of R-modules is called transitive if, for each, $\quad X, Y, Z$ in $\mathcal{C}, \operatorname{Hom}_{R}(X, Y) \neq 0 \neq \operatorname{Hom}_{R}(Y, Z) \quad$ implies $\operatorname{Hom}_{R}(X, Z) \neq 0$. If $\operatorname{Hom}_{R}(X, Y) \neq 0 \neq \operatorname{Hom}_{R}(Y, X)$, then X and Y have the same type. Our main result is the following.

Theorem 1. Let \mathcal{C} be a transitive class of slender R-modules. If $\prod_{I} G_{i}=A \oplus B$ with G_{i} in \mathcal{C} and I countable, then A is isomorphic to a direct product of members of \mathcal{C} if this result is true whenever all G_{i} 's have the same type.

In section 4, using a result from [4], we generalize Theorem 1 to the case where I is any set of non-measurable cardinality.

In section 5 we present some applications of the theorem. In particular Corollary 8 includes the case where R is the ring of integers and \mathcal{C} is the class of rank one torsion-free reduced abelian groups. This case is Theorem 4.3 in [4]. The proof there was defective (Lemma 4.2 was false). Thus our proof here of Theorem 1 (hence of Corollary 8) supplants the proof of Theorem 4.3 in [4].

2. Preliminaries.

All rings are associative with unity and all modules (except in Cor. 9) are left unital. Let C be a transitive class of R-modules.
(*) Indirizzo dell'A.: University of Detroit, Detroit, MI. 48221, T.S.A.
«Having the same type» is an equivalence relation on the members of \mathcal{C}. If type $X=t$, type $Y=s$, and $\operatorname{Hom}_{R}(X, Y) \neq 0$, we write $t \leqslant s$. This relation is a partial order on the types of members of \mathcal{C}. By $t<s$ we mean $t \leqslant s$ and $s \leqslant t$. An R-module has finite rank if it is isomorphic to a submodule of a finite direct sum of members of \mathcal{C}. A submodule X is fully invariant in Y if: for any homomorphism $f: Y \rightarrow Y, f(X) \subseteq X$. In this case a decomposition of Y induces a decomposition of X.

The first infinite ordinal (a cardinal) is ω and it is identified with the set of finite ordinals. Let R^{ω} be the direct product of ω copies of R. An R-module X is slender if each R-homomorphism $R^{\omega} \rightarrow X$ sends all but a finite number of components of R^{ω} to 0 .

We shall presume a basic knowledge of slender modules and direct products of modules such as is found in [1, 2 and 4] and in the papers referenced there. Lemmas 3.1 and 3.2 in [4] are basic and, being wellknown, are often used without mention.

Observe that the class \mathcal{C} in Theorem 1 satisfies the following Clause: If $\prod_{I} G_{i}=A \oplus B$ where $|I| \leqslant \omega$ and all G_{i} 's have the same type, then A is isomorphic to a direct product of members of \mathcal{C}. It will be clear after Lemma 2 that the components of A have the same type as the G_{2} 's.

3. Proof of Theorem 1.

Write $\quad V=\prod_{I} G_{i}=A \oplus B$ as in Theorem 1. Let $\alpha: V \rightarrow A$, $\beta: V \rightarrow B$ and $\alpha_{i}: V \rightarrow A \rightarrow G_{i}$ be the obvious projections. Let each G_{i} have type t_{i}. For a fixed type s write $V_{s}=\prod_{t_{i}=s} G_{i}$ and $V^{s}=\prod_{t_{i}>s} G_{i}$. If $J \subseteq I$, then $V_{J}=\prod_{i \in J} G_{i}$. We will adhere strictly to this notation.

Lempa 2. For each type s
(1) $V_{s} \oplus V^{s}$ and V^{s} are fully invariant in V,
(2) $\alpha\left(V_{s} \oplus V^{s}\right)=A \cap\left(V_{s} \oplus \beta\left(V^{s}\right)\right) \oplus \alpha\left(V^{s}\right)$,
(3) We may assume the decomposition $V=\prod_{I} G_{i}$ is such that $V_{s}=\prod_{\boldsymbol{X}_{s}} G_{i} \oplus \prod_{\boldsymbol{r}_{s}} G_{i}$ for subsets $X_{s}, \boldsymbol{Y}_{s}$ of I so that α induces an isomorphism between $V_{X_{s}}$ and $\alpha\left(V_{X_{s}}\right)=A \cap\left(V_{s} \oplus \beta\left(V^{s}\right)\right)$, which is thus a direct product of members of \mathcal{C} of type s.

Proof. (1) is clear and (2) follows (1) by standard arguments. From (1) the members of any new \mathcal{C}-decomposition of V_{s} have type s. Also $\beta\left(V_{s} \oplus V^{s}\right)=\boldsymbol{B} \cap\left(V_{s} \oplus \alpha\left(V^{s}\right)\right) \oplus \beta\left(V^{s}\right)$ and $V_{s} \oplus V^{s}=\left[A \cap\left(V_{s} \oplus\right.\right.$ $\left.\left.\oplus \beta\left(V^{s}\right)\right) \oplus B \cap\left(V_{s} \oplus \alpha\left(V^{s}\right)\right)\right] \oplus V^{s}$. Now V_{s} is isomorphic to the summand in the bracket and, by the Clause, each summand in the bracket is isomorphic to a direct product of members of \mathcal{C} of type s. It we project each of these summands to V_{s} we get the desired decomposition of V_{s}.

Lemma 3. Let T be a finite set of types and let s be a minimal type in T. Assume Lemma 2. Set $V^{T}=\prod_{J} G_{i}$ where $J=\left\{i: t_{i}>\right.$ some t in T or $\left.t_{i} \in T \backslash\{s\}\right\}$ and set ${ }_{T} V=\prod_{\boldsymbol{K}} G_{i}$ where $K=\left\{i: t_{i} \neq\right.$ any t in $\left.T\right\}$; so $V={ }_{T} V \oplus V_{s} \oplus V^{T}$. Then
(1) $V_{s} \oplus V^{T}$ and V^{T} are fully invariant in V,
(2) $A=A \cap\left({ }_{T} V \oplus \beta\left(V_{s} \oplus V^{T}\right)\right) \oplus \alpha\left(V_{X_{s}}\right) \oplus \alpha\left(V^{T}\right)$ for X_{s} as in Lemma 2.

Proof. (1) is clear. Hence $A=A \cap\left({ }_{T} V \oplus \beta\left(V_{s} \oplus V^{T}\right)\right) \oplus A \cap$ $\cap\left(V_{s} \oplus \beta\left(V^{T}\right)\right) \oplus \alpha\left(V^{T}\right)$. Now $\quad A \cap\left(V_{s} \oplus \beta\left(V^{s}\right)\right) \subseteq A \cap\left(V_{s} \oplus \beta\left(V^{T}\right)\right)$ which, being in $\alpha\left(V_{s}\right)$, is in $A \cap\left(V_{s} \oplus \beta\left(V^{s}\right)\right)$. By Lemma $2 \alpha\left(V_{x_{s}}\right)=$ $=A \cap\left(V_{s} \oplus \beta\left(V^{T}\right)\right)$. Substitution yields (2).

Lemma 4. If C is a finite rank direct summand of V, then C is isomorphic to a finite direct sum of members of \mathfrak{C}.

Proof. By slenderness C is a direct summand of a finite direct sum of G_{i} 's. If all G_{i} 's have the same type, the Clause applies. For the general case we may use Baer's classical proof for a direct summand of a finite direct sum of rank one torsionfree abelian groups (see Theorem 86.7 in [1]).

Lemma 5. Suppose $m \in I$. Then $A=\boldsymbol{E} \oplus \boldsymbol{F}$ where \boldsymbol{E} has finite rank and $\alpha_{m}(F)=0$.

Proof. Since G_{m} is slender, $\alpha_{m}\left(V_{t}\right)=0$ for all types t except those in a finite set T. We induct on the order of T. If $T=\emptyset, \alpha_{m}(A) \subseteq$ $\subseteq \alpha_{m}(V)=0$; so $E=0$ and $F=A$ satisfy the Lemma. Otherwise let s be a minimal type in T. From Lemma 3 we write $A=A \cap\left({ }_{T} V \oplus\right.$ $\left.\oplus \beta\left(V_{s} \oplus V^{T}\right)\right) \oplus \alpha\left(V_{X_{s}}\right) \oplus \alpha\left(V^{T}\right)$. Note that the left summand is in $\alpha\left({ }_{T} V\right)$ and $\alpha_{m}\left({ }_{T} V\right)=0$. Since $\alpha\left(V_{x_{s}}\right)$ is a product of G_{i} 's of type s,
by slenderness $\alpha\left(V_{X_{s}}\right)=D \oplus E_{1}$ where $\alpha_{m}(D)=0$ and E_{1} is a finite direct sum of G_{i} 's of type s. Let $\boldsymbol{F}_{\mathbf{1}}=A \cap\left({ }_{T} V \oplus \beta\left(V_{s} \oplus V^{T}\right)\right) \oplus \boldsymbol{D}$ Now $A=F_{1} \oplus E_{1} \oplus \alpha\left(V^{T}\right)$ where $\alpha_{m}\left(F_{1}\right)=0$ and E_{1} has finite rank. Next consider $V^{T}=\alpha\left(V^{T}\right) \oplus \beta\left(V^{T}\right)$. Let T_{1} be the set of t 's such that $V_{t} \subseteq V^{T}$ and $\alpha_{m}\left(V_{t}\right) \neq 0$. Then $T_{1}=T \backslash\{s\}$ and $\left|T_{1}\right|<|T|$. By the induction hypothesis $\alpha\left(V^{T}\right)=E_{2} \oplus F_{2}$ where E_{2} has finite rank and $\alpha_{m}\left(F_{2}\right)=0$. Therefore $E=E_{1} \oplus E_{2}$ and $F=F_{1} \oplus F_{2}$ satisfy the lemma.

Remark. If \mathcal{C} is the class of rank one torsion-free reduced abelian groups, Lemma 5 follows readily from the fact that V and any direct summand of V is coseparable (see Proposition 1.2 and Theorem 5.8 in [3]). Thus the kernel of the map $\alpha_{m}: A \rightarrow G_{m}$ must contain a direct summand F of A with finite rank complement E.

Proof of Theorem 1. By Lemma 4 we may assume $I=\omega$. We may also assume V has the decomposition in Lemma 2. We wish to find submodules A_{n}, A^{n} in A for each n in ω such that:
(1) $A=A_{n}, A^{n}=A_{n} \oplus A^{n+1}$ for each n,
(2) Each A_{n} has finite rank,
(3) For fixed $m A_{n}\left(A_{n}\right) \alpha_{m}\left(A_{n}\right)=0$ for almost all n,
(4) $\cap A^{n}=0$.

Then, $\mathrm{b}_{;}$Proposition 3.3 in [4], we will have $A \cong \prod_{\omega} A_{n}$ and Lemma 4 above vill complete the proof.

Let $A=A^{0}$. If $m \geqslant 0$ and if A^{m} is a direct summand of V, then, by letting A^{m} be A in Lemma 5 , we can find a decomposition $A^{m}=$ $=A_{m} \oplus A^{m+1}$ where A_{m} has finite rank and $\alpha_{m}\left(A^{m+1}\right)=0$. By induction we can find A_{n}, A^{n} for each n in ω to satisfy (1) and (2) above and where $\alpha_{n}\left(A^{n+1}\right)=0$ for each n. For fixed $m \alpha_{m}\left(A_{n}\right) \subseteq \alpha_{m}\left(A^{n}\right)=0$ for all $n>m$. This yields (3) and (4) which completes the proof.

4. Generalization.

Theorem 6. Let \mathcal{C} be a transitive class of slender R-modules. If $\prod_{I} G_{2}=A \oplus B$ with $G_{i} \in \mathcal{C}$ and $|I|$ non-measurable, then A is isomorphic to a direct product of members of \mathcal{C} if this statement is true whenever I is countable and all G_{i} 's have the same type.

Proof. The result follows from Theorem 1 and the following proposition.

Proposition 7 (Theorem 3.7 in [4]). Suppose an R-module P has decompositions $P=\prod_{I} G_{i}=A \oplus B$ where $|I|$ is non-measurable and each G_{i} is slender. Then $A \cong \prod_{J} A_{j}$ where each A_{j} is isomorphic to a direct summand of a direct product of countably many G_{i} 's.

As an aside we mention that the conclusion of Lemma 3.6 in [4] is misstated. It should be: Then $A \cong \prod_{J} A_{j}$ and $B \cong \prod_{J} B_{j}$ where $A_{j}=A \cap\left(P_{j} \oplus \beta\left(P^{j^{\prime}}\right)\right)$ and $B_{j}=B \cap\left(P_{j} \oplus \alpha\left(\boldsymbol{P j}^{\prime}\right)\right)$. The proof of the Lemma, with obvious modifications, remains the same.

5. Applications.

Corollary 8 (see Theorem 13 in [5]). Let R be a commutative Dedekind domain which is not a field or a complete discrete valuation ring. Let $V=\prod_{I} G_{i}=A \oplus B$ where $|I|$ is non-measurable and each G_{i} is a rank one torsion-free reduced R-module. Then A is a direct product of rank one R-modules.

Proof. Let \mathcal{C} be the class of rank one torsion-free reduced R modules. Each module in \mathcal{C} is slender by Proposition 3 in [5]. If X and Y are in \mathcal{C} and $f: X \rightarrow Y$ is a non-zero homomorphism, it is a monomorphism. Hence $\operatorname{Hom}_{R}(X, Y) \neq 0$ if and only if X is isomorphic to a submodule of \boldsymbol{Y}. It follows that \mathcal{C} is a transitive class of slender R-modules and that, for this class, the definitions of «type» in this paper and in Definition 9 in [5] are equivalent. By Proposition 12 in [5] the Corollary is true if all G_{i} 's have the same type. Theorem 6 above completes the proof.

Corollary 9. Let R be a ring and let \mathcal{C} be a transitive class of slender left R-modules such that modules of the same type are isomorphic and, for each X in \mathcal{C}, projective right $\operatorname{End}_{R} X$-modules are free. If $\prod_{I} G_{i}=A \oplus B$ where $G_{i} \in \mathcal{C}$ and $|I|$ is non-measurable, then A is isomorphic to a direct product of G_{i} 's.

Proof. By Theorem 3.1 in [2] the result is true if all G_{i} 's have the same type. Theorem 6 above completes the proof.

I am indebted to the referee for the Remark after Lemma 5 and for many other ideas incorporated in the revision of this paper.

REFERENCES

[1] L. Fuchs, Infinite Abelian groups, Academic Press, Vol. II (1973).
[2] M. Huber, On reflexive modules and abelian groups, J. of Algebra, 82 (1983), pp. 469-487.
[3] C. Metelli, Coseparable torsionfree abelian groups, Arch. Math., 45 (1985), pp. 116-124.
[4] J.D. O'Neill, Direct summands of direct products of slender modules, Pacific J. of Math., 117 (1985), 379-385.
[5] J. D. O'Neill, On direct products of modules over Dedekind domains, Comm. in Alg., 13 (1985), pp. 2161-2173.

Pervenuto in redazione il 20 dicembre 1985 e in forma revisionata il 14 novembre 1986.

