RENDICONTI del Seminario Matematico della Università di Padova

JOHN D. O'NEILL

A theorem on direct products of Slender modules

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 261-266

http://www.numdam.org/item?id=RSMUP_1987_78_261_0

© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Theorem on Direct Products of Slender Modules.

JOHN D. O'NEILL (*)

1. Introduction.

Let R be a ring. A class C of R-modules is called *transitive* if, for each, X, Y, Z in C, $\operatorname{Hom}_{R}(X, Y) \neq 0 \neq \operatorname{Hom}_{R}(Y, Z)$ implies $\operatorname{Hom}_{R}(X, Z) \neq 0$. If $\operatorname{Hom}_{R}(X, Y) \neq 0 \neq \operatorname{Hom}_{R}(Y, X)$, then X and Y have the same *type*. Our main result is the following.

THEOREM 1. Let C be a transitive class of slender *R*-modules. If $\prod_{I} G_i = A \oplus B$ with G_i in C and *I* countable, then *A* is isomorphic to a direct product of members of C if this result is true whenever all G_i 's have the same type.

In section 4, using a result from [4], we generalize Theorem 1 to the case where I is any set of non-measurable cardinality.

In section 5 we present some applications of the theorem. In particular Corollary 8 includes the case where R is the ring of integers and C is the class of rank one torsion-free reduced abelian groups. This case is Theorem 4.3 in [4]. The proof there was defective (Lemma 4.2 was false). Thus our proof here of Theorem 1 (hence of Corollary 8) supplants the proof of Theorem 4.3 in [4].

2. Preliminaries.

All rings are associative with unity and all modules (except in Cor. 9) are left unital. Let C be a transitive class of R-modules.

(*) Indirizzo dell'A.: University of Detroit, Detroit, MI. 48221, U.S.A.

« Having the same type » is an equivalence relation on the members of C. If type X = t, type Y = s, and $\operatorname{Hom}_R(X, Y) \neq 0$, we write $t \leq s$. This relation is a partial order on the types of members of C. By t < s we mean $t \leq s$ and $s \leq t$. An *R*-module has *finite rank* if it is isomorphic to a submodule of a finite direct sum of members of C. A submodule X is *fully invariant* in Y if: for any homomorphism $f: Y \to Y, f(X) \subseteq X$. In this case a decomposition of Y induces a decomposition of X.

The first infinite ordinal (a cardinal) is ω and it is identified with the set of finite ordinals. Let R^{ω} be the direct product of ω copies of R. An R-module X is *slender* if each R-homomorphism $R^{\omega} \to X$ sends all but a finite number of components of R^{ω} to 0.

We shall presume a basic knowledge of slender modules and direct products of modules such as is found in [1, 2 and 4] and in the papers referenced there. Lemmas 3.1 and 3.2 in [4] are basic and, being wellknown, are often used without mention.

Observe that the class C in Theorem 1 satisfies the following *Clause*: If $\prod_{I} G_i = A \oplus B$ where $|I| < \omega$ and all G_i 's have the same type, then A is isomorphic to a direct product of members of C. It will be clear after Lemma 2 that the components of A have the same type as the G_i 's.

3. Proof of Theorem 1.

Write $V = \prod_{I} G_{i} = A \oplus B$ as in Theorem 1. Let $\alpha: V \to A$, $\beta: V \to B$ and $\alpha_{i}: V \to A \to G_{i}$ be the obvious projections. Let each G_{i} have type t_{i} . For a fixed type s write $V_{s} = \prod_{t_{i}=s} G_{i}$ and $V^{s} = \prod_{t_{i}>s} G_{i}$. If $J \subseteq I$, then $V_{J} = \prod_{i \in J} G_{i}$. We will adhere strictly to this notation.

LEMMA 2. For each type s

- (1) $V_s \oplus V^s$ and V^s are fully invariant in V,
- (2) $\alpha(V_s \oplus V^s) = A \cap (V_s \oplus \beta(V^s)) \oplus \alpha(V^s),$
- (3) We may assume the decomposition $V = \prod_{I} G_i$ is such that $V_s = \prod_{\mathbf{x}_s} G_i \oplus \prod_{\mathbf{y}_s} G_i$ for subsets X_s , Y_s of I so that α induces an isomorphism between $V_{\mathbf{x}_s}$ and $\alpha(V_{\mathbf{x}_s}) = A \cap (V_s \oplus \beta(V^s))$, which is thus a direct product of members of C of type s.

PROOF. (1) is clear and (2) follows (1) by standard arguments. From (1) the members of any new C-decomposition of V_s have type s. Also $\beta(V_s \oplus V^s) = B \cap (V_s \oplus \alpha(V^s)) \oplus \beta(V^s)$ and $V_s \oplus V^s = [A \cap (V_s \oplus \oplus \beta(V^s)) \oplus B \cap (V_s \oplus \alpha(V^s))] \oplus V^s$. Now V_s is isomorphic to the summand in the bracket and, by the *Clause*, each summand in the bracket is isomorphic to a direct product of members of C of type s. It we project each of these summands to V_s we get the desired decomposition of V_s .

LEMMA 3. Let T be a finite set of types and let s be a minimal type in T. Assume Lemma 2. Set $V^{T} = \prod_{s} G_{i}$ where $J = \{i: t_{i} > \text{some } t$ in T or $t_{i} \in T \setminus \{s\}$ and set $_{T}V = \prod_{K} G_{i}$ where $K = \{i: t_{i} \ge \text{any } t \text{ in } T\};$ so $V = _{T}V \oplus V_{s} \oplus V^{T}$. Then

- (1) $V_s \oplus V^T$ and V^T are fully invariant in V,
- (2) $A = A \cap (_T V \oplus \beta(V_s \oplus V^T)) \oplus \alpha(V_{x_s}) \oplus \alpha(V^T)$ for X_s as in Lemma 2.

PROOF. (1) is clear. Hence $A = A \cap ({}_{T}V \oplus \beta(V_{s} \oplus V^{T})) \oplus A \cap (V_{s} \oplus \beta(V^{T})) \oplus \alpha(V^{T})$. Now $A \cap (V_{s} \oplus \beta(V^{s})) \subseteq A \cap (V_{s} \oplus \beta(V^{T}))$ which, being in $\alpha(V_{s})$, is in $A \cap (V_{s} \oplus \beta(V^{s}))$. By Lemma 2 $\alpha(V_{x_{s}}) = A \cap (V_{s} \oplus \beta(V^{T}))$. Substitution yields (2).

LEMMA 4. If C is a finite rank direct summand of V, then C is isomorphic to a finite direct sum of members of C.

PROOF. By slenderness C is a direct summand of a finite direct sum of G_i 's. If all G_i 's have the same type, the *Clause* applies. For the general case we may use Baer's classical proof for a direct summand of a finite direct sum of rank one torsionfree abelian groups (see Theorem 86.7 in [1]).

LEMMA 5. Suppose $m \in I$. Then $A = E \oplus F$ where E has finite rank and $\alpha_m(F) = 0$.

PROOF. Since G_m is slender, $\alpha_m(V_i) = 0$ for all types t except those in a finite set T. We induct on the order of T. If $T = \emptyset$, $\alpha_m(A) \subseteq \subseteq \alpha_m(V) = 0$; so E = 0 and F = A satisfy the Lemma. Otherwise let s be a minimal type in T. From Lemma 3 we write $A = A \cap (_T V \oplus \bigoplus \beta(V_s \oplus V^T)) \oplus \alpha(V_{x_i}) \oplus \alpha(V^T)$. Note that the left summand is in $\alpha(_T V)$ and $\alpha_m(_T V) = 0$. Since $\alpha(V_{x_i})$ is a product of G_i 's of type s. by slenderness $\alpha(V_{x_i}) = D \oplus E_1$ where $\alpha_m(D) = 0$ and E_1 is a finite direct sum of G_i 's of type s. Let $F_1 = A \cap ({}_TV \oplus \beta(V_s \oplus V^T)) \oplus D$ Now $A = F_1 \oplus E_1 \oplus \alpha(V^T)$ where $\alpha_m(F_1) = 0$ and E_1 has finite rank. Next consider $V^T = \alpha(V^T) \oplus \beta(V^T)$. Let T_1 be the set of t's such that $V_t \subseteq V^T$ and $\alpha_m(V_t) \neq 0$. Then $T_1 = T \setminus \{s\}$ and $|T_1| < |T|$. By the induction hypothesis $\alpha(V^T) = E_2 \oplus F_2$ where E_2 has finite rank and $\alpha_m(F_2) = 0$. Therefore $E = E_1 \oplus E_2$ and $F = F_1 \oplus F_2$ satisfy the lemma.

REMARK. If C is the class of rank one torsion-free reduced abelian groups, Lemma 5 follows readily from the fact that V and any direct summand of V is coseparable (see Proposition 1.2 and Theorem 5.8 in [3]). Thus the kernel of the map $\alpha_m \colon A \to G_m$ must contain a direct summand F of A with finite rank complement E.

PROOF OF THEOREM 1. By Lemma 4 we may assume $I = \omega$. We may also assume V has the decomposition in Lemma 2. We wish to find submodules A_n , A^n in A for each n in ω such that:

- (1) $A = A_n$, $A^n = A_n \oplus A^{n+1}$ for each n,
- (2) Each A_n has finite rank,
- (3) For fixed $mA_n(A_n)\alpha_m(A_n) = 0$ for almost all n,
- (4) $\cap A^n = 0.$

Then, by Proposition 3.3 in [4], we will have $A \cong \prod_{\omega} A_n$ and Lemma 4 above will complete the proof.

Let $A = A^0$. If $m \ge 0$ and if A^m is a direct summand of V, then, by letting A^m be A in Lemma 5, we can find a decomposition $A^m =$ $= A_m \bigoplus A^{m+1}$ where A_m has finite rank and $\alpha_m(A^{m+1}) = 0$. By induction we can find A_n , A^n for each n in ω to satisfy (1) and (2) above and where $\alpha_n(A^{n+1}) = 0$ for each n. For fixed $m \alpha_m(A_n) \subseteq \alpha_m(A^n) = 0$ for all n > m. This yields (3) and (4) which completes the proof.

4. Generalization.

THEOREM 6. Let C be a transitive class of slender *R*-modules. If $\prod_{I} G_{i} = A \oplus B$ with $G_{i} \in \mathbb{C}$ and |I| non-measurable, then A is isomorphic to a direct product of members of C if this statement is true whenever I is countable and all G_{i} 's have the same type. **PROOF.** The result follows from Theorem 1 and the following proposition.

PROPOSITION 7 (Theorem 3.7 in [4]). Suppose an *R*-module *P* has decompositions $P = \prod_{I} G_i = A \oplus B$ where |I| is non-measurable and each G_i is slender. Then $A \cong \prod_{J} A_j$ where each A_j is isomorphic to a direct summand of a direct product of countably many G_i 's. As an aside we mention that the conclusion of Lemma 3.6 in [4] is misstated. It should be: Then $A \cong \prod_{J} A_j$ and $B \cong \prod_{J} B_j$ where $A_j = A \cap (P_j \oplus \beta(P'))$ and $B_j = B \cap (P_j \oplus \alpha(Pj'))$. The proof of the

 $A_j = A \cap (P_j \oplus \beta(P'))$ and $B_j = B \cap (P_j \oplus \alpha(P'))$. The proof of the Lemma, with obvious modifications, remains the same.

5. Applications.

COROLLARY 8 (see Theorem 13 in [5]). Let R be a commutative Dedekind domain which is not a field or a complete discrete valuation ring. Let $V = \prod_{I} G_{i} = A \oplus B$ where |I| is non-measurable and each G_{i} is a rank one torsion-free reduced R-module. Then A is a direct product of rank one R-modules.

PROOF. Let C be the class of rank one torsion-free reduced R-modules. Each module in C is slender by Proposition 3 in [5]. If X and Y are in C and $f: X \to Y$ is a non-zero homomorphism, it is a monomorphism. Hence $\operatorname{Hom}_R(X, Y) \neq 0$ if and only if X is isomorphic to a submodule of Y. It follows that C is a transitive class of slender R-modules and that, for this class, the definitions of «type» in this paper and in Definition 9 in [5] are equivalent. By Proposition 12 in [5] the Corollary is true if all G_i 's have the same type. Theorem 6 above completes the proof.

COROLLARY 9. Let R be a ring and let C be a transitive class of slender left R-modules such that modules of the same type are isomorphic and, for each X in C, projective right $\operatorname{End}_R X$ -modules are free. If $\prod_{I} G_i = A \oplus B$ where $G_i \in C$ and |I| is non-measurable, then A is isomorphic to a direct product of G_i 's.

PROOF. By Theorem 3.1 in [2] the result is true if all G_i 's have the same type. Theorem 6 above completes the proof.

I am indebted to the referee for the Remark after Lemma 5 and for many other ideas incorporated in the revision of this paper.

REFERENCES

- [1] L. FUCHS, Infinite Abelian groups, Academic Press, Vol. II (1973).
- [2] M. HUBER, On reflexive modules and abelian groups, J. of Algebra, 82 (1983), pp. 469-487.
- [3] C. METELLI, Coseparable torsionfree abelian groups, Arch. Math., 45 (1985), pp. 116-124.
- [4] J. D. O'NEILL, Direct summands of direct products of slender modules, Pacific J. of Math., 117 (1985), 379-385.
- [5] J.D. O'NEILL, On direct products of modules over Dedekind domains, Comm. in Alg., 13 (1985), pp. 2161-2173.

Pervenuto in redazione il 20 dicembre 1985 e in forma revisionata il 14 novembre 1986.