RENDICONTI del Seminario Matematico della Università di Padova

LUISA CARINI Centralizers and Lie ideals

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 255-259

http://www.numdam.org/item?id=RSMUP_1987_78_255_0

© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Centralizers and Lie Ideals.

LUISA CARINI (*)

SUMMARY. - Let R be an associative ring, Z(R) its center and $T(U) = = \{a \in R | au^n = u^n a, n = n(u, a) \ge 1, all u \in U\}$, where U is a non central Lie ideal of R. We prove that if R is a prime ring of characteristic not 2 with no nil right ideals, then either T(U) = Z(R) or R is an order in a simple algebra of dimension at most 4 over its center.

Let R be an associative ring, Z(R) its center. The hypercenter theorem [4] asserts that in a ring with no nonzero nil ideals an element commuting with a suitable power of every element of the ring must be central.

In this note we want to extend this result to noncentral Lie ideals in case R is a prime ring of characteristic not 2 with no nil right ideals.

Let $T(U) = \{a \in R : au^n = u^n a, n = n(u, a) \ge 1, all u \in U\}$, where U is a noncentral Lie ideal of R, then one cannot expect the same conclusion of [4], as the following example shows:

EXAMPLE. Let $R = F_2$, the 2×2 matrices over a field F,

$$U = [R, R] = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in F \right\}.$$

(*) Indirizzo dell'A.: Università di Messina, Dipartimento di Matematica, Via C. Battisti 90, 98100 Messina, Italy.

Research supported by a grant from M.P.I.

Then U is a noncentral Lie ideal of R and $u^2 \in Z(R)$ for every element $u \in U$, therefore T(U) = R, but $Z(R) \neq R$.

Then making use of a result of Felzenszwalb and Giambruno [2], we shall prove the following:

THEOREM. Let R be a prime ring of characteristic not 2 with no nil right ideals, U a noncentral Lie ideal of R. Then either T(U) = Z(R) or R is an order in a simple algebra of dimension at most 4 over its center.

Notice that the conclusion of the theorem is false if one removes the assumption of primeness. In fact, let F_k be the ring of $k \times k$ matrices over a field F. If $R = \prod_{k=2}^{\infty} F_k$, then R is a semisimple ring. Take $U = \prod_{k=2}^{\infty} U_k$, where $U_2 = [F_2, F_2]$ and $U_k = F_k$ for k > 2, then U is a noncentral Lie ideal of R. Let a = (c, 0, 0, ...) with $c \notin Z(F_2)$. Then $a \in T(U)$, but $a \notin Z(R)$ and moreover it is clear that R does not satisfy any polynomial identity.

For $a, b \in R$ set [a, b] = ab - ba and for subsets $U, V \subset R$, let [U, V] be the additive subgroup generated by all [u, v] for $u \in U$ and $v \in V$. We recall that a Lie ideal U of R is an additive subgroup of R such that $[U, R] \subset U$.

In all that follows, unless otherwise stated, R will be a 2-torsion free ring, Z = Z(R) the center of R, J(R) the Jacobson radical of R, U a noncentral Lie ideal of R (i.e. $U \notin Z$) and

$$T(U) = \{a \in R: au^n = u^n a, n = n(u, a) \ge 1, \text{ all } u \in U\}.$$

We start with

LEMMA. If R is a primitive ring then either T(U) = Z(R) or R is a simple algebra of dimension at most 4 over its center.

PROOF. If R is primitive, then R is a dense ring of linear transformations on a vector space V over a division ring D. If $\dim_D V < 2$, then R is simple. Since U is a noncentral Lie ideal of R, by Theorem 1.5 of [3], we may assume that U = [R, R]. Therefore

$$T(U) = \{a \in R: a(xy - yx)^n = (xy - yx)^n a,$$

 $n = n(a, x, y) \ge 1, \text{ all } x, y \in R\}.$

By a result of Felzenszwalb and Giambruno [2, Theorem 1], then we have the desired conclusion.

Suppose now that $\dim_D V > 2$. Since *R* is prime of characteristic different from 2, by [1, Lemma 1] there exists a nonzero ideal *I* such that $[I, R] \subset U$ and $[I, R] \notin Z$. It is also well known that *I* acts densely on *V* over *D* (see [5]).

Let $a \neq 0$ be an element of T(U) and suppose that for some $v \in V$, the vectors v and va are linearly independent over D. Since $\dim_D V > 2$, there exists a vector v_3 in V such that $v_1 = v$, $v_2 = va$, v_3 are linearly independent over D.

The density of R and I on V gives $r_2 \in R$ and $i \in I$ with

$$egin{aligned} &v_1 r_2 = 0\,, &v_2 r_2 = v_3\,, &v_3 r_2 = 0\,, \ &v_1 i = 0\,, &v_2 i = 0\,, &v_3 i = v_2\,. \end{aligned}$$

Clearly a commutes with $(ir_2 - r_2 i)^m$, for a suitable $m \ge 1$. Since $0 = v_1(ir_2 - r_2 i)$ we get:

$$\begin{aligned} 0 &= v_1(ir_2 - r_2 i)^m a = v_1 a (ir_2 - r_2 i)^m = \\ &= v_2(ir_2 - r_2 i)(ir_2 - r_2 i)^{m-1} = - v_2(ir_2 - r_2 i)^{m-1} = \dots = \pm v_2; \end{aligned}$$

a contradiction.

Thus given $v \in V$, v and va are linearly dependent over D. As in [4, Lemma 2] it follows that a is central. In other words, if $\dim_D V > 2$, then T(U) = Z. With this the lemma is proved.

We recall that a semisimple ring is a subdirect product of primitive rings R_{α} . For every α , let P_{α} be a primitive ideal of R such that $R_{\alpha} \cong$ $\cong R/P_{\alpha}$. Since J(R) = 0, then $\bigcap_{\alpha} P_{\alpha} = 0$. Remark that since R is 2-torsion free, we may assume that the homomorphic images R_{α} are still of characteristic different from 2. In fact, put $A \bigcap_{2R \in P_{\alpha}} P_{\alpha}$ and $B = \bigcap_{2R \notin P_{\alpha}} P_{\alpha}$ and let $x \in B$; then $2x \in B$ and also $2x \in 2R \subset \bigcap_{2R \in P_{\alpha}} P_{\alpha} = A$, therefore $2x \in A \cap B = 0$. Since R is 2-torsion free x = 0 and so we have proved that B = 0. In this way $2R \notin P_{\alpha}$ (and therefore char $R/P_{\alpha} \neq 2$) for every α . Now we are ready to prove the following: THEOREM. Let R be a prime ring of characteristic not 2 with no nonzero nil right ideals, U a noncentral Lie ideal of R. Then either T(U) = Z(R) or R is an order in a simple algebra of dimension at most 4 over its center.

PROOF. Suppose R is semisimple. If U_{α} is the image of U in R_{α} , then U_{α} is a Lie ideal of R_{α} . Let $\mathcal{F} = \{P_{\alpha} \colon U_{\alpha} \subset Z(R_{\alpha})\}$. Set $A = \bigcap_{P_{\alpha} \in \mathcal{F}} P_{\alpha}$ and $B = \bigcap_{P_{\alpha} \notin \mathcal{F}} P_{\alpha}$. Since R is prime and $AB \subset A \cap B = 0$, we must have either A = 0 or B = 0. If A = 0, then $U \subset Z$, a contradiction. Thus B = 0 and so for every α , U_{α} is a noncentral Lie ideal of R_{α} .

For each α let T_{α} be the image of T(U) in R_{α} . Since $U_{\alpha} \notin Z(R_{\alpha})$, $T_{\alpha} \subset T(U_{\alpha})$ for each α and by the previous Lemma we get either $T_{\alpha} \subset CZ(R_{\alpha})$ or R_{α} satisfies S_4 , the standard identity in four variables.

Put $I = \{ \cap P_{\alpha} : T_{\alpha} \subset Z(R_{\alpha}) \}$ and $J = \{ \cap P_{\alpha} : T_{\alpha} \notin Z(R_{\alpha}) \}$. Since R is prime and IJ = 0 we must have either I = 0 or J = 0.

If I = 0, we conclude that T(U) = Z(R), the desired conclusion. If J = 0 then, for every α , R_{α} satisfies S_4 and so R satisfies S_4 ; even in this case we are done.

Therefore we may assume that $J(R) \neq 0$. As we remarked before, there exists a nonzero ideal I of R such that $[I, R] \subset U$. Since R is prime, $I \cap J(R)$ is a nonzero ideal of R.

Let T = T([I, R]). If T centralizes $J(R) \cap I$, then, since the centralizer of a nonzero ideal in a prime ring is equal to the centre of the ring, $T \subset C_R(J(R) \cap I) = Z(R)$.

Suppose then that $a \in T$, $x \in J \cap I$ and $ax - xa \neq 0$. Now

$$0 \neq (ax - xa)(1 + x)^{-1} = a - (1 + x)a(1 + x)^{-1} \in T$$

Therefore $0 \neq (ax - xa)(1 + x)^{-1}$ is in $T \cap I \cap J$ and so $T \cap I \cap J \neq 0$. Consider the following subset of R:

$$T(I) = \{ \alpha \in I : a[x, y]^n = [x, y]^n a, n = n(a, x, y) \ge 1, \text{ all } x, y \in I \}.$$

Since I as a ring satisfies the same hypotheses placed on R, by Theorem 1 of [2] either $T(I) \subset Z(I) \subset Z(R)$ or I satisfies S_4 .

If the first possibility occurs, since $0 \neq T \cap J \cap I \subset T(I) \subset Z(R)$ we have $(ax - xa)(1 + x)^{-1} \in Z$. Also, if $b \in T$, then

$$b(ax-xa)(1+x)^{-1}\in T\cap J\cap I\subset Z;$$

since both $0 \neq (ax - xa)(1 + x)^{-1} \in Z$ and $b(ax - xa)(1 + x)^{-1} \in Z$ and since elements in Z are not zero divisors in R, these relations would imply that $b \in Z$ and we would get T = T([I, R]) = Z(R) and so $T(U) \subset Z(R)$.

Suppose now $T(U) \neq Z(R)$. By the above $T(I) \neq Z(I)$, then I and so R is an order in a simple algebra of dimension at most 4 over its center, the desired conclusion.

REFERENCES

- J. BERGEN I. N. HERSTEIN J. W. KERR, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259-267.
- [2] B. FELZENSZWALB A. GIAMBRUNO, Centralizers and multilinear polynomials in non commutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428.
- [3] I. N. HERSTEIN, *Topics in ring theory*, Univ. of Chicago Press, Chicago, (1969).
- [4] I. N. HERSTEIN, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157.
- [5] N. JACOBSON, Structure of rings, Amer. Math. Soc. Coll. Pub., vol. 37, Amer. Math. Soc., Provicende, R.I. (1964).

Pervenuto in redazione il 9 maggio 1986 e in forma revisionata il 28 ottobre 1986.