RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

U. DEMPWOLFF
 Linear groups with large cyclic subgroups and translation planes

Rendiconti del Seminario Matematico della Università di Padova, tome 77 (1987), p. 69-113
http://www.numdam.org/item?id=RSMUP_1987__77__69_0
© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Linear Groups with Large Cyclic Subgroups and Translation Planes.

U. Dempwolff (*)

Summary - Let V be a finite dimensional vectorspace over $G F(q)$ and R be a cyclic subgroup of prime order r in $G L(V)$, such that R has precisely one nontrivial irreducible submodule on V. Then we call $R 1$-irreducible. We consider irreducible groups $G \subseteq G L(V)$ generated by 1 -irreducible subgroups of prime order. We generalize some results of Hering where this problem was treated under the additional assumption that V itself is the nontrivial irreducible submodule of R. Further we give an application of our results to collineation groups of translation planes.

1. Introduction.

Let q_{0} be a prime and denote by q a fixed power of q_{0}. Let V be a finite dimensional vectorspace over $G F(p)$. For $X \subseteq G L(V)$ set

$$
V_{x}=\{v \in V: v x=v \text { for } x \in X\}
$$

and

$$
V^{x}=\langle v(x-1): v \in V, x \in X\rangle
$$

We call a subgroup $X \subseteq G L(V)$ 1-irreducible if $V=V_{X} \oplus V^{x}$ and V^{x} is an irreducible X-space. In the remainder of this article we consider 1-irreducible, cyclic subgroups $R \subseteq G L(V)$, where $|R|=r$ is a prime. So if $\operatorname{dim} V_{R}=n$, we have that r is a p-primitive divisor of $q^{n}-1$
${ }^{(*)}$ Indirizzo dell'A.: Univ. Keiserslauten, Mathematik, Erwin-Schrödinger Strasse, 6750 Kaiserslauten, Rep. Fed. Tedesca.
(or in the notation of Hering [7]r| $\varphi_{n}^{*}(q)$). Notice that by a theorem of Zsygmondy $[22] \varphi_{n}^{*}(q) \neq 1$ unless $n=6, q=q_{0}=2$ or in some cases $n=2, q=q_{0}$. Suppose S is a collection of 1 -irreducible groups of prime order r and let $G=\langle\delta\rangle$ be an irreducible subgroup of $G L(V)$. If $V=V^{R}$, then Hering $[7,8]$ has determined these groups G. We consider first the general case and show that in the generic case $F^{*}(G)$ (generalized Fitting group of G) is a quasi-simple group. Then we make the restriction $2 \cdot \operatorname{dim} V^{R} \geqslant \operatorname{dim} V$ and consider in particular the case where the simple nonabelian composition factor of G is a Chevalley group. Modular representation theory of Chevalley groups will determine G together with the possible module V. This applies to the problem of determining subgroups $X \subseteq G L(V), X=\left\langle R_{1}, R_{2}\right\rangle$, where R_{1}, R_{2} are 1 -irreducible cyclic subgroups of $G L(V)$ of prime order (see 2.1). In the final section we give a further application of these results to translation planes, which have a collineation group with a «large» orbit on l_{∞}.

2. The normal subgroup structure of irreducible subgroups of $G L(V)$ generated by 1 -irreducible subgroups and preliminary results.

For the remainder of this section denote by V a finite dimensional vectorspace over $G F(q)$. Denote by r a prime dividing $\varphi_{n}^{*}(q)$ and by S a collection of 1 -irreducible subgroups of order r in $G L(V)$. Let $G=\langle\delta\rangle$ be an irreducible subgroup of $G L(V)$. Note that by [22] we have $r \equiv 1(\bmod n)$. We also assume that $n \geqslant 2$ (i.e. R is not a group of dilatations).
2.1. Proposition. Let $R_{1}, R_{2} \in \mathcal{S}$ such that $\left[R_{1}, R_{2}\right] \neq 1$. Set $X=$ $=\left\langle R_{1}, R_{2}\right\rangle$. Then there is a decomposition $V=W \oplus U$ in X-invariant subspaces with $U \subseteq V_{X}, V^{X} \subseteq W$ and one of the following holds:
(i) $\operatorname{dim} W=2 n$ and W contains an irreducible X-subspace W_{1}, $\operatorname{dim} W_{1}=n$, such that $O_{q_{0}}(X)$ stabilizes the chain $0 \subset W_{1} \subset W$ and $X / O_{q_{0}}(X) \simeq Z_{r} \times Z_{r}$.
(ii) $O_{G_{0}}(X)$ stabilizes the chain $0 \subseteq W_{x} \subset W^{x} \subseteq W, W_{X}$ and W / W^{x} are trivial X-spaces, and W^{x} / W_{X} is an irreducible X-space of dimension \leqslant $\leqslant 2 \mathrm{n}$.

Proof. Let U be a complement of $V_{x} \cap V^{x}$ in V_{x}. Clearly U is X-invariant and $V^{x} \cap U=0$. Pick W as a subspace of V with $V^{x} \subseteq W$
and $V=U \oplus W$. Again W is X-invariant and the first assertion holds.

If W^{x} / W_{x} is not irreducible, then as $R_{1}, R_{2} \subseteq X$, we must have $W_{X}=0, W^{x}=W$ and $w \log W_{1}=W^{R_{1}}$ is an X-invariant subspace, and $W=W_{1} \oplus W^{R_{3}}$. Now (i) follows. If W^{x} / W_{X} is irreducible then as $V^{x}=V^{R_{1}}+V^{R_{2}}$, we have $\operatorname{dim} W^{x} / W_{x} \leqslant 2 \mathrm{n}$ and all assertions of (ii) are obvious.

REmARK. In case (ii) of 2.1 we have $\operatorname{dim} W / W^{x}, \operatorname{dim} W_{x} \leqslant n-k$, where $\operatorname{dim} W^{x} / W_{x}=n+k$. We will determine $X / O_{a_{0}}(X)$ in sections 3-5.

Notation. Suppose X is a finite group with splitting field $G F\left(q_{0}^{a}\right)$. Let M be an absolutely irreducible $G F\left(q_{0}^{a}\right)$-module, which affords the character χ. Denote by $\operatorname{GF}\left(q_{0}\right)(\chi)$ the field generated by adjoining the values of χ to $\boldsymbol{G F}\left(q_{0}\right)$. It is well known, that M can be realized over $G F\left(q_{0}\right)(\chi)$-the field of definition for M-i.e. there is an irreducible $G F\left(q_{0}\right)(\chi)$-module M^{\prime} of X with $M \simeq M^{\prime} \otimes G F^{\prime}\left(q_{0}^{a}\right)$.
2.2. Suppose $q=q_{0}^{b}$. Let $G F\left(q_{0}^{a}\right)$ be a splitting field for G with $G F\left(q_{0}^{b}\right) \subseteq G F\left(q_{0}^{a}\right)$. Suppose $V^{*}=V \otimes G F\left(q_{0}^{a}\right)=V_{1} \oplus \ldots \oplus V_{s}$ with absolutely irreducible $G F\left(q_{0}^{a}\right)$-modules V_{1}, \ldots, V_{s}.
(i) Suppose $G F\left(q_{0}^{c}\right)$ is the field of definition for the $G F\left(q_{0}^{a}\right)$-module V_{1}. Then $G F\left(q_{0}^{c}\right)$ is the field of definition for the modules V_{2}, \ldots, V_{s} too. Further $s=c /(b, c)$ and $\operatorname{dim} V_{i}=(\operatorname{dim} V) / s(1 \leqslant i \leqslant s)$. There are $G F\left(q_{0}^{c}\right)$-modules $\tilde{V}_{i}(1 \leqslant i \leqslant s)$ with $V_{i} \simeq \tilde{V}_{i} \otimes G F\left(q_{0}^{a}\right)$ and $\left|\tilde{V}_{i} \otimes G F\left(q_{0}^{b s}\right)\right|=|V|$.
(ii) Suppose R is a 1-irreducible subgroup of G of order r i.e. $r \mid \varphi_{n}^{*}\left(q_{0}^{b}\right)$. Then with the notation of (i) we have $r \mid \varphi_{n / s}^{*}\left(q_{0}^{c}\right)$ and R acts 1-irreducible on $\tilde{\nabla}_{i}(1 \leqslant i \leqslant s)$.

Proof. Follow the proof of [11; V, 13.3]. There is a subgroup Γ_{1} of $\Gamma=\operatorname{Gal}\left(G F\left(q_{0}^{a}\right): G F\left(q_{0}^{b}\right)\right)$ with $\Gamma=\Gamma_{1} \partial_{1} \cup \ldots \cup \Gamma_{1} \partial_{s}$ and $V^{*}=$ $=V_{0} \partial_{1} \oplus \ldots \oplus V_{0} \partial_{s}$ for an irreducible $G F\left(q_{0}^{a}\right)$-module V_{0}. Set $V_{i}=V_{0} \partial_{i}$. As Γ is abelian we have that $\operatorname{GF}\left(q_{0}^{c}\right)$ is the field of definition for $(2 \leqslant i \leqslant s)$ too. Set $t=c /(b, c)$. Then $V \otimes G F\left(q_{0}^{b t}\right)=\hat{V}_{1} \oplus \ldots \oplus \hat{V}_{s}$, where $V_{i}=$ $=\hat{V}_{i} \otimes G F\left(q_{0}^{a}\right)$. Hence s divides t. Set $\hat{\Gamma}=\left\{\gamma \in \Gamma: V_{0} \gamma=V_{0}\right\}$, then $|\Gamma: \hat{\Gamma}|=s$. Suppose $s<t$ and let $G F\left(q_{0}^{\bar{c}}\right)$ be the fixed field of $\hat{\Gamma}$. Then $\bar{c}=b s$ and $G F\left(q_{0}^{\bar{c}}\right) \subsetneq G F\left(q_{0}^{b t}\right)$. Thus $G F\left(q_{0}^{c}\right)$ is not the field of definition V_{0}, a contradiction.

Thus $s=t$ and $\tilde{\Gamma}=\operatorname{Gal}\left(G F\left(q_{0}^{b s}\right): G F\left(q_{0}^{b}\right)\right)$ acts transitively on $\left\{\hat{V}_{1}, \ldots, \hat{V}_{s}\right\}$. In particular $\left|\hat{V}_{i}\right|=|V|$. (i) follows.
(ii) Use the notation of (i). Assume $\operatorname{dim} V=n+k$, i.e. $\operatorname{dim} V_{R}=k$. Then $\quad \operatorname{dim} \tilde{V}_{i}=(n+k) / s$ and $\quad \operatorname{dim}\left(\tilde{V}_{i}\right)_{R}=\operatorname{dim}\left(\tilde{V}_{j}\right)_{R}$ $(1 \leqslant i, j \leqslant s)$. Thus $\operatorname{dim}\left(\tilde{V}_{i}\right)_{R}=k / s$. Set $n^{\prime}=n / s$, then r divides $\varphi_{n^{\prime}}^{*}\left(q_{0}^{b s}\right)$ $\varphi_{n^{\prime}-1}^{*}\left(q_{0}^{b s}\right) \ldots$. However r is a q_{0}^{b}-primitive divisor of $\varphi_{n}^{*}\left(q_{0}^{b}\right)$ and therefore even a $q_{0}^{b s}$-primitive divisor with $r \mid \varphi_{n^{\prime}}^{*}\left(q_{0}^{b s}\right)$. Hence R is 1 -irreducible on \tilde{V}_{i}.
2.3. Let $R \in S$ and suppose U is an R-invariant subspace with $U=U_{1} \oplus \ldots \oplus U_{r}$ and R permutes $\left\{U_{1}, \ldots, U_{r}\right\}$ transitively. Then $\operatorname{dim} U_{i}=1(1 \leqslant i \leqslant r), r=n+1$, and V^{R} is a subspace of codimension 1 in U.

Proof. As $\operatorname{dim} V^{R}=n$, the assertion is immediate.
2.4. Suppose $N \subseteq G$ and $R \in S$ normalizes but does not centralize N. Set $X=R N$ and suppose W is a faithful irreducible X-subspace, which is reducible as a N-space. Then one of the following assertions is true:
(i) N is abelian and all homogenous N-components on W have dimension $1, r=n+1$ and R permutes the homogenous N-components cyclic.
(ii) $\operatorname{dim} W=2 n, N$ is isomorphic to an irreducible subgroup of $G L\left(2, q^{n / 2}\right)$ and $r||N|$.
(iii) $\operatorname{dim} W=2 n=4, r=3, N=Q * Z$, where $Q \simeq Q_{8}$ and Z induces scalars on W.

Proof. As we only work in X we assume $V=W$.
Case 1. N has more then one homogenous component. By Cliffords theorem and 2.3 we have (i).

Case 2. All irreducible N-composition factors are isomorphic. Suppose U is an irreducible N-submodule of W. For $R=\langle x\rangle$ define $U_{1}=U$ and $U_{i}=U_{i-1} x(i=2,3, \ldots) . \quad$ As $W=U_{1}+U_{2}+\ldots$ we have an s such that $W=U_{1} \oplus \ldots \oplus U_{s}$. In particular $\operatorname{dim} W=m \cdot s$ for $\operatorname{dim} U=m$. By choosing a suitable basis of W adapted to the above decomposition we have a matrix representation of X such that

$$
R \ni x \rightarrow\left(\begin{array}{lllll}
0 & A_{12} & 0 & \cdots & 0 \\
0 & 0 & A_{23} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \cdots \cdots, ~\left(\begin{array}{lllll}
& \cdots & A_{s-1, s} \\
0 & 0 & 0 & \cdots & \\
A_{s 1} & A_{s 2} & A_{s 3} & \cdots & A_{s s}
\end{array}\right)
$$

and $N \ni y \rightarrow \operatorname{diag}(D(y), \ldots, D(y))$, where we have $(m s \times m s)$-matrices decomposed into blocks of seize $m \times m$. Now $A_{12}, A_{23}, \ldots, A_{s-1, s}, A_{s 1}$ are nonsingular and if $y \in N$ with $y^{x}=y^{\prime}$ then $A_{i, i+1}^{-1} D(y) A_{i, i+1}=D\left(y^{\prime}\right)$. Thus each of these matrices induces by conjugation an automorphism of order r on the group $N_{0}=\{D(y): y \in N\}$ of $m \times m$-matrices. (By a basis transformation of the form $\operatorname{diag}\left(I, X_{2}, \ldots, X_{s}\right), X_{i} \in C_{\mathrm{End}(U)}\left(N_{0}\right)$ we may even assume that $A_{12}, A_{23}, \ldots, A_{s-1, s}$ are matrices of order r). Thus $m \geqslant n$.

On the other hand $W_{R} \cap U_{1} \oplus \ldots \oplus U_{s-1}=0$ and we have $\operatorname{dim} W_{R} \leqslant m$. Thus $m \geqslant n=\operatorname{dim} W^{R}=\operatorname{dim} W-\operatorname{dim} W_{R} \geqslant m(s-1)$. Hence $s=2$ and $m=n$.

Set $A_{12}=A, A_{21}=B$, and $A_{22}=C$, and define $g=\operatorname{diag}(A, A) \in$ $\in G L(W)$. Then $x g^{-1}$ centralizes N and g induces by conjugation the same automorphismon N as x.

Suppose first $r||N|$. By Sylows theorem x induces an inner automorphism on N. In particular there is a $y_{0} \in N$ with $D\left(y_{0}\right)=A$ (i.e. $\boldsymbol{g}=y_{0} \in N$) and as $x g^{-1}$ centralizes y_{0} we have $A B A^{-1}=B, A C A^{-1}=C$, i.e. all matrices A, B, C commute. As $\operatorname{dim} W_{R}=n, \operatorname{dim} W_{g}=0$, we have that $\langle g, x\rangle$ is abelian of type (r, r), i.e. $\left|x g^{-1}\right|$ is divisible by r. Now $F=C_{\operatorname{End}(v)}\left(N_{0}\right)$ is a field, say isomorphic to $G F\left(q^{t}\right)$. As x induces a proper inner automorphism, we have $t \leqslant n / 2$. Then $x g^{-1}$ can be considered as an element in $G L\left(2, q^{t}\right)$ and therefore $t=n / 2$. Now as $F \simeq G F\left(q^{n / 2}\right)$, we have that N can be considered as an irreducible subgroup of $G L\left(2, q^{n / 2}\right)$ and we have assertion (ii).

Suppose next that r does not divide $|N|$. Then g and N both act irreducible on U. By $[7 ;$ Th. A] and $[7 ; 4.2]$ there is an extraspecial subgroup E in N such that $|E|=2^{2 a+1}, r=n+1=2^{a}+1$, and E is irreducible on U. As minimal faithful representations of E have degree 2^{a} we conclude that $C_{\operatorname{End}(U)}\left(N_{0}\right) \simeq G F(q)$ and $B A^{-1}, C A^{-1}$ are scalars. Thus A, B, C all commute and again $\left|x g^{-1}\right|$ is divisible by r. Now $x g^{-1}$ can be considered as an element of $G L(2, q)$ and thus r divides $q^{2}-1$, i.e. $n=2, r=3$. Suppose $B=\lambda A, C=\mu A$, then $x^{3}=1$ implies $\mu^{-1}=\lambda, \lambda+\mu^{2}=0$. Thus $\mu^{3}=-1$ and as 3 does not divide $q-1$ we have $\lambda=\mu=-1$.

Now as N is a solvable subgroup of $G L(2, q)$ normalized by an element of order 3 , we conclude $[R, N]=Q$ and $N=Q * Z$, where $Q \simeq Q_{8}$ and Z is a subgroup of $Z(G L(W))$. (iii) follows.
2.5. Suppose $F^{*}(G)=N_{1} * N_{2}, N_{i} \unlhd G(i=1,2)$ and $\left[N_{1}, R\right] \neq 1$ for some $R \in \mathrm{~S}$. Then one of the following holds:
(a) $N_{2} \subseteq Z(G)$.
(b) $F^{*}(G)$ is abelian, $r=n+1$, and G induces a nontrivial permutation group on the homogenous $F^{*}(G)$-components.
(c) N_{1}, N_{2} are cyclic, $\operatorname{dim} V=r=n+1$.
(d) $G=N_{1} * N_{2}, \operatorname{dim} V=2 n, r| | N_{i} \mid(i=1,2)$ and N_{i} is isomorphic to an irreducible, quasisimple subgroup of $S L\left(2, q^{n / 2}\right)$.
(e) $\operatorname{dim} V=4, r=n+1=3$, and either $F^{*}(G) \simeq Q_{8} * Q_{8}$ and $G / F^{*}(G) \simeq Z_{3}, Z_{3} \times Z_{3}$ or $F^{*}(G) \simeq Q_{8} * N$, where N is an irreducible, quasisimple subgroup of $S L(2, q),(r| | N \mid)$, and $G=F^{*}(G)$ or $G / F^{*}(G) \simeq Z_{3}$.

Proof. Let W be an irreducible N_{1}-module in V_{1}.
Case 1. $V=W$. Then N_{2} is cyclic. Suppose $N_{2} \nsubseteq Z(G)$. Let $\tilde{R} \in \mathcal{S}$ such that $\left[N_{2}, \tilde{R}\right] \neq 1$. Extending if necessary the ground field, we see, that \tilde{R} permutes the Eingenspaces of y, where $N_{2}=\langle\boldsymbol{y}\rangle$. Since $\operatorname{dim} V^{\tilde{R}}=n$, this implies by $2.3 r=n+1$ and the Eingenspaces have dimension 1. Moreover $\operatorname{dim} V=r$. As N_{1} centralizes N_{2}, N_{1} is abelian too and therefore cyclic. In this case we have assertion (c). If however $N_{2} \subseteq Z(G)$ we have assertion (a).

Case 2. $W \subsetneq V$. Suppose first that N_{1} has more then one homogenous component on V. Then $G=\langle\oint\rangle$ permutes these homogenous components and by 2.3 we have that all homogenous components are of dimension 1, i.e. N_{1} is abelian and $\operatorname{dim} W=1$. As N_{2} must fix each homogenous component, $N_{1} * N_{2}$ is abelian and thus assertion (b) is true.

So assume N_{1} has only one homogenous component, i.e. W is faithful as an N_{1}-module. We may assume $W \varsubsetneqq U=\langle W y: y \in R\rangle$. Set $G_{0}=N_{1} R$. Assume U is not G_{0}-irreducible and U_{1} is a proper G_{0}-space. Since N_{1} acts faithful on U_{1} and U / U_{1}, clearly R acts faithful on both factors, a contradiction. The same argument shows $V=U$. We now can apply 2.4. Thus $\operatorname{dim} V=2 n$.

Exclude first the case $r=n+1=3$. Then by 2.4 (ii) we have, that N_{1} is isomorphic to an irreducible, nonabelian subgroup of $G L\left(2, q^{n / 2}\right)$ and $r\left|\left|N_{1}\right|\right.$. As G is generated by 1-irreducible subgroups of order r we have further that $N_{1} \simeq S L\left(2, q_{0}^{f}\right), f$ suitable or $N_{1} / Z\left(N_{1}\right) \simeq A_{5}$.

Suppose that assertion (a) does not hold. Then there is an $R^{*} \in \mathcal{S}$, with $\left[N_{2}, R^{*}\right] \neq 1$. We can not be in case 1 with the pair (N_{2}, R^{*}), as otherwise N_{1} would be abelian. Also conclusion (b) does not hold, so
that we have that N_{2} is also an irreducible, quasisimple subgroup of $S L\left(2, q^{n / 2}\right)$ and r divides $\left|N_{2}\right|$. Assertion (d) follows.

Finally assume $\operatorname{dim} V=4, r=n+1=3$. If $N_{2} \nsubseteq Z(G)$, then depending an weather 3 divides $\left|N_{i}\right|$ or not we have by 2.4 that either N_{i} is isomorphic to a nonabelian, subgroup of $S L\left(2, q^{n / 2}\right)$, (3 divides $\left.\left|N_{i}\right|\right)$, or that $N_{i} \simeq Q_{8}$. Now either (d) or (e) must hold.
2.6. Suppose $E(G) \neq 1$. Then $E(G)$ is quasisimple or we have assertion 2.5 (d).

Proof. Suppose $E=E(G)=E_{1} * \ldots * E_{t}$ and $t \geqslant 2$. If some $E_{i} \triangleleft G$, then by 2.5 we are in case (d) of 2.5 . So we assume $E_{i} \notin G$ for $1 \leqslant i \leqslant t$. Thus some $R \in S$ induces a non trivial permutation on $\left\{E_{1}, \ldots, E_{t}\right\}$ (i.e. $t \geqslant r$). Suppose $E_{i}^{x}=E_{i+1}(1 \leqslant i<r), E_{r}^{x}=E_{1}$ for $R=\langle x\rangle$.

Let p be a prime, $p \neq r, q_{0}$, and p divides $\left|E_{1}\right|$. Let $F \subseteq E_{1} * \ldots * E$. be an R-invariant, noncyclic abelian p-subgroup with $[F, R]=F$ and $F \cap E_{i} * E_{j} \nsubseteq Z\left(E_{i} * E_{j}\right)$ for $i \neq j$. By $2.3 r=n+1$ and the homogenous F-components on V^{F} have dimension 1. By the choice of F we have $\operatorname{dim} V^{f} \leqslant n+1$ for $f \in F$.

Let W be an irreducible $E_{1} * E_{2}$-module. As $E_{1} * E_{2}$ is perfect, we have $\operatorname{dim} W^{f} \geqslant 2$, for $1 \neq f \in F \cap E_{1} * E_{2}$. Let $V=W_{1} \oplus \ldots \oplus W_{k}$ be a decomposition into irreducible $E_{1} * E_{2}$-modules. By $2.4 E$ is irreducible on V and so $W \simeq W_{i}$ for $1 \leqslant i \leqslant k$. Moreover $E_{3} * \ldots * E_{t}$ is isomorphic to a subgroup of $G L\left(k, q^{s}\right)$, where $C_{\operatorname{End}(W, W)}\left(E_{1} * E_{2}\right) \simeq$ $\simeq G F\left(q^{s}\right)$. A faithful irreducible $E_{3} * \ldots * E_{t}$-module has dimension at least 2^{t-2} and thus $k \geqslant 2^{t-2} \geqslant 2^{r-2}=2^{n-1}$.

Hence $n+1 \geqslant \operatorname{dim} V^{f} \geqslant 2^{n}$ for $1 \neq f \in F \cap E_{1} * E_{2}$. Thus $n \leqslant 1$, a contradiction.
2.7. Let p be a prime and W be a symplectic, nondegenerate finite dimensional $G F(p)$-space. Suppose \bar{p} is an odd prime $\bar{p} \neq p$, and $Q \subseteq S p(W)$ is a cyclic subgroup of order \bar{p}. Then there is a $0 \neq w \in W$ such that $\langle w x: x \in Q\rangle$ is a nondegenerate subspace of W.

Proof. The verification of the assertion is straightfoward.
2.8. Suppose $R \in \mathrm{~S}$ and $[F(G), R] \neq 1$. Then one of the following assertions holds:
(i) $\operatorname{dim} V=n+1=r$ and $F(G)$ is cyclic.
(ii) $F(G)$ contains an abelian, noncyctic normal subgroup N of G, all homogenous N components have dimension 1 , and $r=n+1$.
(iii) $F(G)=O_{2}(G) \cdot Z, \quad Z$ is a cyclic 2^{\prime}-group, $Z \subseteq Z(G)$, and $r=n+1$. Moreover $r=2^{c}+1$ respectively $2^{c}-1$ and $\operatorname{dim} V=n$ respectively $\operatorname{dim} V=n+2 . \quad O_{2}(G)=E * Z_{0}$, where E is extraspecial of order $2^{2 c+1}$ and Z_{0} is cyclic, $Z_{0} \subseteq Z(G)$.
(iv) $r=n+1=3 G$ occurs in $2.5(e)$ or $O_{2}(G) \simeq Q_{8}$ (quaternion group) and $G / O_{2}(G) \simeq Z_{3}$ or $Z_{3} \times Z_{3}$

Proof. First assume $r \neq 3$. By $2.5 E(G)=1$. Suppose p_{1}, p_{2} are two primes with $\left[O_{p_{1}}(G), R_{1}\right] \neq 1 \neq\left[O_{p_{2}}(G), R_{2}\right]$ for $R_{1}, R_{2} \in S^{*}$. Again by $2.5 F^{*}(G)=F(G)$ is abelian and (i) or (ii) holds. Thus we may assume that $F(G)=O_{p}(G) \cdot Z,\left[O_{p}(G), R\right] \neq 1$ for $R \in S$ and $Z \subseteq Z(G)$. If $O_{p}(G)$ is cyclic again (i) is true.

If $O_{p}(G)$ contains a characteristic, abelian, ncncyclic subgroup N, apply 2.3 and act with R on the homogeneous N-components. Now (ii) holds.

We now assume $O_{p}(G)$ is of symplectic type. Then by [11; III, 13.10] $O_{p}(G)=E * Z_{0}$, where E is 1 or extraspecial. If $p>2$, then E has exponent p and Z_{0} is cyclic. If $p=2$, then Z_{0} is cyclic, or $\left|Z_{0}\right|>8$ and Z_{0} is dihedral, generalized quaternion, or quasidihedral. As $r \geqslant 3, F=\left[O_{p}(G), R\right]$ is extraspecial, $F=[F, R]$, and R acts fixed-point-free on $F / Z(F)$. By 2.7 there is an extraspecial subgroup $F_{1} \subseteq F$, such that $X=\left\langle R, R^{*}\right\rangle=F_{1} R$, where $R^{*} \in \mathrm{~S} . \quad R$ is fixed-point-free on $F_{1} \mid Z\left(F_{1}\right)$. Thus r divides $p^{c}-1$ or $p^{c}+1$ for $\left|F_{1}\right|=p^{2 c+1}$. Further $V=V^{x} \oplus V_{x}$ with $\operatorname{dim} V^{x} \leqslant 2 n$. Then $2 n \geqslant p^{c} \geqslant r-1$, respectively $2 n+1 \geqslant r$. So $r=2 n+1$ or $n+1$.

Assume first $r m=p^{c}+1$, then $2 n \geqslant p^{c} \geqslant r m-1 \geqslant m(n+1)-1$. Thus $m=1$, and $r=p^{c}+1$, which implies $p=2$. Suppose $r=$ $=2 n+1=2^{c}+1$ i.e. $n=2^{c-1}$. Since $\operatorname{dim} V^{x} \leqslant 2^{c}$ and faithful absolutely irreducible representations of F_{1} have degree 2^{c}, we have $\operatorname{dim} V^{x}=2^{c}=2 n$. Thus X affords an absolutely irreducible, faithful representation on V^{x}. We inspect the character table of X. Let D be a faithful, irreducible representation of degree $2^{c} . D(y)$ has at most one eigenvalue 1 for $1 \neq y \in R$. As $\operatorname{dim}\left(V^{x}\right)_{R}=n=2^{c-1}$, we conclude $c=1$ and R is a group of dilatations, a contradiction. Hence $r=n+1$ $=2^{c}+1$, and R is irreducible on $F_{1} / Z\left(F_{1}\right)$.

Suppose next $r m=p^{c}-1$, then $2 n \geqslant p^{c} \geqslant r m+1 \geqslant m(n+1)+1$. Hence $m=1, r=n+1$, and $p=2$.

As $\tilde{Z}=\Omega_{1}\left(Z\left(F_{1}\right)\right)=\Omega_{1}\left(Z\left(O_{2}(G)\right)\right)$, we have $V^{x}=V=V^{\tilde{z}}$. Clearly V^{x} is an irreducible X-module. Because of 2.4 and $r>3, V^{x}$ is even an absolutely irreducible F_{1}-module. Thus $\operatorname{dim} V=2^{c}=n$ or
$n+2$, where $r=2^{c}+1$ or $2^{c}-1$ respectively and $F_{1}=F=E$. $C_{F(G)}(E)$ is cyclic and therefore Z_{0} is cyclic. Now (ii) follows.

Finally assume $r=n+1=3$. If G is not as in $2.5(e)$, we have $F(G)=O_{p}(G) \times Z$, where Z is a cyclic p^{\prime}-group in $Z(G)$. If $O_{p}(G)$ is abelian we have (i) or (ii). If $O_{p}(G)$ is of symplectic type and irreducible on V, then we get as above assertion (iii). If $O_{p}(G)$ is of symplectic type but not irreducible we apply 2.4 (iii). This gives us assertion (iv).
2.9. Theorem. Suppose S is a collection of 1-irreducible subgroups of order r (r a prime) of $G L(V), G=\langle\mathcal{S}\rangle$ is irreducible, and r divides $\varphi_{n}^{*}(q)$. Then one of the following is true:
(a) $F(G)$ is cyclic, G is metacyclic, and $\operatorname{dim} V=r=n+1$.
(b) $F(G)$ contains an abelian, noncyclic normal subgroup $N, r=$ $=n+1$, and homogenous N-components have dimension 1. G/N induces a transitive permutation group on these homogeneous components.
(c) $F(G)=O_{2}(G) \times Z, Z$ is a cyclic 2^{\prime}-group of $Z(G)$ and $r=n+1$. Moreover $r=2^{c}+1$ or $2^{c}-1$ and $\operatorname{dim} V=n$ or $n+2$ respectively, $O_{2}(G)=E * Z_{0}$, where E is extraspecial of order $2^{2 c+1}$ and Z_{0} is cyclic, $Z_{0} \subseteq Z(G) . \quad G / F(G)$ acts irreducible on $F(G) / Z(G)$ if $r=2^{c}+1$.
(d) $\operatorname{dim} V=2 n$, and G is described in 2.8 (iv) or 2.5 (d).
(e) $F^{*}(G)=E(G) * Z, Z$ is cyclic and contained in $Z(G) . E(G)$ is quasisimple and irreducible.

Proof. Suppose first $E(G)=1$. By 2.8 assertion (a), (b), (c), or (d) follows. Suppose next $E(G) \neq 1$. By 2.6 either assertion (d) holds or $E(G)$ is quasisimple. If the conclusion of (d) does not hold, we have by 2.5 $F(G)=Z(G)$, i.e. $F(G)=Z$ is cyclic and (e) follows.
2.10. (a) Suppose $\operatorname{dim} V=4, q$ is odd, and 3 does not divide $q-1$. Let $X \subseteq G L(V)$, such that $X_{0} \subseteq X, C_{X}\left(X_{0}\right)=Z(X)$ and $X \mid X_{0} \simeq Z_{3}$. Then $X_{0} / Z(X)$ is not isomorphic to $L_{3}(4)$ or $U_{4}(2)$.
(b) Let X be a perfect central extension of $L_{3}(q)$ or $U_{3}(q)$. Then X has no irreducible, projective module of dimension 4 over a field of characteristic q_{0}.

Proof. (a) Suppose the assertion is false and $X_{0} / Z(X) \simeq U_{4}(2)$ or $L_{3}(4)$. By [6; p. 302, Tab. 4.1] and the assumptions $Z(X)$ is a 2 -group. By $[14 ; 4.6,5.2,5.7] Z(X) \neq 1$. Pick $M \subseteq X$, such that $Z(X) \subseteq M_{0}=$ $=X_{0} \cap M, M_{0} / Z(X) \simeq E_{16} . A_{5}$, and $\left|M: M_{0}\right|=3$. Then $F=F(M)=$
$=O_{2}(M)$ and the 2 -rank of $M \leqslant 4$. If F is abelian, then F is of type $\left(2^{a}, 2,2,2\right)$ for $a \leqslant 2$, which is impossible.

Suppose F is not of symplectic type. Then there is an elementary abelian group E char F with $|E| \geqslant 4$, and $\Omega_{1}(Z(X)) \subseteq E$. Hence $|E|=$ $=16$, as $E \nsubseteq Z(M)$. However $\Omega_{1}(Z(M))$ is fix under M, a contradiction.

Finally we assume that F is of symplectic type, say $F=E * Q$, where E is extraspecial of order 2^{5} and Q is cyclic or $|Q|>8$ and Q is dihedral, generalized quaternion, or quasidihedral. If Q is cyclic, then M / F is isomorphic to a subgroup of $S p(4,2)$, which is impossible. If Q is nonabelian, we have $F_{0}=C_{F}\left(F^{\prime}\right)=C_{F}\left(Q^{\prime}\right)$ char F, and $\left|F: F_{0}\right|=$ $=2, F_{0}=E * C$, where C is cyclic and again M / F is isomorphic to a subgroup of $S p(4,2)$, a contradiction.
(b) This follows as $A_{2}(q)$ has no projective absolutely irreducible representation of degree 4 over characteristic q_{0} (see [15]).
2.11. Let $H=\mathfrak{X}\left(p^{s}\right)$ be a Chevalley group (twisted or not) over $\operatorname{GF}\left(p^{s}\right)$ and σ a field automorphism of H with $G F^{\prime}\left(p^{m}\right)$ being the fixed field belonging to σ, and let s / m be a prime. Then there is a p-element $x \in C_{H}(\sigma)$ and a $y \in x^{H}$ such that $H=\left\langle y, C_{H}(\sigma)\right\rangle$.

Proof. Take $x=x_{r}(a), a \in G F\left(p^{m}\right)$, where r corresponds to a long root of Π, a simple root system belonging to \mathfrak{X}. By choosing $y=x_{r}(b)$, $b \in G F\left(p^{s}\right)$ suitable, the assertion becomes clear.
2.12. Theorem. Suppose $\operatorname{dim} V \leqslant 2 n, \mathcal{S}$ is a collection of 1-irreducible subgroups of order r (r a prime) of $G L(V)$, and $G=\langle\delta\rangle$ is irreducible, and r divides $\varphi_{n}^{*}(q)$. Assume further $E(G) \neq 1$. Then one of the following holds:
(a) $\operatorname{dim} V=2 n, G=E(G) * Z(G), E(G)$ is an irreducible, quasisimple subgroup of $S L\left(2, q^{n}\right)$ or $S L\left(2, q^{n / 2}\right)$, and $Z(G) /(Z(G) \cap E(G))$ has order r or G is as in 2.5 (d).
(b) $\operatorname{dim} V=4=r+1, \quad F^{*}(G) \simeq Q_{8} * N, N$ is an irreducible, quasisimple subgroup of $S L(2, q), G=F^{*}(G)$ or $G / F^{*}(G) \simeq Z_{3}$.
(c) $G=E(G)$ is quasisimple.

Proof. Apply 2.9. If we are in case (d) of 2.9. we conclude by $2.5(d)$ and 2.8 (iv), that assertion (a) and (b) are true.

Suppose now that we are in case (e) of 2.9. Set $Z=Z(G)$.
(1) G / Z is isomorphic to a subgroup of $\operatorname{Aut}\left(F^{*}(G) / Z\right)$ containing $F^{*}(G) / Z$.

Let $g \in G$ and assume $\left[F^{*}(G), g\right] \subseteq Z$. By the 3 -subgroup lemma we have $[E(G), g]=1$ and thus $g \in C_{G}\left(F^{*}(G)\right)=Z$.
(2) If r divides $|Z|$ then assertion (a) is true.

In this case G can be considered as an irreducible subgroup of $G L\left(2, q^{n}\right)$, as now $\operatorname{dim} V=2 n$. The subgroup structure of $G L\left(2, q^{n}\right)$ implies that assertion (a) holds.

From now on we can assume $F^{*}(G)$ is quasisimple. Suppose $E(G) \subsetneq$ $\subsetneq G$, i.e. r divides $|G| E(G) \mid$.
(3) $F^{*}(G) / Z \simeq \mathfrak{X}\left(q_{0}^{t}\right)$, where $\mathfrak{X}\left(q_{0}^{t}\right)$ denotes a Chevalley group (twisted or not) over $G F\left(q_{0}^{t}\right)$.

Since $r \geqslant 3, F^{*}(G) / Z$ is not sporadic or alternating. Assume $F^{*}(G) / Z \simeq$ $\simeq \mathscr{X}\left(p^{s}\right)$, where $\mathfrak{X}\left(p^{s}\right)$ denotes a Chevalley group (twisted or not) over $G F\left(p^{s}\right),\left(p, q_{0}\right)=1$. Denote by l the Lie rank of X. By a theorem of Steinberg [19] we have $n+1 \leqslant r \leqslant M=\max \left\{\left(l+1, p^{s}-1\right),(l+1\right.$, $\left.\left.p^{s}+1\right), s, 3\right\}$. Let $m=m\left(X\left(p^{s}\right)\right)$ denote the minimal degree of an irreducible, nontrivial projective representation of $\mathfrak{X}\left(p^{s}\right)$ in characteristic q_{0}. By our assumption we have

$$
\begin{equation*}
m \leqslant 2 n<2 M-1 \tag{+}
\end{equation*}
$$

We now use the result of Landazuri Seitz [14]. This implies that. $M \neq s$. Suppose $M=\left(l+1, p^{s}-1\right)>s$. Then $\mathfrak{X}=A_{i}, l \geqslant 2$. Again by $(+)$ and the above result we have $r=n+1=3, m=4$, and $\mathfrak{X}\left(p^{s}\right) \simeq L_{3}(4)$. By $2.10(a)$ this case is impossible.

Assume $M=\left(l+1, p^{s}+1\right)>s$. Again by $(+)$ and the result of Landazuri Seitz we have, $r=n+1=3, m=4$, and $\mathfrak{X}\left(p^{s}\right) \simeq$ $\simeq U_{4}(2)$. Again this contradicts 2.10 (a).

Finally assume $M=3$. By the discussion of the previous cases. we only have to consider the cases $X=D_{4},{ }^{2} D_{4}$, or ${ }^{3} D_{4}$, which however do not have nontrivial representation of degree $\leqslant 4$.
(4) $G=F^{*}(G)$.

Now $F^{*}(G)$ is as in (3) and we denote by l the Lie rank of $\mathfrak{X}\left(q_{0}^{t}\right)$.. Suppose $R=\langle x\rangle \in S, x \in G-F^{*}(G)$. By Steinbergs theorem x in-.
duces an automorphism on $\mathfrak{X}\left(q_{0}^{t}\right)$ of the form $i d f g$, where i denotes an inner, d a diagonal, f a field, and g a graph automorphism.

Suppose first $g \neq 1$. Then $r=3=n+1$ and $\operatorname{dim} V \leqslant 4$, which is of course impossible.

Assume that r divides the order of the group of diagonal automorphisms of $X\left(q_{0}^{t}\right)$. Then r divides $l+1, l \geqslant 2$, and $X=A_{l}$ or ${ }^{2} A_{l}$ respectively. Now r divides $q_{0}^{t}-1$ respectively $q_{0}^{t}+1$, and elementary abelian r-subgroups in G have rank at most 2 . In particular $\mathfrak{X}\left(q_{0}^{t}\right)$ contains no subgroup of type (r, r). Thus $l=2, r=n+1=3$. By 2.10 (b) $\operatorname{dim} V \leqslant 3$. Hence $G F(q)$ contains $G F\left(q_{0}^{t}\right)$ respectively $G F\left(q_{0}^{2 t}\right)$ and V is the natural module for $A_{2}\left(q_{0}^{t}\right)$ respectively ${ }^{2} A_{2}\left(q_{0}^{t}\right)$ read as a $G F(q)$-module. But then r divides $q-1$, a contradiction.

Thus we may assume, that x induces an automorphism of the form if.

Suppose $f \neq 1$. If r does not divide $|E(G)|$ we may even assume $i=1$. If $y \in C_{E(G)}(x)$ is a q_{0}-element, then $\operatorname{dim} V^{y} \leqslant \operatorname{dim} V_{R}-1$, and $\operatorname{dim} V^{x}<\operatorname{dim} V$ for $X=\left\langle z, C_{E(G)}(x)\right\rangle$ where $z \in y^{G}$. By 2.11 we can pick z in such a way, that X convers $E(G) / Z$, a contradiction.

Thus r divides $|\boldsymbol{E}(\boldsymbol{G})|$ and G contains an abelian subgroup of type $(r, r), \operatorname{dim} V=2 n$. Pick $y \in E(G),|y|=r$, such that $x y$ induces f on $\mathfrak{X}\left(q_{0}^{t}\right)$. If $\langle x y\rangle$ is 1 -irreducible, we are done as before. Thus $V^{x y}=V$ and as $C_{E(G)}(x y)$ involves a group $\mathscr{X}\left(q_{0}^{t / r}\right)$, we have $\mathscr{X}=A_{1}$. As G / Z is isomorphic to $L_{2}\left(q_{0}^{t}\right)$ extended by an field automorphism, there is a $S_{q_{0}}$-subgroup $Q \subseteq E(G)$ being normalized by $\langle x y\rangle$. Thus Q and every nontrivial element in Q acts quadratically on V. Hence V is the direct sum of some copies of the natural $S L\left(2, q_{0}^{t}\right)$-module read as a $G F(q)$ module, and $E(G) \simeq S L\left(2, q_{0}^{t}\right), N_{G}(Q)=Q . K .\langle x y\rangle$, where K is cyclic of order ($q_{0}^{t}-1$) faithfully on the n-dimensional space V_{Q}, and $\langle x y\rangle$ normalizes K. By $2.9(a)-(c) K\langle x y\rangle$ is abelian, a contradiction.

Thus x induces an inner automorphism of $E(G)$. By (1) and $Z \subseteq E(G)$ we have $R \subseteq E(G)$, the final contradiction.

3. Solvable normal subgroups.

We denote as in section 2 by G an irreducible subgroup in $G L(V)$, where V is a finite dimensional $G F(q)$-space, $G=\langle S\rangle$, and S is a collection of 1 -irreducible groups of order r, r a prime dividing $\varphi_{n}^{*}(q)$. We will determine in this section the groups G of theorem 2.9, which have solvable $F^{*}(G)$. Of course we only have to consider cases (b) or (c) of theorem 2.9.
3.1. Let N be an abelian, noncyclic, normal subgroup and G / N acts faithfully on the homogenous N-components as a permutation group. Then $r=n+1$ and:
(i) If $\operatorname{dim} V>r$, then G / N is at least 2-primitive.
(ii) If $\operatorname{dim} V=r$, then G / N is either 2-transitive or solvable.

Proof. Suppose $\operatorname{dim} V=n+k$ and $R \in S . R$ induces an r-cycle on its action on the homogenous components of N. Obviously G / N is primitive. By a theorem of Jordan G / N is k-primitive . Then (i) and (ii) follow by a theorem of Burnside [11; V, 21.3].
3.2 Proposition. Assumptions as in 3.1 and assume $\operatorname{dim} V=$ $=n+k$. Then one of the following assertions is true:
(i) $k=1$ and G / N is isomorphic to:
(a) Z_{r}, a cyclic group of order r.
(b) A_{r}.
(c) $L_{l}(q),\left(q^{2}-1\right) /(q-1)=r$ and l is a prime.
(d) $r=11$ or 23 and $G / N \simeq L_{2}(11), M_{11}$, or M_{23} respectively.
(ii) $k=2$ and G / N is isomorphic to:
(a) A_{r+1}.
(b) $L_{2}(r)$.
(c) $O_{2}(G / N)$ is elementary abelian of orde $2^{m}=r+1$ and

$$
(G / N) / O_{2}(G / N) \simeq Z_{r} \text { or } S L(m, 2)
$$

(d) $r=11$ or 23 and $G / N \simeq M_{11}, M_{12}$, or M_{24} respectively.
(iii) $k \geqslant 3$ and $G / N \simeq A_{n+k}$.

Proof. Use the list of 2 -transitive permutation groups given in [1]. Suppose $k=1$, then (i) follows by 3.1 and [11; XII, 10.11].

Suppose next, that $k=2$ and G / N has no regular, normal subgroup. As $2^{d-1}+2^{d-1}-1$ and $2^{d-1}-2^{d-1}-1$ are not prime, we have $G / N \nleftarrow S P(2 d, 2)$. Cases (a), (b), (d) of (ii) follow.

Assume that $k=2$ and E / N is a regular, normal subgroup of G / N. Then $|E| N \mid-1=r$ and $|E / N|=2^{m}$. Now (ii) (c) follows. Finally if $k \geqslant 3$ (iii) must hold.
3.3. Let W be a $2 a$-dimensional, symplectic space over $G F(2) r=$ $=2^{a}-1$ a prime (i.e. a is a prime too). Suppose $X \subseteq S p(W)$ is irreducible and X is generated by subgroups of order r. Then:
(i) X is simple or $a=2$.
(ii) If X is a Chevalley group of even characteristic, then one of the following is true:
(a) $X \simeq L_{2}\left(2^{a}\right), S p(2 a, 2), S O^{+}(2 a, 2)$.
(b) $a=2$.
(iii) If X is a Chevalley group of odd characteristic, alternating or sporadic, then one of the following is true:
(a) $a=3, X \simeq A_{7}, U_{3}(3)$.
(b) $a=2$.

Proof. We assume $a>2$.
(i) Let $R \subseteq X,|R|=r$. Then we have an R-decomposition $W=W_{1} \oplus W_{2}$ into isotropic R-invariant spaces. W_{1}, W_{2} are dual as R-spaces. In particular $Z(X)=1$. By $r=2^{a}-1>2 a$ and Cliffords theorem, X can not have an abelian, noncyclic 2^{\prime}-group, which is normalized by R. Hence $F^{*}(X)=E(X)$ and $R \subseteq E(X)$. Finally $X=$ $=E(X)$ can only have one component, as R is a Sylow r-subgroup of $S p(W)$.
(ii) The case $X \simeq L_{d}\left(2^{m}\right):$ Then $m . d \leqslant 2 a$ and r divides $|X|_{2^{\prime}}$. Thus a divides m or some i for $1 \leqslant i \leqslant d$.

If a divides m, then $a=m, d=2$, and $X \simeq L_{2}\left(2^{a}\right)$.
If a divides i for some $1 \leqslant i \leqslant d$, then $m \leqslant 2$. If $m=2$, then $i=a=d$ and $X \simeq L_{d}(4)$. Now X contains a cyclic group of order ($\left.4^{d}-1\right) / 3(d, 3)$. Cyclic subgroups of $S p(W)$ have order at most $2^{a}+1$ and therefore $a=3$. However $S p(6,2)$ does not contain $L_{3}(4)$. So $m=1, d \geqslant a \geqslant d / 2$, and $X \simeq S L(d, 2)$. By the proof of $[2 ; 4.2]$ we have for $a \geqslant 5: a=d$ and W posseses an X-invariant isotropic space of dimension d, a contradiction.

Therefore $a \leqslant 4$. If $a=3$, we have $X \simeq S L(4,2) \simeq S O^{+}(6,2)$, as $S L(5,2) \nsubseteq S p(6,2)$ and $S L(3,2)$ has no irreducible 6-dimensional representation over $G F(2)$. If $a=4$, again $S L(5,2) \nsubseteq S p(8,2)$ and $X \nsim S L(4,2)$, as $S L(4,2) \simeq A_{8}$ has no irreducible representation of degree 8 over $G F(2)$.

The case $X \simeq S p\left(2 d, 2^{m}\right):$ Then $2 m \cdot d \leqslant 2 a$ and $2^{a}-1$ divides $|X|_{2^{\prime}}$. Thus $a=d, m=1$, and $X \simeq S p(2 a, 2)$.

The case $X \simeq P S O^{+}\left(2 d, 2^{m}\right)$: Then $(d-1) m \leqslant a, 2^{a}-1$ divides $|X|_{2^{\prime}}$ and $|X|_{2^{\prime}}$ divides $|S p(W)|_{2^{\prime}}$. This yields $m=1, d=a$.

The case $X \simeq P S O^{-}\left(2 d, 2^{m}\right)$: As usual we get $m=1, d=a$. However $2^{a}-1$ does not divide $|X|$.

The case $X \simeq U_{d}\left(2^{m}\right):$ Here $2 m d \leqslant 2 a$ if d is odd and $2 m(d-1) \leqslant 2 a$ if d is even. As usual $m=1$. Inspecting the order of $U_{d}(2)$, we see at once, that $2^{a}-1$ does not divide $|X|$.

The case $X \simeq G_{2}\left(2^{m}\right):$ Here $a \geqslant 3 m$ and $2^{a}-1$ divides $\left(2^{6 m}-1\right)$. $\cdot\left(2^{2 m}-1\right)$. Now $m=1, a=3$. However $G_{2}(2)^{\prime} \simeq U_{3}(3)$, which will fall under (iii).

The case $X \simeq F_{4}\left(2^{m}\right):$ Here $a \geqslant 6 m$ and $2^{a}-1$ divides $|X|_{2^{\prime}}$. As a does not divide m, we have $a=3$, a contradiction.

In the same manner one rules out the cases $S z\left(2^{m}\right),{ }^{2} F_{4}\left(2^{m}\right), E_{6}\left(2^{m}\right)$, ${ }^{2} E_{6}\left(2^{m}\right), E_{7}\left(2^{m}\right)$, and $E_{8}\left(2^{m}\right)$.
(iii) Suppose first that X is a Chevalley group of odd characteristic and denote by $m(X)$ the minimal degree of an irreducible, nontrivial representation of X over $G F(2)$, i.e. $m(X) \leqslant 2 a$. We use for $m(X)$ the bounds of Landazuri and Seitz [14].

The case $X \simeq L_{m}(q), m \geqslant 3$: Then $2^{a}-1=r \leqslant q^{m}-1$ and $q^{m-1}-$ $-1 \leqslant 2 a$. As $q \geqslant 3, m \geqslant 3$ and a is a prime, we have $a \leqslant 7$. Therefore $q^{m-1} \leqslant 15$ and $q=m=3$. Hence $2^{a} \leqslant 27$ and $a=3$, in contradiction to $6<3^{2}-1$.

The case $X \simeq L_{2}(q):$ Now $2^{a}-1 \leqslant q$ and $2 a \geqslant(q-1) / 2$. Therefore $a=3, r=7$, and $q \leqslant 13$. Now $L_{2}(13) \nsubseteq S p(6,2)$ and $L_{2}(7), L_{2}(9)$ have no irreducible representations of degree 6 over $G F(2)$.

The case $X \simeq \operatorname{PS} p(2 m, q)$: Here we have $2 a \geqslant\left(q^{m}-1\right) / 2$ and $2^{a}-1 \leqslant q^{m}+1$. This yields $a=3, X \simeq \operatorname{PSp}(4,3) \simeq S O^{-}(6,2)$, which falls under (ii).

The case $X \simeq U_{m}(q), m \geqslant 3, m$ odd: Now $2 a \geqslant q\left(q^{m-1}-1\right) /(q+1)$ and $2^{a}-1 \leqslant q^{m}+1$. As $q \geqslant 3$ we have $\left.q^{m-1} / 2 \leqslant q\left(q^{m-1}-1\right) / q+1\right)$ and $a \leqslant 7$.

The above inequalities yield now a contradiction. Similar goes the case $X \simeq U_{m}(q), m \geqslant 4, m$ even, $(m, q) \neq(4,3)$. Thus we are left with the exceptional case $m=4, q=3$, where $a=3, r=7$. However $S p(6,2)$ can not contain a Sylow 3 -subgroup of $U_{4}(3)$.

The other cases with Chevalley groups of odd characteristic give in the same manner contradictions, with the exception of $X \simeq\left({ }^{2} G_{2}(3)\right)^{\prime}$. However ${ }^{2} G_{2}(3) \simeq \operatorname{Aut}\left(L_{2}(8)\right)$ and we can exclude this case too.

Suppose now that X is alternating of degree d. Then $2 a \geqslant m(X) \geqslant$ $\geqslant d-2$ for $d \geqslant 9$ and $d \geqslant 2^{a}-1$. Thus $a \leqslant 3$, a contradiction. Hence $d \leqslant 8$ and as $2^{a}-1$ divides $|X|$ we have $a \leqslant 3$. Thus $X \simeq A_{6}, A_{7}, A_{8}$. However A_{6} has no irreducible representation of degree 6 over $G F(2)$ and $A_{8} \simeq S O^{+}(6,2)$ falls under (ii).

Finally assume that X is sporadic. If $a=3$, then $|X|$ divides $|S p(6,2)|$, which implies $X \simeq J_{2}$. However considering the 2 -local structure of J_{2} one observes $J_{2} \nsubseteq S p(6,2)$.

If $a=5$, then $r=31$. But if $31||X|, X$ sporadic, then $| X|X| S p(10,2) \mid$. Primes of the form $2^{a}-1, a>5$, never divide the order of a sporadic simple group.
3.4 Proposition. Suppose $F^{*}(G)=O_{2}(G) \times Z, Z$ a cyclic 2^{\prime}-group in $Z(G)$ and $O_{2}(G)$ is of symplectic type. Then $r=n+1$ and one of the following is true:
(a) $\operatorname{dim} V=n, r=2^{a}+1, a=2^{b}$, and $G / F(G)$ is isomorphic to one of the following groups: $S p(2 \bar{n}, \bar{q}), S O^{-}(2 \bar{n}, \bar{q}),\left(\bar{q}^{2 \bar{n}}=2^{2 a}\right)$ or A_{6} $(a=2), L_{2}(17)(a=4)$.
(b) $\operatorname{dim} V=n+2, r=2^{a}-1$, a is a prime, and one of the following holds:
(i) $O_{2}(G)$ contains a normal, noncyclic, abelian subgroup of G. Assertion (c) of 3.2 (ii) holds.
(ii) $a=2$ and $G / F^{*}(G)$ is isomorphic to $A_{6}, A_{5}, A_{4}, Z_{3} \times Z_{3}$, or Z_{3}.
(iii) $a \geqslant 3$ and $G / F^{*}(G)$ is isomorphic to one of the following groups:
$L_{2}\left(2^{a}\right), S p(2 a, 2), S O^{+}(2 a, 2)$, or $a=3$ and $G / F^{*}(G) \simeq A_{7}, U_{3}(3)$.
Proof. (a) is a result of Hering [8; 4.2]. If $a \geqslant 3$ and $G / F^{*}(G)$ is not irreducible on $F^{*}(G) / Z(G)$, then there is a normal abelian noncyclic subgroup in $O_{2}(G)$ and assertion (b) (i) holds. So let $F^{*}(G) / Z(G)$ be a faithful irreducible symplectic $G F(2)$-module of dimension $2 a$ for $G / F^{*}(G)$. Assertion (b) (ii) and (iii) follow by 3.3 and inspection of $S p(4,2) \simeq S_{6}$.

4. $F^{*}(G)$ is nonsolvable of Chevalley type and has characteristic different from q_{0}.

We have the same general assumptions on G, V, and S as in sections 2 and 3. Moreover we assume that $F^{*}(G) / Z(G)$ is a Chevalley
group over $G F(\bar{q}),\left(\bar{q}, q_{0}\right)=1$. We also make in this section the additional assumption $\operatorname{dim} V \leqslant 2 n$. By theorem 2.12 we may exclude the cases where $E(G) \neq G$.
4.1. Proposition. Suppose $G=E(G)$ and $\bar{G}=G / Z(G)$ is a Chevalley group $G F(\bar{q})$ with $\left(\bar{q}, q_{0}\right)=1$. Then one of the following assertions is true:
(1) $\bar{G} \simeq G_{2}(3), G_{2}(4), r=n+1=7$ or 13.
(2) $\bar{G} \simeq{ }^{2} G_{2}(\bar{q}), r=n+1$ or $r=2 n+1=\bar{q}^{2}-\bar{q}+1$.
(3) $\bar{G} \simeq{ }^{2} D_{4}(2), r=n+1=17$.
(4) $\bar{G} \simeq S z(8), r=n+1=5,13$ or $r=2 n+1=13$.
(5) $\bar{G} \simeq \operatorname{PSp}(2 m, \bar{q}), \bar{q}$ odd, $r=n+1$, or $r=2 n+1=\left(\bar{q}^{m}+1\right) / 2$.
(6) $\bar{G} \simeq \operatorname{PSp}(4,4), r=n+1=17$.
(7) $\bar{G} \simeq \operatorname{PSp}(6,2), r=n+1=5,7$.
(8) $\bar{G} \simeq U_{4}(3), r=n+1=5,7$.
(9) $\bar{G} \simeq U_{4}(2), r=n+1=5$.
(10) $\bar{G} \simeq U_{m}(\bar{q}), m$ odd $\geqslant 3, r=n+1$ or $r=2 n+1=\left(\bar{q}^{m}+1\right) /(\bar{q}+1)$.
(11) $\bar{G} \simeq L_{m}(2), L_{m}(3), m \geqslant 3, r=3 n+1=2^{m}-1,\left(3^{m}-1\right) / 2$ respectively.
(12) $\bar{G} \simeq L_{m}(\bar{q}), m \geqslant 3, r=n+1 \geqslant\left(\bar{q}^{m-1}-1\right) / 2$ or $r=2 n+1=\left(\bar{q}^{m}-1\right) /(\bar{q}-1)$.
(13) $\bar{G} \simeq L_{3}(2), r=7=n+1,2 n+1,3 n+1$.
(14) $\bar{G} \simeq L_{3}(4), r=7=n+1,2 n+1,3 n+1$.
(15) $\bar{G} \simeq L_{2}(\bar{q}), \bar{q}$ even, $r=\bar{q}+1=n+1$ or $2 n+1$.
(16) $\bar{G} \simeq L_{2}(\bar{q}), \bar{q}$ odd $\geqslant 3, \bar{q} \neq r, r=n+1$ or $r=2 n+1=(\bar{q}+1) / 2$.
(17) $\bar{G} \simeq L_{2}(r), r=n+1,2 n+1,3 n+1$, or $4 n+1$.

Proof. Denote by $m(\bar{G})$ the minimal degree of a nontrivial projective representation of \bar{G} over a field K with Char $K \neq \operatorname{Char} G F^{\prime}(q)$. By our assumption $2 n \geqslant m(\bar{G})$. Further r has the form $b n+1, b \geqslant 1$. Thus

$$
\begin{equation*}
r \geqslant(b \cdot m(\bar{G}) / 2)+1>b \cdot m(\bar{G}) / 2 \geqslant m(\bar{G}) / 2 . \tag{+}
\end{equation*}
$$

We use the table of Landazuri and Seitz [14] for lower bounds
for $m(\bar{G})$ and the table of Hering for upper bounds for r [8; tab. 2].
The case $\bar{G} \simeq E_{6}(\bar{q}):$ Here $\bar{q}^{3}+\bar{q}^{6}+1 \geqslant r>\bar{q}^{9}\left(\bar{q}^{2}-1\right) / 2$, a contradiction.

In a similar way the cases ${ }^{2} E_{6}(\bar{q}), E_{7}(\bar{q}), E_{8}(\bar{q}), \boldsymbol{F}_{4}(\bar{q}),{ }^{2} \boldsymbol{F}_{4}(\bar{q})$, and ${ }^{3} D_{4}(\bar{q})$ are ruled out.

The case $\bar{G} \simeq \bar{G}_{2}(\bar{q}):$ Here $\bar{q}^{2}+\bar{q}+1>\left(\bar{q}^{3}-\bar{q}\right) / 2$ for $\bar{q} \geqslant 5$, a contradiction. If $\bar{q}=3,4$ then $r \leqslant 13$ and $m(\bar{G})=14$ or 12 respectively. Thus $r=n+1=13$ for $\bar{q}=3$ and $r=n+1=7,13$ for $\bar{q}=4$. The case $G_{2}(2)^{\prime} \simeq U_{3}(3)$ is treated later.

The case $\bar{G} \simeq{ }^{2} G_{2}(\bar{q}):$ Here $\bar{q}^{2}-\bar{q}+1 \geqslant r>b\left(\bar{q}^{2}-\bar{q}\right) / 2$. If $b=2$, then $r=2 n+1=\bar{q}^{2}-\bar{q}+1$, otherwise $r=n+1$.

The case $\bar{G} \simeq{ }^{2} D_{m}(\bar{q}), m \geq 4$: Then $\bar{q}^{m}+1>\left(\bar{q}^{m-1}+1\right)\left(\bar{q}^{m-2}-1\right) / 2$. Therefore $m=4$ and $\bar{q}=2$. Thus $17 \geqslant r>b 27 / 2 . \quad b=1$ and $r=17$ follows.

The case $\bar{G} \simeq D_{m}(\bar{q}), m \geqslant 4, \bar{q} \neq 2,3,5: \quad$ Then $\left(\bar{q}^{m}-1\right) /(\bar{q}-1)>$ $>\left(\bar{q}^{m-1}-1\right)\left(\bar{q}^{m-2}+1\right) / 2$, a contradiction.

The case $\bar{G} \simeq D_{m}(\bar{q}), m \geqslant 4, \bar{q}=2,3,5: \quad$ Now $\quad\left(\bar{q}^{m}-1\right) /(\bar{q}-1)>$ $>\bar{q}^{m-2}\left(\bar{q}^{m-1}-1\right) / 2$. Then $m=4$ and $\bar{q}=2$. Now $r=7$ and $7<4(8-$ $-1) / 2$, a contradiction.

The case $\bar{G} \simeq S z(\bar{q}):$ Suppose $\bar{q}=2^{2 c+1}, c>1$. Then $\bar{q}+2^{c+1}+$ $+1>2^{c-1}(\bar{q}-1)$, a contradiction. For $S z(8)$ we get $13 \geqslant r=b n+$ $+1 \geqslant 4$. Thus $r=n+1$ or $r=2 n+1=13$.

The case $\bar{G} \simeq P S p(2 m, \bar{q}) \simeq C_{m}(\bar{q}), \bar{q}$ odd: Here $\quad\left(\bar{q}^{m}+1\right) / 2>$ $>b\left(\bar{q}^{m}-1\right) / 4$. Thus $b \leqslant 2$ and if $r=2 n+1$, then $r=\left(\bar{q}^{m}+1\right) / 2$.

The case $\bar{G} \simeq P S p(2 m, \bar{q}) \simeq C_{m}(\bar{q}), \bar{q}$ even, $(m, \bar{q}) \neq(2,2),(3,2)$: Then $\bar{q}^{m}+1>\bar{q}^{m-1}\left(\bar{q}^{m-1}-1\right)(\bar{q}-1) / 4$. Thus $m=2, \bar{q}=4$ and $r=$ $=n+1=17$.

We do not consider the case $\bar{G} \simeq \operatorname{PSp}(4,2)^{\prime} \simeq L_{2}(9)$ here. Finally $\bar{G} \simeq \operatorname{PSP}(6,2)$. Here $r=n+1=5$ or 7 .

The case $\bar{G} \simeq P \Omega(2 m+1, \bar{q}) \simeq B_{m}(q), \quad \bar{q}$ odd $>5, \quad m \geqslant 3$: Then $\left(\bar{q}^{m}+1\right) / 2>\left(\bar{q}^{2 m-2}-1\right) / 2$, a contradiction.

Suppose next $\bar{q}=3,5$ but $(m, \bar{q}) \neq(3,3)$. Then $\bar{q}^{m}+1>\bar{q}^{m-1}$. $\cdot\left(\bar{q}^{m-1}-1\right)$ a contradiction. Finally if $\bar{G} \simeq P \Omega(7,3)$, then $r \geqslant 13$, but $m(\bar{G}) \geqslant 27$, in contradiction to $(+)$.

The case $\bar{G} \simeq U_{m}(\bar{q}), m$ odd $\geqslant 3$: Now $\left(\bar{q}^{m}+1\right) /(m, \bar{q}+1)(q+1)>$ $>b \bar{q}\left(\bar{q}^{m-1}-1\right) /(\bar{q}+1) 2$. Clearly $(m, \bar{q}+1)=1$. If $b=2$ then $r=$ $=2 n+1=\left(\bar{q}^{m}+1\right) /(\bar{q}+1)$.

The case $\bar{G} \simeq U_{m}(\bar{q}), m$ even $\geqslant 4,(m, \bar{q}) \neq(4,2),(4,3): \quad$ Suppose first $m \geqslant 6$. Then $(+)$ becomes $\bar{q}^{m-1}+1>b\left(\bar{q}^{m}-1\right) / 2$. Therefore $\bar{q}=2$ and $b=1$. Thus $2 n \leqslant\left(2^{m}-4\right) / 3$. On the other hand $2 n \geqslant m(G)=$
$=\left(2^{m}-1\right) / 3$, a contradiction. For $m=4$ we have $\bar{q}^{2}+1>\left(\bar{q}^{4}-1\right) \mid$ $/ 2(\bar{q}+1)$, contradicting $\bar{q} \geqslant 4$.

The remaining unitary cases: If $\bar{G} \simeq U_{4}(3)$, then $2 n \geqslant 6$ and $r=$ $=b n+1 \leqslant 7$. Thus $r=2 n+1=7$ or $r=n+1$. If $\bar{G} \simeq U_{4}(2)$, then $2 n \geqslant 4$ and $r=b n+1 \leqslant 5$. Thus $r=2 n+1=5$ or $r=n+1$.

The case $\bar{G} \simeq L_{m}(\bar{q}), m \geqslant 3,(m, \bar{q}) \neq(3,2),(3,4)$: Here we get $\left(\bar{q}^{m}-1\right) /(m, \bar{q}-1)(\bar{q}-1)>b\left(\bar{q}^{m-1}-1\right) / 2$. This implies $b(m, \bar{q}-1) \leqslant 3$.

Suppose $b(m, \bar{q}-1)=3$. Then the above inequality yields $\bar{q} \leqslant 3$ and therefore $(m, \bar{q}-1)=1, b=3$.

Suppose $b(m, \bar{q}-1)=2$. If $b=2$, then $r \leqslant\left(\bar{q}^{m-1}-1\right) /(\bar{q}-1)$ gives the contradiction $\bar{q} \leqslant 1$. Thus r divides $\left(\bar{q}^{m}-1\right) /(\bar{q}-1)$. Moreover $(+)$ implies in this case $r=2 n+1=\left(\bar{q}^{m}-1\right) /(\bar{q}-1)$. Suppose now $(m, \bar{q}-1)=2$ i.e. $b=1$. Thus \bar{q} is odd and $m \geqslant 4$. As before $r=$ $=n+1=\left(\bar{q}^{m}-1\right) / 2(\bar{q}-1)$.

Finally assume $b(m, \bar{q}-1)=1$. Then as usual $r \geqslant\left(\bar{q}^{m-1}-1\right) / 2 \cdot$ $\cdot(\bar{q}-1)$. If $\bar{G} \simeq L_{3}(2)$ obviously $r=n+1$ or $r=7=2 n+1,3 n+1$ and if $\bar{G} \simeq L_{3}(4)$, then $m(\bar{G})=4$ and $b \leqslant 3$.

The case $\bar{G} \simeq L_{2}(\bar{q}), \bar{q}$ even: Then $\bar{q}+1 \geqslant b n+1=r$ and $2 n>$ $>\bar{q}-1$. Thus $r=n+1$ or $r=2 n+1=\bar{q}+1$.

The case $\bar{G} \simeq L_{2}(\bar{q}), \bar{q}$ odd $\geqslant 3$: If $\bar{q} \neq r$, we have $\bar{q}>b(\bar{q}-1) / 2$. Thus $b \leqslant 2$ and $r=2 n+1=(\bar{q}+1) / 2$ or $r=n+1$. If $\bar{q}=r$, then $\bar{q}=b n+1$ and $2 n \geqslant(\bar{q}-1) / 2$. Hence $b \leqslant 4$, and if $b=4$, we have $\bar{q}=r=4 n+1$.

As a corollary of 4.1 we have:
4.2 Same assumption on G as in 4.1. Assume in addition $\operatorname{dim} V \leqslant$ $\leqslant n+1$. Then one of the following is true:
(1) $\bar{G} \simeq \bar{G}_{2}(4), r=n+1=13$.
$\bar{G} \simeq{ }^{2} G_{2}(\bar{q}), r=n+1=\bar{q}^{2}-\bar{q}+1$.
$\bar{G} \simeq S z(8), r=n+1=13$.
(4) $\bar{G} \simeq \operatorname{PSp}(2 m, \bar{q}), \bar{q}$ odd, $r=n+1$ divides $\bar{q}^{m}+1$ or $\bar{q}^{m}-1$.
(5) $\bar{G} \simeq \operatorname{PS}(6,2), r=n+1=7$.
(6) $\bar{G} \simeq U_{m}(\bar{q}), m$ odd $\geqslant 3, r=n+1=\left(\bar{q}^{m}+1\right) /(\bar{q}+1)$.
$\bar{G} \simeq U_{4}(3), r=n+1=7$.
$\bar{G} \simeq U_{4}(2), r=n+1=5,7$.
(9) $\bar{G} \simeq L_{m}(2), m \geqslant 3, r=2 n+1=2^{m}-1$.
$\bar{G} \simeq L_{m}(2), m \geqslant 3, r=n+1=2^{m-1}-1$.

$$
\begin{align*}
& \bar{G} \simeq L_{m}(\bar{q}), m \geqslant 3, r=n+1=\left(\bar{q}^{m}-1\right) /(\bar{q}-1) . \tag{11}\\
& \bar{G} \simeq L_{2}(\bar{q}), \bar{q} \text { even }, r=n+1=q+1 . \\
& \bar{G} \simeq L_{2}(\bar{q}), r=\bar{q}=2 n+1 \text { or } r=n+1=(\bar{q}+1) / 2 . \\
& \bar{G} \simeq L_{3}(2), r=3 n+1=7 . \\
& \bar{G} \simeq L_{3}(4), r=2 n+1=7 .
\end{align*}
$$

5. $F^{*}(G)$ is nonsolvable of Chevalley type and has characteristic $q_{0}{ }^{*}$

Again we have the same general assumptions on G, V, and S as in the sections before. This time we assume that $F^{*}(G) / Z(G)$ is a Chevalley group of characteristic q_{0} and that $\operatorname{dim} V \leqslant 2 n$. In view of 2.12° we restrict our attention to the case $G=E(G)$. We need some additional notation:

Let $X=\mathscr{X}\left(q_{0}^{a}\right)$ be a universal, nontwisted Chevalley group over $G F\left(q_{0}^{a}\right)$ of rank l and let $\Pi=\left\{r_{1}, \ldots, r_{i}\right\}$ be a set of fundamental roots. Denote by $\left\{\lambda_{1}, \ldots, \lambda_{i}\right\}$ the corresponding set of fundamental dominant weights and set $\Lambda=\left\{\Sigma c_{i} \lambda_{i}: c_{i} \in \mathbb{Z}, 0 \leqslant c_{i}<q_{0}\right\}$. To each $\lambda \in \Lambda$ corresponds an absolutely irreducible $G F\left(q_{0}^{a}\right)$-module $M=M(\lambda)$. If X induces on M the matrix representation $X \ni x \rightarrow\left(\left(D_{\lambda}(x)_{i j}\right)\right.$ we get more representations by $X \ni x \rightarrow\left(D_{\lambda}(x)_{i j} \theta^{k}\right),(0 \leqslant k<a)$, where θ is the Frobenius automorphism of $G F\left(q_{0}^{a}\right)$. Denote by $M^{(0)}(\lambda), \ldots, M^{(a-1)}(\lambda)$ the corresponding $G F\left(q_{0}^{a}\right)$-modules and call the set of modules $M^{(i)}(\lambda)$ $(\lambda \in \Lambda, 0 \leqslant i<a)$ the basic modules. Also we call the $G F\left(q_{0}^{a}\right)$-module M basic of type $M(\lambda)$ if M is algebric conjugate to some $M^{(i)}(\lambda)$. By Steinbergs tensor product theorem the set $M^{(0)}\left(\lambda_{1}\right) \otimes \ldots \otimes M^{(a-1)}\left(\lambda_{a-1}\right)$; $\lambda_{1}, \ldots, \lambda_{a-1} \in \Lambda$ is the set of absolutely irreducible modules of X in characteristic q_{0}.

Suppose next $X=\mathscr{C}\left(q_{0}^{a}\right)$ is a twisted universal Chevalley group. If X is of type ${ }^{2} B_{2},{ }^{2} F_{4}$, or ${ }^{2} G_{2}$, then $G F\left(q_{0}^{a}\right)$ is a splitting field for X. The basic modules of are obtained as restrictions to X of some basic modules of $B_{2}\left(q_{0}^{a}\right), F_{4}\left(q_{0}^{a}\right)$, or $G_{2}\left(q_{0}^{a}\right)$ respectively, and the tensor product theorem holds too.

Suppose next X has a diagram with a symmetry σ of order t (i.e. $t=2$ for A_{l}, D_{l}, E_{6} respectively $t=3$ for D_{4}). Then σ induces a permutation on Λ. Again we obtain the basic modules as restrictions of the corresponding basic modules for the nontwisted Chevalley group over $G F\left(q_{0}^{a t}\right)$. If $\lambda \in \Lambda$ and $\lambda^{\sigma}=\lambda$ then $G F\left(q_{0}^{a}\right)$ is the field of definition
for $M^{(i)}(\lambda)$ (as a X-module) and otherwise $G F\left(q_{0}^{a t}\right)$ is the field of definition. For these facts see for instance [15], [20].

Finally define for $X=X\left(q_{0}^{a}\right)$ (now twisted or not) a number $\mu=$ $=\mu(X)$ as follows:
(1) There is a q_{0}-primitive divisor \bar{r} dividing $|X|$ and $q_{0}^{\mu a}-1$.
(2) If $s \neq q_{0}$ is a prime dividing $|X|$, then s divides $q_{0}^{m}-1$ for some $1 \leqslant m \leqslant \mu a$.

For $X=\mathscr{X}\left(q_{0}^{a}\right)$ we keep the following notation:

$$
\begin{aligned}
& t=1 \text { for } X={ }^{2} B_{2},{ }^{2} \boldsymbol{F}_{4},{ }^{2} G_{2} \text { or if } X \text { is nontwisted; } \\
& t=2 \text { for } X={ }^{2} A_{l},{ }^{2} D_{l},{ }^{2} E_{6} \\
& t=3 \text { for } X={ }^{3} D_{4} .
\end{aligned}
$$

If X is simple of type $\mathfrak{X}\left(q_{0}^{a}\right)$ and M is a projective, irriducible X module in charactaristic q_{0}, then M affords an irreducible module of the universal Chevalley group $\mathfrak{X}\left(q_{0}^{a}\right)$ by a result of Griess (see [6; p. 302]).

Return to G and V. Assume $q=q_{0}^{b}$ and $\operatorname{dim} V=n+k, k \leqslant n$ and $G \mid Z(G)$ is a Chevalley group of type $X\left(q_{0}^{a}\right)$. Suppose $G F\left(q_{0}^{\bar{a}}\right)$ is a spiitting field for G with $G F\left(q_{0}^{b}\right) \subseteq G F\left(q_{0}^{\bar{a}}\right)$ and $V^{*}=V \otimes G F\left(q_{0}^{\bar{a}}\right)=V_{1} \oplus$ $\oplus \ldots \oplus V_{s}$ is a decomposition into absolutely irreducible modules. Denote by $G F\left(q_{0}^{c}\right)$ the field of definition for V_{1} (i.e. $\left.c \mid a t\right)$. By $2.2 \mathrm{~s}=$ $=c /(b, c), r$ divides $\varphi_{n / s}^{*}\left(q_{0}^{c}\right)$ and if M is an irreducible $G F\left(q_{0}^{c}\right)$-module with $V_{1} \simeq M \otimes G F\left(q_{0}^{a}\right)$, then $R \in \mathcal{S}$ induces a 1-irreducible group on M. Set $n^{\prime}=n / s, k^{\prime}=k / s$, i.e. $\operatorname{dim} M=n^{\prime}+k^{\prime}$ and $\operatorname{dim} M^{R}=n^{\prime}$. By our assumptions

$$
\begin{equation*}
n^{\prime} c \leqslant \mu a \leqslant\left(n^{\prime}+k^{\prime}\right) c, \quad \text { i.e. } \quad|M| \leqslant q_{0}^{2 \mu a} . \tag{+}
\end{equation*}
$$

Throughout this section we will keep this notation. The following results are consequences of some work of Liebeck [15], [16].
5.1. Notations as above. Suppose M is not basic, then one of the following holds:
(a) If X is not twisted or of type ${ }^{2} B_{2},{ }^{2} F_{4},{ }^{2} G_{2}$, then
(i) $\mathfrak{X}=A_{2}, A_{3}, C_{2}$ and M is algebraic conjugate to $V_{0} \otimes V_{0}^{\sigma}$ where $V_{0} \simeq M\left(\lambda_{1}\right)$ is the standard module and σ is the involution in $\operatorname{Aut}\left(G F\left(q_{0}^{a}\right)\right), a=2 c$.
(ii) $\mathfrak{X}=A_{1}$ and M is algebraic conjugate to $V_{0}^{\sigma_{1}} \otimes \ldots \otimes V_{0}^{\sigma_{p}} a=$ $=c p(p=2,3,4)$ and $\left\{\sigma_{1}, \ldots, \sigma_{p}\right\}$ is a cyclic subgroup of order p in $\operatorname{Aut}\left(G F\left(q_{0}^{a}\right)\right), V_{0} \simeq M\left(\lambda_{1}\right)$ is the standard module.
(b) Suppose $\mathfrak{X}={ }^{2} A_{l},{ }^{2} D_{l},{ }^{2} E_{6}$, or ${ }^{3} D_{4}$. Then $\mathfrak{X}={ }^{2} A_{2}$ and M is algebraic conjugate to $V_{0} \otimes V_{0}^{\sigma}$, where σ is the involution in Aut $\left(G F\left(q_{0}^{2 a}\right)\right)$ and V_{0} is the standard module.
Proof. (a) Set $m=m_{G}$ for the minimal degree of a nontrivial, irreducible, projective representation of G over $G F\left(q_{0}^{a}\right)$. By [15] $2 \mu a \geqslant c m^{a / c}$. By [8] and [15] $\mu \leqslant m$ and thus $2 a / c \geqslant m^{(a / c)-1}$. So if $m \geqslant 5$ we have $a=c$. However the degree m is only obtained for basic modules and thus by our assumptions $\operatorname{dim} M \geqslant m^{2}$, a contradiction. We remain with the cases $A_{l}(l \leqslant 3)$ and C_{2}. Since M is not basic, we have $a>c$ for $m>2$ by the tensor product theorem. For A_{3}, C_{2} we have $2 a / c \geqslant 4^{(a / c)-1}$. Thus $a=2 c$ and M is as in (a) (i). For A_{2} we have $2 a / c \geqslant 3^{(a / c)-1}$ and again $a=2 c$. As A_{2} has no basic module of dimension 4 again assertion (a) (i) follows. (a) (ii) follows by a well known theorem of Brauer and Nesbitt and (+).
(b) As before denote by m the minimal degree of a nontrivial, projective, absolutely irreducible representation of G over $G F\left(q_{0}^{a t}\right)$ and by m_{1} the minimal degree of a nontrivial, projective, absolutely irreducible representation of G over $G F\left(q_{0}^{a}\right)$. By [8] and [15] we have the following table:

	μ	m_{1}	m
${ }^{2} A_{l}$	$2(l+1), l$ even; $2 l$,	$l(l+1)(l \geqslant 6)$	$l+1$
	l odd	$20(l=4,5)$	
		$6(l=2,3)$	
${ }^{2} D_{l}$	$2 l$	$2 l$	$2 l$
${ }^{2} E_{6}$	18	72	27
${ }^{3} D_{4}$	12	24	8

We have $c<t a$ by the same argument as above.
Case 1. $a=c$. Then $2 \mu \geqslant m_{1}$. Thus ${ }^{2} E_{6}$ falls out. By [16] for ${ }^{3} D_{4}$ the value m_{1} is only obtained for basic modules and so this case can not occur too. For ${ }^{2} D_{l}$ we have $\operatorname{dim} M \geqslant(2 l)^{2}$ as M is not basic, which is impossible. In the case ${ }^{2} A_{l}$ for $l \geqslant 4$ the value m_{1} is only obtained for basic modules [16]. Thus $l \leqslant 3, \mu=6$, and $\operatorname{dim} M \geqslant(l+1)^{2}$. Thus $l=2$ and assertion (b) holds.

Case 2. $a>c$. Then $2 \mu a \geqslant c m^{t a / c}$ or $2 \mu a \geqslant c m_{1}^{a / c}$. Hence $2 \mu a / c \geqslant m^{t a / c}$ or $2 \mu a / c \geqslant m_{1}^{a / c}$, which is impossible by the above table.
5.2. Theorem. Let G, V, M be as in the introduction of this section. Then the following assertions are true:
(i) $\mathfrak{X} \neq E_{6},{ }^{2} E_{6}, E_{7}, E_{8},{ }^{2} F_{4}$.
(ii) If M is not basic, then M is as in 5.1.
(iii) M is basic and furthermore:
(1) If $X=A_{l}(l \geqslant 1)$, then M is basic of type $M\left(\lambda_{1}\right), M\left(\lambda_{l}\right)$ or $M\left(\lambda_{2}\right), M\left(\lambda_{l-1}\right)(l=3,4)$ or $M\left(2 \lambda_{1}\right), M\left(2 \lambda_{2}\right)(l=1,2)$ or $M\left(3 \lambda_{1}\right)$, $M\left(4 \lambda_{1}\right) \quad(l=1), q_{0} \geqslant 5$.
(2) If $X=B_{1}(l \geqslant 3), q_{0}$ odd, then M is basic of type $M\left(\lambda_{1}\right)$ or $M\left(\lambda_{l}\right) \quad(l \leqslant 4)$.
(3) If $\mathfrak{X}=C_{l}(l \geqslant 2)$, then M is basic of type $M\left(\lambda_{l}\right)$ or $M\left(\lambda_{1}\right)$ $(l \leqslant 4)$.
(4) If $X=D_{\imath}(l \geqslant 4)$, then M is of type $M\left(\lambda_{1}\right)$ or $M\left(\lambda_{\imath}\right) \quad(l=4)$.
(5) If $X=G_{2}$, then M is basic of type $M\left(\lambda_{1}\right)$ or $q_{0}=3$ and M is of type $M\left(\lambda_{2}\right)$.
(6) If $X={ }^{2} A_{l}(l \geqslant 2)$ and $c=2 a$ then M is a restriction of a module from (1) of $A_{l}\left(q_{0}^{2 a}\right)$ to ${ }^{2} A_{l}\left(q_{0}^{a}\right)$. If $a=c$, then M is basic of type $M\left(\lambda_{1}+\lambda_{2}\right)(l=2), M\left(\lambda_{2}\right), M\left(\lambda_{1}+\lambda_{3}\right)(l=3)$, or $M\left(\lambda_{3}\right)(l=5)$.
(7) If $\mathfrak{X}={ }^{2} B_{2}$, then M is basic of type $M\left(\lambda_{1}\right)$.
(8) If $X={ }^{2} D_{l}(l \geqslant 4)$, then M is a restriction of a module of (4) from $D_{l}\left(q_{0}^{2 a}\right)$ to ${ }^{2} D_{l}\left(q_{0}^{a}\right)$.
(9) If $X={ }^{3} D_{4}$, then M is basic of type $M\left(\lambda_{1}\right), M\left(\lambda_{3}\right)$, or $M\left(\lambda_{4}\right)$.
(10) If $X={ }^{2} G_{2}$, then M is described in (5) (restriction to the subgroup ${ }^{2} G_{2}\left(q_{0}^{a}\right)$ of $\left.G_{2}\left(q_{0}^{a}\right)\right)$.

Proof. By 5.1 we may assume that M is basic and that c divides at. Now $c=a i$, where $i=1$ or t as M is basic. Thus $i \cdot \operatorname{dim} M \leqslant 2 \mu$,

The bounds for the minimal degree of a nontrivial, irreducible. projective representation of G over $G F\left(q_{0}^{a i}\right)$ [15] and the values of μ exclude the cases $E_{6},{ }^{2} E_{6}, E_{7}, E_{8}, F_{4},{ }^{2} \boldsymbol{F}_{4}$: (i) follows. Next assume $\mathfrak{X}=A_{l}$ or C_{l}. [16; theorem 2.2 and 2.6] give assertions (iii) (1) and (3). (2), (4), and (8) follow by [15; theorem 1.1]. (5) and (10) are [16; theorem 2.10]. For $X={ }^{2} A_{l}$ use that absolutely irreducible modules
are obtained as restrictions of absolutely irreducible $A_{l}\left(q_{0}^{2 a}\right)$-modules to ${ }^{2} A_{l}\left(q_{0}^{a}\right)$. Also use $\operatorname{dim} M\left(2\left(\lambda_{1}+\lambda_{2}\right)\right) \geqslant 12$ for $l=2$ (see proof of theorem 2.2 of [16]). This shows (6) $\cdot(7)$ follows from a theorem of Martineau [17]. For (9) finally use that every absolutely irreducible $G F\left(q_{0}^{a}\right)$-module has dimension $\geqslant 26[16]$.

6. Translation planes and 1-irreducible groups.

Let V be a finite dimensional vectorspace over $G F(p), p$ a prime, $W=V \oplus V$, and denote by π a spread on W with components $V_{\infty}, V_{0}, V_{1}, \ldots$ such that $\mathscr{T}=(W, \pi)$ becomes a translation plane. We will call a subgroup R of the collineation group of \mathcal{T} 1-component irreducible, if there is an R-invariant component V^{*} such that R is 1-irreducible and faithful on V^{*} and W / V^{*}. Let r be a p-primitive divisor of $p^{n}-1$ and set $\mathrm{S}^{*}=\{R| | R \mid=r, R$ is 1-component irreducible\}. We will consider subgroups of aut (\mathcal{T}) generated by subsets of S^{*} and also always assume $n \geqslant 2$.

Starting point for these considerations are investigations of Iha, Kallaher, Hiramine and others (see for instance [10], [12], [13]) on so called « (G, Γ, n, q)-translation planes». These are planes $\mathscr{T}=(W, \pi)$ with kern $G F(q), q$ a power of p, which satisfy the following hypothesis:

Hypothesis 6.0. T posesses a collineation group G, which fixes on l_{∞} a set Δ of $q+1$ points and acts transitively on the remaining points $\Gamma=l_{\infty}-\Delta$.

Thus one has two problems:
(a) Determine the structure of G.
(b) Datermine the isomorphism type of \mathscr{T}.

We use the results of the previous sections as a natural approach to question (a). It is useful for applications to weaken hypothesis 6.0.

FHypothesis 6.1. Lat \mathscr{T} be a translation plane of order $p^{n+k} . G$ is a collineation group of \mathscr{T} fixing a set Δ of $p^{k}+1$ points on l_{∞} and acting transitively on $l_{\infty}-\Delta$.

Hypothesis 6.2. Lat \mathcal{T} be a translation plane of order p^{n+k}. Let $G=\left\langle R: R \in S^{*}, R \subseteq G\right\rangle$ be a collineation group of \mathcal{T}. G fixes
a set Δ of $p^{k}+1$ points and every G-orbit on $l_{\infty}-\Delta$ has a lenght divisible by r.

Hypothesis 6.3. Let \mathfrak{T} be a translation plane of order p^{n+k}. Let $G=\left\langle R: R \in \mathbb{S}^{*}, R \subseteq G\right\rangle$ be a collineation group of \mathscr{T}. G fixes a component, say V^{*}.

Obviously hypothesis 6.0 implies hypothesis 6.1. Moreover:
6.1. (a) Suppose \mathfrak{T} and G satisfy hypothesis $6.1, k<n$, and $n \neq 2 k$. Then G contains a normal subgroup G_{0}, such that \mathfrak{T} and G_{0} satisfy hypothesis 6.2. Moreover Δ is fixed by G_{0} pointwise.
(b) Suppose \mathcal{T} and G satisfy hypothesis $6.2, k<n$, and $n \neq 2 k$. Then \mathfrak{T} and G satisfy hypothesis 6.3. Moreover Δ is fixed by G pointwise.

Proof. (a) Let G satisfy hypothesis 6.1 and pick $\tilde{R} \in \operatorname{Syl}_{r}(G)$. As $r \nmid p^{k}+1$ there is a fixed component V^{*} belonging to Δ. As $k \neq n, \operatorname{dim}\left(V^{*}\right)_{\tilde{R}}, \operatorname{dim}\left(W / V^{*}\right)_{\tilde{R}} \geqslant k$, and thus \tilde{R} is 1-component irreducible with $\operatorname{dim}\left(V^{*}\right)_{\tilde{R}}=\operatorname{dim}\left(W / V^{*}\right)_{\tilde{R}}=k$, i.e. $\Omega_{1}(\tilde{R}) \in S^{*}$. Now \tilde{R} fixes at least two components of Δ and $\operatorname{dim} W_{\tilde{R}}=2 k$. Thus the intersection of $W_{\tilde{R}}$ with the fixed components gives a subplane of order p^{k}. So \widetilde{R} fixes precisely $p^{k}+1$ components. In particular $|\tilde{R}|$ is the r-part of p^{n}-1. Thus \tilde{R} is semi-regular on $l_{\infty}-\Delta$ and Δ is fixed pointwise by \tilde{R}. As $\Omega_{1}(\tilde{R}) \in S^{*}$ we may set $G_{0}=\left\langle\Omega_{1}(\tilde{R}): \tilde{R} \in \operatorname{Syl}_{r}(G)\right\rangle$.
(b) As in (a) one observes, that $\tilde{R} \in \operatorname{Syl}_{r}(G)$ fixes a subplane of order p^{k}. Thus $R=\Omega_{1}(\tilde{R})$ has precisely the same fixed structure as \tilde{R}. By our assumptions R is semi-regular on $l_{\infty}-\Delta$ and the components of Δ are exactly the fixed components of R. Hypothesis 6.3 follows.

In the remainder of this section we do not aim for best possible results. The applications of results of the previous sections and the proofs are rather crude.
6.2. Let V be a $(n+k)$-dimensional $G F(p)$-space, $k \leqslant n$. Let $r \mid \varphi_{n}^{*}(p)$ be a prime and as in sections 1-5 denote by S the set of 1-irreducible subgroups of $G L(V)$ of order r. Suppose $G=\langle R: R \in S, R \subseteq G\rangle$ and Δ is a subset of $G L(V)$ centralized by G with the properties:

$$
\begin{equation*}
|\Delta|=p^{k}-1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
t-t^{\prime} \in G L(V) \quad \text { for } t, t^{\prime} \in, t \neq t^{\prime} \tag{2}
\end{equation*}
$$

Then one of the following assertions is true:
(a) $n=d k, V$ can be considered as a $(d+1)$-dimensional $G F\left(p^{k}\right)$ module of G. Either V is irreducible or the composition factors have $G F\left(p^{k}\right)$-dimension 1 and d.
(b) $V=V_{R} \oplus V^{R}$ is a G-composition for $R \in S, R \subseteq G . V_{R}=V_{G}$ and V^{R} can be considered as an d-dimensional $G F\left(p^{l}\right)$-module of G, where $n=d l$, and $l \geqslant k$.

Proof. Set $D=\langle\Delta\rangle \subseteq C_{G L(V)}(G)$ and $U=V^{R}$. By assumptions (1) and (2), $V_{1}=V_{R}$ is an irreducible D-module. As R is irreducible on U, we have $U=V_{2} \oplus \ldots \oplus V_{d}$, with irreducible isomorphic D-modules $V_{i}(2 \leqslant i \leqslant d)$.

If $V_{1} \simeq V_{2}$, then $n=d k, D$ is isomorphic to the multiplicative group of $G F\left(p^{k}\right)$ and assertion (a) follows.

If $V_{1} \nsim V_{2}$, then $V=V^{R} \oplus V_{R}$ is a G-invariant decomposition. If $G F\left(p^{l}\right) \simeq C_{\operatorname{End}\left(V^{R}\right)}(G)$, then $l \geqslant k$ as $\Delta \subseteq C_{G L(V)}(G)$, and (b) follows.
6.3. Let V be a finite dimensional vectorspace over $G F(q), q$ odd. Suppose $r=n+1$ is a prime and $r \mid \varphi_{n}^{*}(q)$. Let R be a 1-irreducible subgroup of order r in $G L(V), P$ an elementary abelian 2-group in $G L(V)$ with $P=[R, P]$ and $\operatorname{dim} U_{x} \leqslant(\operatorname{dim} U) / 2$ for $x \in P-1$, where $U=V^{x}$ and $X=P R$. Then $\operatorname{dim} U=r=2^{l}-1$, for $|P|=2^{l}$. Moreover $\operatorname{dim} U_{x}=2^{l-1}-1$ for $x \in P-1$.

Proof. By an easy induction one proves the following lemma:
Let P be an elementary abelian subgroup of $G L(U), U$ a m-dimensional vectorspace over $G F(q)$. Suppose $|P|=2^{l}$ and $\operatorname{dim} U_{x} \leqslant m / 2$ for $x \in P-1$. Then
(a) $m \geqslant 2^{l-1}$.
(b) If $U_{P}=0$, $\operatorname{dim} U_{x}=\operatorname{dim} U_{y}=s \neq 0$ for $x, y \in P-1$, then $m=b\left(2^{l}-1\right)$ and $s=b\left(2^{l-1}-1\right)$ for some $b \geqslant 1$.

Now consider $X=P R$ and set $U=V^{x}$. By $2.2 \operatorname{dim} U=n+1=r$ and $U_{P}=0$. By (a) of the lemma $r \geqslant 2^{l-1}$, where $|P|=2^{l}$. By Maschkes theorem r divides $2^{l}-1$. Thus $r=2^{l}-1$ and R is transitive on $P-1$. Thus part (b) of the lemma applies and we are done.
6.4. Proposition. Let G satisfy hypothesis 6.3 and let V_{1} be a fixed component of G. Set $P=C_{G}\left(V_{1}, W / V_{1}\right)$. Then the following assertions hold:
(a) (i) Either G has on $V_{1} a$ G-invariant chain $0 \subseteq V_{1}^{*} \subset V_{1}^{* *} \subseteq V_{1}$ such that $V_{1}^{*}=\left(V_{1}\right)_{G} \cap\left(V_{1}\right)^{G}, \quad V_{1}^{* *}=\left(V_{1}\right)^{G}$ and the pair $V_{1}^{* *} / V_{1}^{*}, G / C_{G}\left(V_{1}^{* *} / V_{1}^{*}\right)$ satisfies the general assumptions of section 1 (with $q=q_{0}=p$) or
(ii) $\operatorname{dim} V_{1}=2 n$ and V_{1} posesses an irreducible G-subspace V_{1}^{*} of dimension n and V_{1} / V_{1}^{*} is irreducible.
(b) The analogous statement of (a) holds with W / V_{1} in the role of V_{1}.
(c) (i) Either G / P is faithful both on V_{1} and W / V_{1} or
(ii) There is a component $V_{2} \neq V_{1}$ and a subgroup $1 \neq H \subseteq G$ with $H=H_{1} \times H_{2}, H_{i}=C_{H}\left(V_{i}\right)(i=1,2)$ is a group of homologies. $G=G_{0} P$ is a semidirect product with $G_{0}=N_{G}(H)$. Finally G_{0} is generated by 1-component irreducible groups of order r.

Proof. (a) and (b) follow by 2.1. Set $P_{1}=C_{G}\left(V_{1}\right), P_{2}=C_{G}\left(W / V_{1}\right)$, and $N=P_{1} P_{2}$. If $P_{1}=P_{2}=P$ assertion (c) (i) holds. Let H be a complement of P in N. By the modular law we have $P_{i}=H_{i} P$ with $H_{i}=P_{i} \cap H(i=1,2)$. Thus $H=H_{1} \times H_{2}$. Clearly there are precisely two components-say V_{1} and V_{2}-fixed by H and H_{i} is a group of homologies. Set $G_{0}=N_{G}(H)$. By a Frattini argument we have $G=G_{0} P$. As $P \cap G_{0}$ must fix V_{1} and V_{2} we have $P \cap G_{0}=1$.
6.5. Assumptions and notation as in 6.4. Then one of the following assertions are true:
(a) G has on V_{1} and W / V_{1} precisely one nontrivial irreducible composition factor.
(b) G has on V_{1} and W / V_{1} precisely two nontivial irreducible composition factors. Moreover one of the following holds:
(i) G / P is faithful on V_{1} and W / V_{1} and $G / 0_{p}(G) \simeq A \times B$, where A, B are isomorphic to one of the following groups: $Z_{r}, S L(2,3)$, or $S L(2,5)$.
(ii) $H \neq 1, G_{0} \simeq Z_{r} \times Z_{r} \times P_{1} Z_{r}$, where P_{1} is an elementary abelian p-group and $P_{1} Z_{r}$ is a Frobenius group.
(c) G has one nontrivial irreducible composition factor on V_{1} and two on W / V_{1}. Moreover one of the following holds:
(i) $\boldsymbol{G} \mid \boldsymbol{P}$ is a semidirect product of an elementary abelian p-group $\boldsymbol{P}_{\mathbf{1}}$ with $Z_{r} \times Z_{r}$. Moreover G / P is faithful on W / V_{1} and induces a Frobenius group of order $|P| r$ on V_{1}.
(ii) $\operatorname{dim} V_{1}=4, H_{2} \simeq Q_{8}$ and $G_{0} / H_{2} \simeq Z_{3} \times Z_{3}$.
(iii) $\operatorname{dim} V_{1}=4, H_{2} \simeq Q_{8} \times Z_{3}$, and $G_{0} / H_{2} \simeq Z_{3} \times Z_{3}$.
(iv) $\operatorname{dim} V_{1}=2 n, n=2$ or $4, r=3$ or 5 respectively, $H_{2} \simeq S L(2,3)$ or $S L(2,5), \quad G_{0} / H_{2} \simeq Z_{r} \times Z_{r}, \quad\left(r=5\right.$ only if $\left.H_{2} \simeq S L(2,5)\right)$.
(d) Exchange the roles of V_{1} and W / V_{1} in (c). The analogous statements of (c) hold.

Proof. Assume first that we are in situation (d). Thus we have a G-invariant chain $0 \subset \tilde{V}_{1} \subset V_{1}$, where $\tilde{V}_{1}, V_{1} \mid \tilde{V}_{1}$ are irreducible modules of dimension n. Further we assume, that G has on W / V_{1} precisely one nontrivial irreducible composition factor.

Case 1. $H \neq 1$. In this case we assume $G=G_{0}$. First assume $0_{p}\left(G \mid H_{1}\right) \neq 1$. Then there is a p-group $\tilde{P} \subseteq G, \tilde{P} H_{1} \triangleleft G$. $|\tilde{P}| \geqslant p^{n}$ as $R \in S^{*}, R \subseteq G$ acts fixed-point -free on $\widetilde{P} H_{1} / H_{1} . H_{1}$ is fixed-point-free on V_{2}. So every Sylow subgroup of H_{1} is cyclic or generalized quaternion. Considering the group $H_{1} \tilde{P} R$, we conclude $H_{1} \tilde{P}=H_{1} \times \tilde{P}$, and $\tilde{P} \unlhd G$.

Thus $0 \subset \tilde{V}_{2} \subset V_{2}$ is a G-invariant chain with $\tilde{V}_{2}=\left(V_{2}\right)_{\tilde{P}}$. Suppose for instance, that \tilde{V}_{2} is the irreducible nontrivial composition factor of G on V_{2}. Then every subgroup of type (r, r) induces on \tilde{V}_{2} a group of order r, (i.e. $r\left|\left|H_{2}\right|\right)$. Thus $G \mid H_{2}$ is a Frobenius group of order $|\tilde{P}| r, H=H_{2}$, and $|\boldsymbol{H}|=r$. Now we have assertion (d) (i).

So from now on we assume $0_{p}\left(G \mid H_{1}\right)=1$. By a symmetric argument as above we have $0_{p}\left(G \mid H_{2}\right)=1$ too. Set $\mathrm{S}_{1}=\left\{R \subseteq G: R \in \mathrm{~S}^{*}, \tilde{V}_{1}=\right.$ $\left.=\left(V_{1}\right)_{R}\right\}, S_{2}=\left\{R \subseteq G: R \in S^{*}, \tilde{V}_{1}=\left(V_{1}\right)^{R}\right\}$ and $G_{i}=\left\langle S_{i}\right\rangle(i=1,2)$. Then $G_{i} \unlhd G=G_{1} G_{2}$. Now $\left[G_{1}, G_{2}\right]$ stabilizes the chain $0 \subset \tilde{V}_{1} \subset V_{1}$ and thus $G / \bar{H}_{1} \simeq G_{1} H_{1} / H_{1} \times G_{2} H_{1} / H_{1}$ and V_{1} has a G-decomposition of the form $V_{1}=\widetilde{V}_{1} \oplus U_{1}$.

Pick $R_{i} \in S_{i}(i=1,2)$ and set $X=\left\langle R_{1}, R_{2}\right\rangle$. Now $\left[R_{1}, R_{2}\right] \subseteq H_{1}$. Thus $X \mid X_{1} \simeq Z_{r} \times Z_{r}$, where $X_{1}=X \cap H_{1}$.

If for all choices of R_{i} we have $\left[R_{1}, R_{2}\right]=1$, then $\left[R_{1}, G_{2}\right]=1$, which implies $G \simeq Z_{r} \cdot Z_{r}$, and G induces a group of order r on V_{2}.

So assume $X_{1} \neq 1$. Suppose first $\left(r,\left|H_{1}\right|\right)=1$, i.e. $\left(r,\left|X_{1}\right|\right)=1$. If $T \in \operatorname{Syl}_{t}(X)$ for a prime t, we have $\tilde{R} \subseteq N_{X}(T)$ for some $\tilde{R} \in \operatorname{Syl}_{r}(X)$. Apply the well known structure theorem of Zassenhaus on Frobenius complements. Thus T is cyclic or generalized quaternion. In the first case $[T, \widetilde{R}]=1$ (see 2.8) and in the second case $[T, \tilde{R}] \neq 1$ can only hold if $T \simeq Q_{8}$, and $r=3$. We conclude $X_{1} \simeq Q_{8}, r=3$, and $\operatorname{dim} V_{1}=4$, as $\bar{X}_{1} \nsubseteq Z(X)$. In particular H_{1} must be solvable by the
result of Zassenhaus. $G_{i}(i=1,2)$ is solvable as G_{i} contains a subgroup of index 3 centralizing $X_{1} / Z\left(H_{1}\right)$. Now G is solvable. Apply 2.9 and conclude $H_{1}=X_{1} \simeq Q_{8} . \quad G_{i} \simeq Q_{8} Z_{3} \quad$ or $\left(Q_{8} * Q_{8}\right) Z_{3}$, because $H_{1} \subseteq G_{i}$ and G_{i} is faithful on V_{2}. However in the second case G_{i} would induce on V_{1} the group $\left(Q_{8} * Q_{8}\right) Z_{3} / Q_{8} \simeq A_{4}$, a contradiction. Hence $G \simeq$ $\simeq Q_{8}\left(Z_{3} \times Z_{3}\right)$. Assertion (ii) of (d) follows.

Suppose now $r\left|\left|H_{1}\right|\right.$. First assume $\left.r\right|\left|0\left(H_{1}\right)\right|$. It is trivial to verify the following observation:
$(+)$ Let U be a $2 n$-dimensional $G F(p)$-vectorspace and Y be a subgroup of $G L(U)$ acting fixed-point-free on U. Let $\tilde{R} \in \operatorname{Syl}_{r}(Y)$ (as usual r is a prime dividing $\left.\varphi_{n}^{*}(p)\right)$. If Y is a Z group then R char Y.

By $(+) \tilde{R} \unlhd G$ for $\tilde{R} \in \operatorname{Syl}_{r}\left(0\left(H_{1}\right)\right)$. As S_{r}-subgroups of G are abelian we have $\widetilde{R} \leqslant \bar{Z}(G)$. So if $T \in \operatorname{Syl}_{t}\left(H_{1}\right)$ for aprime t, we have $\Omega_{1}\left(R^{*}\right) \subseteq$ $\subseteq N_{G}(T)$ for a suitable $R^{*} \in \operatorname{Syl}_{r}(G)$. Thus $\left[\Omega_{1}\left(R^{*}\right), T\right]=1$ if t is odd. We conclude $0\left(H_{1}\right) \subseteq Z(G)$, and as H_{1} is not central in G, we have $Q \simeq Q_{8}$ for $Q \in \operatorname{Syl}_{2}\left(\boldsymbol{H}_{\mathbf{1}}\right)$. Moreover by the result of Zassenhaus \boldsymbol{H}_{1} is solvable. Since G is generated by elements of order 3 we conclude in the same manner as above, that $H_{1} \simeq Z_{3} \times Q_{8}, G / H_{1} \simeq Z_{3} \times Z_{3}$ showing (iii) of (d).

Finally assume $r\left|\left|H_{1}\right|\right.$ but $\left(r,\left|0\left(H_{1}\right)\right|\right)=1$. By the result of Zassenhaus H_{1} has a subgroup Y of index 1 or 2 of the form $Y=M \times S$, where $(|M|,|S|)=1, S \simeq S L(2,3)$ or $S L(2,5) \quad(r=3$ or 5$)$ and M is a Z-group. As usual $M \subseteq Z(G)$, which implies even $M=1$. Now $R \in S^{*}, R \subseteq G$ induces an inner automorphism on S. Thus $G_{i} H_{1}=$ $=H_{1} * K_{i}(i=1,2)$ and K_{i} is faithfully induced on V_{1}. Hence $\left|K_{i}\right|$ is odd implying $K_{i} \simeq Z_{r}$. Therefore $H_{1} \simeq S L(2,3)$ or $S L(2,5)$ and $G / H_{1} \simeq Z_{r} \times Z_{r}$. (d) (iv) follows.

Case 2. $H=1$. As \bar{G} is faithful on V_{1} and W / V_{1} and irreducible on W / V_{1}, we have $O_{p}(\bar{G})=1$. Now $\bar{G}=\bar{G}_{1} \times \bar{G}_{2}$, where \bar{G}_{i} is defined analogous as above. Hence $\left(W / V_{1}\right)^{\bar{\sigma}_{1}}=W / V_{1}$. But then $\left(W / V_{1}\right)^{\bar{\pi}}=$ $=W / V_{1}$ for $R \in \S^{*}, \bar{R} \subseteq \bar{G}_{1}$, a contradiction.

Now (c) and (d) follow.
Assume next, that G has both on V_{1} and W / V_{1} two nontrivial composition factors.

Case 1. $H \neq 1$. Again we assume $G=G_{0}$. Then we have for the fixed components G-invariant chains of the form $0 \subset \tilde{V}_{i} \subset V_{i}(i=1,2)$. Set $P^{*}=O_{p}(G)$. Then P^{*} stabilizes both of the above chains and
$H P^{*}=H_{1} \times H_{2} \times P^{*}$. Set

$$
\mathrm{S}_{1}=\left\{R \subseteq G: R \in \mathrm{~S}^{*}, \tilde{V}_{1}=V_{1}^{R}\right\}, \quad \mathrm{S}_{2}=\left\{R \subseteq G: R \in \mathrm{~S}^{*}, \tilde{V}_{1}=\left(V_{1}\right)_{R}\right\}
$$

and $G_{i}=\left\langle\delta_{i}\right\rangle(i=1,2)$.
Suppose G_{1} has on V_{2} two nontrivial irreducible composition factors. By parts (c) and (d) we have that $G_{1} P^{*} H / H_{1} \simeq Z_{r}$, and $G_{1} P^{*} H / H_{2} \simeq$ $\simeq \boldsymbol{Z}_{r} \times \boldsymbol{Z}_{r}$. If we define now

$$
\tilde{\mathbf{S}}_{1}=\left\{R \subseteq G: R \in \mathrm{~S}^{*}, \quad \tilde{V}_{2}=V_{2}^{R}\right\}, \quad \tilde{\mathbf{S}}_{2}=\left\{R \subseteq G: R \in \mathrm{~S}^{*}, \quad \tilde{V}_{2}=\left(V_{2}\right)_{R}\right\}
$$

and $\tilde{G}_{i}=\left\langle\tilde{S}_{i}\right\rangle(i=1,2)$, then we see immediately, that for $i=1$ or $2 \tilde{G}_{i}$ also has two nontrivial composition factors on V_{1}. Thus $G / P^{*} \simeq Z_{r} \times Z_{r} \times Z_{r}$.

So assume now, that $G_{i}(i=1,2)$ have precisely one nontrivial composition factor on V_{2}. Hence G_{i} is faithful both on V_{1} and V_{2}. But then G is faithful both on V_{1} and V_{2}, a cotradiction.

Case 2. $H=1$. Now we have G-invariant chains $0 \subset \tilde{V}_{1} \subset V_{1}$ and $0 \subset \widetilde{W}^{*} \subset W^{*}$, where $W^{*}=W / V_{1}$. Define S_{i} and $G_{i}(i=1,2)$ analogous as in case 1. The arguments of case 1 show, that G_{i} has precisely one nontrivial composition factor on W / V_{1}. Thus for $p \neq s, s$ a prime, the groups G_{i} can not contain abelian subgroups of type (s, s), as otherwise there is a nontrivial s-element x with $\operatorname{dim} W_{x}>2 n$. For $i=1$ or 2 consider $X=G_{i} / O_{p}\left(G_{i}\right)$, which has a faithful representation of degree n over $G F(p)$. Suppose $X \nsim Z_{r}$. By [7; 4.2, Th. B] $X / F(X)$ is simple. Moreover $F(X)$ contains no elementary abelian subgroup of rank $\geqslant 2$. If $F(X) \nsubseteq Z(X)$ we conclude from [7; Th. A], that $X \simeq$ $\simeq S L(2,3)$.

So assume $F(X) \subseteq Z(X)$, i.e. X is quasisimple. Let $\{i, j\}=\{1,2\}$ and pick $R \in \mathrm{~S}_{j}$. Then R centralizes the factor X.

By Glaubermans fixed point theorem we find a subgroup $Y \subseteq G_{i}$, $Y=Y^{\prime}, Y \subseteq C_{G}(R)$, such that Y covers the factor X. Now V_{1}^{R} is Y-invariant and we have $O_{p}(Y) \subseteq C_{O_{p}(\theta)}\left(V_{1}\right) \cap C_{O_{p}(G)}\left(W^{*}\right)=P$. As $Y=Y^{\prime}$ and Y induces a p-group on W^{R} we even have $W^{R} \subseteq W_{F}$. Hence $\operatorname{dim} W_{o_{p}(Y)}>2 n$, and thus $O_{p}(Y)=1$. Moreover Y centralizes W^{R} and acts fixed-point-free on W_{R}. Hence $Y \simeq S L(2,5)$ i.e. $X \simeq$ $\simeq S L(2,5)$.
6.6. Assumptions and notation as in 6.4. Assume further $H \neq 1$ and G_{0} has precisely one nontrivial irreducible composition factor on
V_{1} and V_{2}. Then one of the following holds:
(i) $H \subseteq Z\left(G_{0}\right)$.
(ii) $\operatorname{dim} V_{1}=r=n+1, H_{i}(i=1,2)$ is cyclic, and $G_{0} / H \simeq Z_{r}$.
(iii) $\operatorname{dim} V_{1}=n$. Then either $G_{0}=H_{1} \times H_{2}, H_{1} \simeq Z_{r}, S L(2,3)(r=3)$, $S L(2,5)(r=5)$, or $r=3, G_{0} / H \simeq Z_{3}$, and H_{i} is a subgroup of $Q_{8}(i=1,2)$.
(iv) $\operatorname{dim} V_{1}=2 n$. Moreover one of the following is true:
(α) $\quad r=5 . \quad H \simeq S L(2,5), Z_{5} \times S L(2,5)$, or $S L(2,5) \times S L(2,5)$, and $G_{0} / H \simeq Z_{5}, S L(2,5)$, or G_{0} / H is isomorphic to a quasisimple subgroup of $S L\left(2, p^{2}\right)$.
(β) $r=n+1=3$. If for $i=1$ or $2 H_{i}$ is not central in G_{0}, then $H_{i} \simeq Q_{8}, Q_{8} \times Z_{3}, S L(2,3)$, or $S L(2,5)$. If H_{j} is central for $j \neq i$, then $H_{j}=1$ or Z_{3}. Further $G_{0} / H \simeq Z_{3}, Z_{3} \times Z_{3}, S L(2,3)$, $Q_{8}\left(Z_{3} \times Z_{3}\right), S L(2,5)$ or G_{0} / H is isomorphic to a quasisimple subgroup of $S L(2, p)$.

Proof. With the usual notation we assume for convenience $G=G_{0}$ and $H_{2} \nsubseteq Z(G)$.

Case 1. $n<\operatorname{dim} V_{1}<2 n$. As H_{2} acts fixed-point-free on V_{1} we have $\left(r,\left|H_{2}\right|\right)=1$. So if T is any Sylow subgroup of H_{2}, then $R \subseteq N_{G}(T)$ for some $R \in \operatorname{Syl}_{r}(G)$.

Suppose such a T of odd order is not centralized by R. Then as T is cyclic we have $\operatorname{dim} V_{1}=n+1=r$. As G induces on V_{1} a subgroup of $S L\left(V_{1}\right)$, we have $\left|H_{2}\right| \equiv 1(\bmod 2)$. As G is generated by elements of order r, we have $|R|=r$. By $2.9 H_{2}$ is cyclic and G induces on V_{1} a group of order $\left|H_{2}\right| r$. Now assertion (ii) follows.

Assume now, that all odd order Sylow subgroups of H_{2} are central in G. Then as usual $Q \simeq Q_{8}, r=3, n=2$ for $Q \in \operatorname{Syl}_{2}\left(H_{2}\right)$. But then $\operatorname{dim} V_{1}=3$, contradicting the fixed-point-free action of Q on V_{1}.

Case 2. $\operatorname{dim} V_{1}=n$. If $r\left|\left|H_{2}\right|\right.$, then G induces H_{2} on V_{1}. By the theorem of Zassenhaus we conclude $H_{2} \simeq Z_{r}, S L(2,3), S L(2,5)$. Now $r\left|\left|H_{1}\right|\right.$ too, and $G=H_{1} \times H_{2}, H_{1}$ is isomorphic to one of the three groups above.

Suppose next $\left(r,\left|H_{2}\right|\right)=1$. Then as in case $1 T=O\left(H_{2}\right) \subseteq Z(G)$ and $\quad H_{2}=T \times Q, \quad Q \simeq Q_{8}, \quad r=n+1=3$. Hence $T=1$. Now $\left(r,\left|H_{1}\right|\right)=1$ and thus $G / H \simeq Z_{3}, H_{1} \simeq Q_{8}$ or 1. Now (iii) follows.

Case 3. $\operatorname{dim} V_{1}=2 n$.
Case 3.1. $\quad\left(r,\left|H_{2}\right|\right)=1$. Then $R \subseteq N_{G}(T)$ for any Sylow subgroup T of H_{2} and a suitable $R \in \operatorname{Syl}_{r}(G)$. As $r=a n+1$ for some $a \geqslant 1$, we have $[R, T]=1$ if $|T|$ is odd. As $H_{2} \nsubseteq Z(G)$, we have $H_{2}=O\left(H_{2}\right) \times Q$, $Q \simeq Q_{8}, r=n+1=3$. If G / H_{1} is solvable, then by 2.9 we have $H_{2} \simeq Q_{8}$ and $G / H_{1} \simeq\left(Q_{8} * Q_{8}\right)\left(Z_{3} \times Z_{3}\right), \quad\left(Q_{8} * Q_{8}\right) Z_{3}, \quad Q_{8}\left(Z_{3} \times Z_{3}\right), \quad$ or $Q_{8} Z_{3}$. If G / H_{1} is nonsolvable again by $2.9 H_{2} \simeq Q_{8}$ and $G / H_{1} \simeq X *$ $* S L(2,3)$, where X is isomorphic to a quasisimple subgroup of $S L(2, p)$.

Case 3.2. $r \| O\left(H_{2}\right) \mid$. By $(+)$ in the proof of 6.5 we have $\tilde{R} \unlhd Z(G)$ for $\tilde{R} \in \operatorname{Syl}_{r}\left(O\left(H_{2}\right)\right)$. As in the proof of $6.5 H_{2}=O\left(H_{2}\right) \times Q, Q \simeq Q_{8}$, $O\left(H_{2}\right) \subseteq Z(G)$, and $r=n+1=3$. Apply 2.9 to conclude $H_{2} \simeq Q_{8} \times Z_{3}$ and $G / H_{1} \simeq Q_{8}\left(Z_{3} \times Z_{3}\right)$.

Case 3.3. $\quad\left(r,\left|O\left(H_{2}\right)\right|\right)=1, r| | H_{2} \mid$. By the theorem of Zassenhaus H_{2} has a subgroup Y of index 1 or 2 with $Y=M \times S,(|M|,|S|)=1$, and $S \simeq S L(2,3)(r=n+1=3)$ or $S L(2,5)(r=3$ or 5$), M \subseteq Z(G)$. Again $M=1$ and $H_{2}=S$. By $2.9 G / H_{1} \simeq S * C, C \simeq Z_{r}, S L(2,3)$, $S L(2,5)$ or a quasisimple subgroup of $S L(2, p)$ or $S L\left(2, p^{2}\right)$.

We collect the informations of cases 3.1-3:
Let H_{2} be as in case 3.1. If 3 does not divide $\left|H_{1}\right|$, then $H_{1} \simeq 1$ or Q_{8}. If 3 divides $\left|H_{1}\right|$ and $H_{1} \subseteq Z(G)$, then $9 \times|G| H \mid$ and $H_{1} \simeq Z_{3}$. If $H_{1} \nsubseteq Z(G)$ and 3 divides $\left|O\left(H_{1}\right)\right|$, then $G / H \simeq Z_{3}, H_{1} \simeq Q_{8} \times Z_{3}$. If $3\left|\left|H_{1}\right|,\left(3,\left|O\left(H_{1}\right)\right|\right)=1\right.$, and $H_{1} \nsubseteq Z(G)$, then $H_{1} \simeq S L(2,3), S L(2,5)$.

Next let H_{2} be as in case 3.2. If $H_{1} \subseteq Z(G)$, then $H_{1}=1$, as $G / H \simeq Z_{3}$. If $H_{1} \nsubseteq Z(G), 3| | O\left(H_{1}\right) \mid$, then $H_{1} \simeq Q_{8} \times Z_{3}$, and if $\left(3,\left|O\left(H_{1}\right)\right|\right)=1$, $3\left|\left|H_{1}\right|\right.$, then $H_{1} \simeq S L(2,3), S L(2,5)$.

Finally let H_{1} be as in case 3.3. Then $r=3$ or 5 . If $H_{1} \subseteq Z(G)$, then $H_{1} \simeq 1$ or Z_{r}. If $H_{1} \nsubseteq Z(G)$ and $\left(r,\left|O\left(H_{1}\right)\right|\right)=1, r| | H_{1} \mid$, then $H_{1} \simeq S L(2,3) \quad(r=3)$ or $S L(2,5)(r=3,5)$. Assertion (iv) follows.
6.7. Let V be a $G F(p)$-vectorspace, $p>2$, and G be an irreducible subgroup of $S L(V)$ generated by 1-irreducible subgroups of order r such that the following properties hold (see 2.9 (b)):
(1) $V=V_{1} \oplus \ldots \oplus V_{d}$ and G permutes the set $\Omega=\left\{V_{1}, \ldots, V_{d}\right\}$ of 1-dimensional subspaces transitively.
(2) Let N be the normal subgroup of G fixing Ω elementwise. Then $(G \mid N, \Omega)$ is a 2-transitive permutation group and either $d=r$ and $G / N \simeq L_{2}(11), M_{11}, M_{23}, L_{l}(q)\left(r=\left(q^{l}-1\right) /(q-1), l\right.$ a prime $)$ or $d=$
$=r+1$ and $G / N \simeq L_{2}(r), E_{2^{m}} Z_{r}\left(r=2^{m}-1\right), E_{2^{m}} S L(m, 2)\left(r=2^{m}-1\right)$, M_{11}, M_{12}, M_{24}.
(3) $|N /(N \cap Z(G))|$ is odd.

Suppose $x \in G-N$ is an involution and x fixes precisely the subspaces V_{1}, \ldots, V_{k}. Then x induces on $U=V_{1} \oplus \ldots \oplus V_{k}$ the identity or $G / N \simeq$ $\simeq L_{2}(r)$ and x induces on U the map -1 or $G / N \simeq E_{8} S L(3,2)$ and $|N \cap Z(G)|$ is even.

Proof. Case 1. $d=r$. Now $|N \cap Z(G)|$ and thus $|N|$ is odd, as $G \subseteq S L(V)$. Using Glaubermans fixed-point-theorem, we see that $C_{G}(x)$ covers $C_{G / N}(x)$. So $C_{G}(x)$ acts either transitive on $\Gamma=\left\{V_{1}, \ldots, V_{k}\right\}$ or Γ splits into one orbit of length $k-1$ and one orbit of length 1 . In the first case clearly x induces a scalar on U. As x induces on $\Delta=\left\{V_{k+1}, \ldots, V_{d\}}\right\}$ precisely $(d-k) / 22$-cycles and $(d-k) / 2$ is even, det $x=1$ implies that x induces in the second case a scalar on U. Now if x induces -1 on U we have $\operatorname{det} x=(-1)^{k}(-1)^{(r-k) / 2}=(-1)^{r}=$ $=-1$, a contradiction.

Case 2. $d=r+1$. Assume first, that $|N|$ is odd. Again $C_{G / N}(x)$ is covered by $C_{G}(x)$ and with the notation of case 1 , we see that $C_{G}(x)$ is transitive on Γ in the cases $L_{2}(r), M_{11}, M_{12}$, or M_{24}, i.e. x induces a scalar on U. Note that in all cases except $L_{2}(r)$ there are 4 -groups $\langle x, y\rangle, x \sim y \sim x y$ in G such that $\langle x, y\rangle$ leaves at least one element in Γ fixed. This forces, that x induces 1 on U.

We do not have to consider the case $G / N \simeq E_{2^{m}} Z_{r}$ as involutions act fixed-point-free on Ω. Finally if $G / N \simeq E_{2^{m}} S L(m, 2)$, then set $M / N=O_{2}(G / N)$. Again involutions in $M-N$ are fixed-point-free on Ω. If $x \in G-M$, then $\left|C_{M / N}(x)\right|=2^{l}$ implies that $C_{M}(x)$ acts fixed-pointfree on the $2^{l}=k$ fixed components of x and again x induces a scalar on U. The above argument even yields, that x induces 1.

Assume now $|N \cap Z(G)|$ is even. If G / N is simple, then G has a nontrivial 2-part in the Schur multiplier, i.e. for $G-N, G / N \simeq L_{2}(r)$ there are no involutions. In the case $G / N \simeq M_{12}$ as usual x induces a scalar on U. However as $y \sim y z$ in \hat{M}_{12} for $1 \neq z \in Z\left(\widehat{M}_{12}\right)$ and an involution $y \in \widehat{M}_{12}-Z\left(\widehat{M}_{12}\right)$, this case can not happen.

Suppose $G \mid N \simeq E_{2^{m}} Z_{r}$. Then $|N|$ is odd as G is generated by elements of order r. So finally we have to consider $G / N \simeq E_{2^{m}} S L(m, 2)$. Set $M / N=O_{2}(G / N)$. By our assumptions it is clear, that $M / O(M)$ is elementary abelian of order 2^{m+1}, and G / M acts indecomposable on $M / O(M)$ or G contains a subgroup G_{0} such that $G_{0} / O(M)$ is a perfect
central extension of Z_{2} by $S L(m, 2)$ and $G_{0} \cap M \subseteq N$. This yields in any case $m=3$. If G acts decomposable on $M / O(M)$, then there are no involutions in $G-M$ and we are done. If $G / O(M)$ contains an $S L(2,7)$, this group would permute 7 elements of Ω and fix precisely one. Hence $Z(G / O(M))$ would induce 1 on V_{1}, a contradiction. Thus $G / O(M)$ is a split extension of E_{18} by $S L(3,2)$.
6.8. Assumptions and notation as in 6.4. Assume further that G has on V_{1} and W / V_{1} precisely one nontrivial, irreducible composition factor, $\bar{H} \subseteq Z(\bar{G})$, and $F(\bar{G})=F^{*}(\bar{G}), \bar{G} / F(\bar{G})$ is nonsolvable (with $\bar{G}=$ $\left.=G / P, P=C_{G}\left(V_{1}, W / V_{1}\right)\right)$. Then the following holds:
(a) Suppose $H=1$. Denote by U the irreducible composition factor of G on V_{1}. Then $\bar{G} / O_{p}(\bar{G})$ is faithful on U.
(i) Suppose $G / C_{G}(U)$ contains a noncyclic, normal, abelian subgroup $N / C_{G}(U)$. If $\operatorname{dim} U=r$, then $\operatorname{dim} V_{1}=r+1=n+2$ and $\bar{G} / \bar{N} \simeq L_{3}(2), L_{5}(2)$ and $|\bar{N}|$ is even. If $\operatorname{dim} U=r+1$, then $U=V_{1}$ and $r=n+1, \bar{G} / \bar{N} \simeq L_{2}(r), E_{8} S L(3,2), E_{32} S L(5,2)$.
(ii) Suppose $F(\bar{G})$ contains a normal subgroup of symplectic type (see 2.9 (c)), but no normal, noncyclic abelian subgroup. Then $U=V_{1}$ and
(α) $\operatorname{dim} U=n, r=n+1=2^{a}+1$, a a 2 -power. Moreover $\operatorname{dim} U=4, \quad$ or $\quad \bar{G} / F(\bar{G}) \simeq S L(2, \bar{q}), \quad \bar{q}=2^{a}, \quad$ or $\quad a=4$, $\left.\bar{G} / F^{(} \bar{G}\right) \simeq L_{2}(17)$.
(β) $\operatorname{dim} U=n+2, r=n+1=2^{a}-1$, a a prime. Moreover $\operatorname{dim} U \leqslant 8$, or $\bar{G} / F(\bar{G}) \simeq S L\left(2,2^{a}\right)$.
(b) Suppose $H \neq 1$ and use the notation of 6.4.
(i) G_{0} / H_{i} contain noncyclic, normal, abelian subgroups N_{i} / H_{i} ($i=1,2$).
(α) If $N_{2} \subset N_{1}$, then $\operatorname{dim} V_{1}=n+2=r+1$ and $G_{0} / N_{2} \simeq$ $\simeq E_{8} S L(3,2)$ or $E_{32} S L(5,2)$.
(β) If $N_{2} \nsubseteq N_{1}, N_{1} \nsubseteq N_{2}$, then $\operatorname{dim} V_{1}=n+2=r+1$ and G_{0} contains subgroups G_{1}, G_{2} with $G_{0}=G_{i} N_{1} N_{2}(i=1,2)$, $G_{1} \cap G_{2}=N_{1} \cap N_{2}, G_{i} / N_{i} \simeq E_{8} S L(3,2)$ or $E_{32} S L(5,2)$.
(γ) If $N=N_{1}=N_{2}$, then $\operatorname{dim} V_{1}=n+2=r+1$, nontrivial composition factors of G on V_{1}, V_{2} have degree $r, G_{0} / N \simeq$ $\simeq S L(3,2), S L(5,2)$, or $G_{0} / N \simeq L_{2}(11)\left(\right.$ where $\operatorname{dim} V_{1}=12$,

> on $V_{1} G_{0}$ has a composition factor of degree 11 , while V_{2} is irreducible (or vice versa) or $G_{0} / N \simeq L_{2}(r)\left(V_{1}, V_{2}\right.$ are irreducible) or $G_{0} / N \simeq E_{8} S L(3,2), E_{32} S L(5,2)\left(V_{1}, V_{2}\right.$ are irreducible).
(ii) If G_{0} / H_{1} contains a noncyclic, normal, abelian subgroup but G_{0} / H_{2} does not, then $G_{0} / F\left(G_{0}\right) \simeq A_{7}, A_{8}$, and $\operatorname{dim} V_{1}=8$.
(iii) If G_{0} / H_{1} nor G_{0} / H_{2} contain noncyclic, normal, abelian subgroups, then $G_{0} / F\left(G_{0}\right)$ is as in (a) (ii).

Proof. We use the notation of 6.4 i.e. we assume $G=G_{0}$ for convenience if $H \neq 1$. Set $\operatorname{dim} V_{1}=n+k$ and we observe

$$
\begin{equation*}
\operatorname{dim} W_{x}=n+k \quad \text { for involutions } x \notin Z(G) ; \tag{+}
\end{equation*}
$$

moreover

$$
\operatorname{dim}\left(V_{1}\right)_{x}=(n+k) / 2 \quad \text { if } x \text { is not a homology } .
$$

We use the bar convention for homomorphic images modulo P, i.e. $\bar{G}=G \mid P$ and $\bar{G}=G$ if $H \neq 1$. Denote by U the irreducible, nontrivial composition factor of G on V_{1}.

If $O_{p}(\bar{G} \mid \bar{H}) \neq 1$, then of course $O_{p}(\bar{G}) \neq 1$. In this case $H=1$, as we have one nontrivial composition factor on V_{1}. Using a Frattini argument we find a subgroup G_{0} generated by elements in S^{*}, such that $G_{0} \cap O_{p}(G)=P$ and $G=G_{0} O_{p}(G)$. In this case we work with G_{0} instead with G. So we assume $O_{p}\left(\bar{G} / \bar{H}_{1}\right)=1$.

Case 1. G induces on U a group which satisfies assertion 2.9 (b). Thus there is a normal subgroup $\bar{N} \unlhd \bar{G}$ such that \bar{N} / \bar{H}_{1} is noncyclic and abelian and \bar{G} / \bar{N} permutes the homogeneous components of \bar{N} on U transitively. Moreover we have a G-decomposition $V_{1}=U \oplus U_{0}$.

Case 1.1. $H=1$. Here \bar{G} is faithful on V_{1} and W / V_{1}.
Let $x \in G-P$ such that $x^{2} \in P, \bar{x} \notin Z(\bar{G})$. If $p>2$, then $\operatorname{dim}\left(V_{1}\right)_{x}=$ $=(n+k) / 2$ by $(+)$. If $p=2$ and $x^{2}=1$ then again $\operatorname{dim}\left(V_{1}\right)_{x}=$ $=(n+k) / 2$. If $x^{2} \neq 1$, then $W^{x^{2}}=V_{1}$ forcing again $\operatorname{dim}\left(V_{1}\right)_{x}=$ $=(n+k) / 2$. By 3.2 we have the following possibilities:
$\operatorname{dim} U=r=n+1, \quad G / N \simeq A_{r}, \quad L_{f}(q) \quad\left(r=\left(q^{f}-1\right) /(q-1)\right), \quad L_{2}(11)$, M_{11}, M_{23} or

$$
\operatorname{dim} U=r+1=n+2, \quad G / N \simeq A_{r+1}, \quad L_{2}(r), \quad E_{2^{m}} S L(m, 2)
$$

M_{11}, M_{12}, M_{24} or $\operatorname{dim} U \geqslant n+3, G / N$ is alternating of degree $\operatorname{dim} U$.
Assume $G / N \simeq A_{m}(m \geqslant r)$. Let \bar{p} denote a prime $\bar{p} \neq p$ such that there is a normal, noncyclic, elementary abelian \bar{p}-subgroup $\bar{E} \subseteq \bar{N}$. Then $\bar{E} /(\bar{E} \cap Z(\bar{G}))$ can be considered as the irreducible part of the permutation module of A_{m} over $G F(\bar{p})$. One finds an element $\bar{y} \in \bar{E}$ with $\operatorname{dim}\left(V_{1}\right)^{\bar{y}}=\operatorname{dim}\left(W / V_{1}\right)^{\bar{y}}=2$. Thus y fixes a subplane of order p^{n+k-2} forcing $n+k \leqslant 4$, a contradiction.

Case 1.1.1. $\operatorname{dim} U=r=n+1$. If $|N /(N \cap Z(G))|$ is odd we apply 6.7 to obtain an involution $x \in G$ with $\operatorname{dim} U_{x}>(\operatorname{dim} U) / 2$, a contradiction to $(+)$.

Thus there is an elementary abelian 2 -subgroup $\bar{E} \unlhd \bar{G}, \bar{E} \leqslant \bar{N}$, $\bar{E} \nsubseteq Z(\bar{G})$. Set $\bar{E}_{0}=[\bar{E}, \bar{R}]$ for some $R \in \mathrm{~S}^{*}, R \subseteq G$. Apply 6.3. Then $\operatorname{dim} U=r=2^{l}-1$ and for $\bar{x} \in \bar{E}_{0}-1$ we have $\operatorname{dim} U_{\bar{x}}=2^{l-1}-1$, where $\left|\bar{E}_{0}\right|=2^{l}$. Thus $(n+k) / 2=\operatorname{dim} V_{1}-\operatorname{dim} U+\operatorname{dim} U_{\bar{x}}$. Hence $\operatorname{dim} V_{1}=2^{l}=r+1=\operatorname{dim} U+1$. This excludes in particular the cases $r=11$ or 23 and forces $\bar{E}=\bar{E}_{0}$.

Suppose therefore $G / N \simeq L_{f}(\bar{q})$. First assume that \bar{q} is odd. Denote by m the minimal degree of a nontrivial projective representation of $L_{f}(\bar{q})$ over $G F(2)$. Obviously $R \in \mathbf{S}^{*}, R \leqslant G$, acts irreducibly on \bar{E}. Thus $l \geqslant m$. If $f=2$, then $\bar{q}+1=r$ is a prime, a contradiction. If $f>2$, then $m \geqslant \bar{q}^{f-1}-1$. Now $2^{l}-1=r=\left(\bar{q}^{f}-1\right) /(\bar{q}-1) \leqslant$ $\leqslant m \bar{q} /(\bar{q}-1)+1 \leqslant 3 l / 2+1$ and $l \leqslant 2$, contradicting $r \geqslant 13$.

Now assume that \bar{q} is a 2-power. Then $r=2^{l}-1=\left(\bar{q}^{f}-1\right) /(\bar{q}-1)$ forces $\bar{q}=2$ and $|\bar{E}|=2^{f}$, i.e. f is a prime. If $f \neq 3,5$ then G contains a subgroup L such that $G=L N$ and $\bar{L} \cap \bar{N}=O(\bar{N})$ (see [3]). It is now obvious, that G contains elementary abelian groups of order $2^{2 f-3}$, which is in conflict with $(+)$. So $f=3$ or 5.

Case 1.1.2. $\operatorname{dim} U=r+1=n+2$. Suppose first $\bar{N} /(\bar{N} \cap Z(\bar{G}))$ has odd order. By $6.7 G / N \simeq L_{2}(r)$ or $E_{8} S L(3,2)$. So now assume, that there is an elementary abelian 2 -subgroup $\bar{E} \subseteq \bar{N}, \bar{E} \unlhd \bar{G}, \bar{E} \nsubseteq Z(\bar{G})$. The same argument as in case 1.1.1 forces $\left|\bar{E}_{0}\right|=2^{l}, r=2^{i}-1$ for $\bar{E}_{0}=[\vec{E}, \bar{R}]$. Now $\operatorname{dim} V_{1}=2^{l}, U=V_{1}$. Again we dismiss the cases $r=11$ or 23 . Suppose $G \mid N \simeq E_{2^{m}} S L(m, 2)$. Then $l=m$. Set $M / N=$ $=O_{2}(G / N)$. Act with M on \bar{E}. Thus $|\bar{E}|=2^{l+1}$ and $|\bar{N} \cap Z(\bar{G})|$ is even. As G contains a subgroup G_{0} such that $G_{0} M=G$ and $G_{0} \cap M \subseteq N$, the same argument as in case 1.1.1 shows now $m=3$ or 5 .

Case 1.2. $H \neq 1$. Now $H=H_{1} \times H_{2}$, where $H_{i}=C_{G}\left(V_{i}\right)(i=1,2)$ H_{i} is cyclic and $H \subseteq Z(G)$. Thus $F(G) \mid H=F(G / H)$. Denote now by $U_{i}(i=1,2)$ the irreducible nontrivial composition factor of G on V_{i}.

Case 1.2.1. Assume $U_{i}=U_{i}(1) \oplus \ldots \oplus U_{i}\left(d_{i}\right), \quad \Omega_{i}=\left\{U_{i}(1), \ldots\right.$, $\left.\ldots, U_{i}\left(d_{i}\right)\right\}$, and G acts as a transitive permutation group on $\Omega_{i}(i=1,2)$. Let N_{i} be the normal subgroup of G, which leaves all components of Ω_{i} fixed (i.e. $\left(G / H_{i}, U_{i}\right)$ satisfies the assertion $\left.2.9(b)\right)$. Note N_{1}, $N_{2} \subseteq F(G)$. We distinguish three situations: (A) $N_{2} \subset N_{1}$, (B) $N_{2} \nsubseteq N_{1}$, $N_{1} \nsubseteq N_{2}$, and (C) $N_{1}=N_{2}$.

Suppose first, that we are in situation (A). Then N_{1} / N_{2} is abelian, which implies $G / N_{2} \simeq E_{2^{m}} L(m, 2)$. As N_{1} / H_{2} is nonabelian, we have $O_{2}(G) H_{2} / H_{2}$ is irreducible on V_{2} and $O(F(G)) H_{2} / H_{2}$ is cyclic. We conclude $O(F(G)) \subseteq Z(G)$. As the Schur multiplier of $S L(m, 2)$ has 2 -power order, we get $O(F(G))=1$ and $F(G)=O_{2}(G)=N_{1}$. As $N_{1}^{\prime} \subseteq H_{1}$ and $C_{\Omega_{1} N(2)}\left(N_{1}\right)=\Omega_{1}\left(N_{2}\right) \cap H$ we have $\left|\Omega_{1}\left(N_{2}\right) /\left(\Omega_{1}\left(N_{2}\right) \cap H\right)\right|=2^{m}$. Thus N_{2} / H is homocyclic. Since G / N_{2} is a split extension of $E_{2^{m}}$ by $S L(m, 2)$ we have $m=3$ or 5 as in case 1.1.1.

If we are in situation (B), we have two subgroups G_{1}, G_{2} of G with $G_{i} \cap F(G)=N_{i} \quad(i=1,2)$, and G_{i} satisfies the assertions of G in situation (A). Thus $G / F(G) \simeq S L(m, 2), m=3$ or 5 and $\left(N_{1} \cap N_{2}\right) / H$ is homocyclic.

So finally we have (C): $N=N_{1}=N_{2}$. As in case 1.1 the case that G / N is alternating can be dismissed.

Suppose $\operatorname{dim} U_{1}=\operatorname{dim} U_{2}=r$. As $H \neq 1$, we have $U_{i}=V_{i}$. Now by $(+)$ and as G induces on $V_{i}(i=1,2)$ a subgroup of $S L\left(V_{i}\right)$, we conclude that $|G|$ is odd, a contradiction.

Suppose $\operatorname{dim} U_{1}=r=n+1$ but $\operatorname{dim} U_{2}>r$. Then $\operatorname{dim} U_{2}=$ $=r+1=n+2, U_{2}=V_{2}$, and G / N is a 2 -transitive group on r as well as on $r+1$ symbols. Hence $G / N \simeq L_{2}(11)$ or M_{11}. Now as in case 1.1.1 we exclude that $|N /(N \cap Z(G))|$ is even. Also by 6.7 $|N \cap Z(G)|$ is even, i.e. $2\left|\left|H_{1}\right|\right.$ and the Schur multiplier of G / N has even order. Thus $G / N \simeq L_{2}(11), G / O(N) \simeq S L(2,11)$, and on $\Omega_{1} G$ has a permutation representation of degree 11, while on Ω_{2} the representation of degree 11, while on Ω_{2} the representation has degree 12.

So finally we have $\operatorname{dim} U_{1}=\operatorname{dim} U_{2}=r+1$ and $U_{i}=V_{i}$. If $|N|$ is odd the as usual $G / N \simeq L_{2}(r)$. Suppose next, that $|N /(N \cap Z(G))|$ is odd but $|N \cap Z(G)|$ is even. If G / N is simple, then G / N has a Schur multiplier of even order. Thus $G / N \simeq L_{2}(r)$ or M_{12}. However the same argument as in the proof of 6.7 yields that the second case can not occur. So assume next $G / N \simeq E_{2^{m}} S L(m, 2)$. Clearly $O_{2}(G / O(N))$ must be abelian and as in 6.7 we see, that $O_{2}\left(G / O(N) H_{i}\right) \quad(i=1,2)$ is elementary abelian of order 2^{m+1}. Thus $H_{1} \simeq H_{2} \simeq Z_{2}$ and as in 6.7 we have $m=3$ or 5 .

For $|N|(N \cap Z(G)) \mid$ even we get as in case 1.1.2 that $G / N \simeq L_{2}(r)$ or $E_{2^{m}} S L(m, 2)(m=3,5)$.

Case 1.2.2. Now we assume that $G \mid H_{2}$ has no normal, noncyclic abelian subgroup, i.e. $H_{1} \neq 1$ and V_{2} is an irreducible G-module. Apply 2.9. We are in case (c) with the pair ($V_{2}, G \mid H_{2}$). Thus by 3.2 and 3.4 we have $\operatorname{dim} V_{2}=n+2=r+1, r=2^{a}-1, O_{2}\left(G \mid H_{2}\right)$ is of syplectic type and $O\left(G \mid H_{2}\right)$ is cyclic and central in G / H_{2}. Finally $G / F^{*}(G)$ is irreducible on $O_{2}\left(G / H_{2}\right) / Z\left(O_{2}\left(G / H_{2}\right)\right)$. Hence $F(G)$ induces on V_{1} an abelian group such that $G \mid F(G)$ is a 2 -transitive group. Now either the irreducible composition factor U of G on V_{1} has dimension r or $r+1$. As $G / F(G)$ is nonsolvable we have $a \geqslant 3$. By 3.2 and 3.4 we get $G / F(G) \simeq A_{7}$ or A_{8}, where $\operatorname{dim} U=7$ or 8.

Case 2. G induces on U, the irreducible composition factor of G on V_{1}, a group which satisfies the conditions of 2.9 (c).

Case 2.1. $H=1$, i.e. \bar{G} is faihful on V_{1} and W / V_{1}. Now $F(\bar{G})=$ $=\bar{Z} \times O_{2}(\bar{G})$, where \bar{Z} has odd order and is a cyclic subgroup of $Z(\bar{G})$. $\bar{E}=O_{2}(\bar{G})$ is of symplectic type. Finally as \bar{E} has width $\geqslant 2$, we havo that $V_{1}^{Z(\bar{B})}=V_{1}$, i.e. V_{1} and W / V_{1} are \bar{G}-irreducible. Now $\bar{E}=\bar{F} * \bar{Z}_{0}$, where \bar{Z}_{0} is cyclic and \bar{F} is extraspecial of order $2^{2 a+1}$ and $r=2^{a}+1$ or $2^{a}-1$, and $\operatorname{dim} V_{1}=n$ or $n+2$ accordingly. Let \bar{A}^{*} be a maximal abelian subgroup in \vec{E} such that \bar{A}^{*} is normal in a S_{2}-subgroup of \bar{G}.

If possible \bar{A}^{*} is chosen such that \bar{A}^{*} contains an elementary abelian subgroup or order 2^{a+i}. If \bar{E} is extraspecial set $\bar{A}=\bar{A}^{*}$. If $\left|\bar{Z}_{0}\right| \geqslant 4$ set $\bar{A}=\Omega_{1}\left(\bar{A}^{*}\right)$. Set $\bar{C}=\{\bar{x} \in \bar{G} \mid[\bar{A}, \bar{x}] \subseteq Z(\bar{F})\}$ and $\bar{C}_{0}=C_{\bar{G}}(\bar{A})$. \bar{A} has precisely 2^{a} different homogenous components on V_{1}, which must be fixed by \bar{C}_{0}, i.e. \bar{C}_{0} is abelian. Now $C_{\bar{E}}(\bar{A})=\bar{A}^{*}$ and $\left|\bar{E}: \bar{A}^{*}\right|=2^{a}$ and thus every element $\bar{x} \in \bar{A}-Z(\bar{E})$ is conjugate to $\bar{x} \bar{z}$ in \vec{E} for $1 \neq \bar{z} \in \Omega_{1}(Z(\bar{E}))$. Hence \bar{E} covers \bar{C} / \bar{C}_{0} and $\bar{E} \cap \bar{C}_{0}=\bar{A}^{*}$. Now \bar{C} / \bar{E} corresponds in $\bar{G} \mid \bar{E}$ to the centralizer of a maximal isotropic space. Hence $\bar{C} \mid \vec{E} \simeq \bar{C}_{0} / \bar{A}^{*}$, is elementary abelian. Use the notation of 3.4. For $\bar{G} \mid \bar{E} \simeq S p(2 \bar{n}, \bar{q}), S O^{-}(2 \bar{n}, \bar{q}), S p(2 a, 2), S O^{+}(2 a, 2)$ we have $|\bar{C}| \bar{B} \mid=$ $=\bar{q}^{(\bar{n}+1) \pi / 2}, q^{\overline{(i n}-1) / 2}, 2^{(a+1) a / 2}, 2^{a(a-1) / 2}$ respectively.

Suppose $\left|\bar{C}_{0}\right| \bar{A}^{*} \mid \geqslant 2^{a+2}$, then $\left|\Omega_{1}\left(\bar{C}_{0}\right)\right| \geqslant 2^{a+2}$. This implies however that there is an involution $\bar{x} \in \bar{C}_{0}$, with $\operatorname{dim}\left(V_{1}\right)_{\bar{x}}>2^{a-1}$, a contradiction.

Hence $|\bar{C} / \bar{E}| \leqslant 2^{a+1}$. This implies $n=1$ if $a \geqslant 4$ for $\bar{G} / \bar{E} \simeq S p(2 \bar{n}, \bar{q})$, $\bar{n} \leqslant 3$ if $a \geqslant 4$ for $\bar{G} / \bar{E} \simeq S O^{-}(2 \bar{n}, \bar{q}), a=2$ if $G \mid E \simeq S p(2 a, 2), a \leqslant 3$ if $\bar{G} \mid \bar{E} \simeq S O^{+}(2 a, 2)$.

Case 2.2. $H \neq 1$ (i.e. $G=G_{0}$ is assumed). Because of case 1 we also assume, that G / H_{2} has no noncyclic, normal, abelian subgroup. Wlog. $H_{1} \neq 1$ and V_{2} is irreducible. Thus $\operatorname{dim} V_{2}=n$ or $n+2$ according to wether $r=2^{a}+1$ or $2^{a}-1$, where $O_{2}(G) /\left(O_{2}(G) \cap H_{i}\right)$ $(i=1,2)$ is of symplectic type and $\left|O_{2}(G)\right| Z\left(O_{2}(G)\right) \mid=2^{a}$. Hence also V_{1} is irreducible.

If $\left|H_{i}\right|(i=1,2)$ is odd we get of course the same results as in case 2.1. Thus we assume, that $\left|H_{i}\right|$ is even. Further set $E=O_{2}(G)$, $E_{i}=E \cap H_{i} \quad(i=1,2)$. Clearly $\quad Z_{i}=\Omega_{1}\left(E_{i}\right) \neq 1 \quad$ for $\quad i=1,2 . \quad E^{\prime}$ covers $\Omega_{1}\left(Z\left(E / E_{i}\right)\right)(i=1,2)$ and thus either $E^{\prime}=\left\langle z_{1} z_{2}\right\rangle$ or $E^{\prime}=$ $=\boldsymbol{Z}_{1} \times \boldsymbol{Z}_{2}$, where $\boldsymbol{Z}_{i}=\left\langle\boldsymbol{z}_{i}\right\rangle$.

Suppose first $E^{\prime}=\left\langle z_{1} z_{2}\right\rangle$. Then $E=E_{1} \times F=E_{2} \times F$, where F is a group of symplectic type faithful both on V_{1} and V_{2}. Again denote by A^{*} a maximal abelian group in E, such that $A^{*} \unlhd S, S \in S y l_{2}(G)$, and $A=\Omega_{1}\left(A^{*}\right)$ has maximal possible order. Proceed as in case 2.1 and get the analogous results.

Now assume $E^{\prime}=Z_{1} \times Z_{2}$. If $G / E \simeq S p(2 n, \bar{q}), S O^{-}(2 n, \bar{q}), S O^{+}(2 a, 2)$, $S p(2 a, 2)$ (notation of 3.4), we find $x \in G, x^{2} \in E$, such that $\left|C_{E / Z(E)}(x)\right|=$ $=2^{a}$. As $E / E_{i}(i=1,2)$ is of symplectic type, the counter image A of $C_{E / Z(E)}(x)$ is abelian. From the action of G / E on $E / Z(E)$ we get $\left|C_{G / E}(A \mid Z(E))\right|=\bar{q}^{\bar{n}(\bar{n}+1) / 2}, \bar{q}^{\bar{n}(\bar{n}-1) / 2}, 2^{a(a+1) / 2}, 2^{a(a-1) / 2}$ where $G / E \simeq S p(2 \bar{n}, \bar{q})$, $S O^{-}(2 \bar{n}, \bar{q}), S p(2 a, 2)$, or $S O^{+}(2 a, 2)$ accordingly. Furthermore any element $a \in \Omega_{1}(A)-Z(E)$ is conjugate in E to every element in $a Z_{1} Z_{2}$. Thus $C_{G}\left(\Omega_{1}(A)\right)$ covers $C_{G / E}(A / Z(E))$. We get the same restrictions as above.
6.9. Suppose G satisfies hypothesis 6.2 and in addition we assume, that G fixes Δ pointwise. The following assertions are true:
(a) If $O_{p}(G) \neq 1$, then $n=k$ and $G \simeq E Z$ is a Frobenius group, where E is elementary abelian of order p^{n} and Z is cyclic of order r.
(b) If $G / Z(G) \simeq \mathscr{X}\left(p^{a}\right)$ is a Chevalley group of characteristic p then:
(i) $n=k, \mathscr{X}\left(p^{a}\right) \simeq L_{2}\left(p^{n}\right), L_{2}\left(p^{n / 2}\right)$.
(ii) $n=3, k=1, p=2$ and $X\left(p^{a}\right) \simeq L_{3}(2)$.
(c) Suppose $G / Z(G) \simeq \mathfrak{X}\left(\bar{p}^{a}\right)$ is a Chevalley group of characteristic $\bar{p} \neq p$.
(i) If $n=k$, then $\mathscr{X}\left(\bar{p}^{a}\right) \simeq A_{5}$.
(ii) If $\varphi_{n}^{*}(p)$ divides $|G|$ and $k<n$, then $k=2$ and we have the following possibilities.
$(\alpha) V$ is an irreducible G-module, $\mathfrak{X}\left(\bar{p}^{a}\right) \simeq U_{4}(2), L_{3}(4)$, and V can be considered as an irreducible 4-dimensional $G F\left(p^{2}\right)$ module for $p=3$ or 5.
(β) V is indecomposable as a G-module, $\mathfrak{X}\left(\bar{p}^{a}\right) \simeq L_{2}(11), L_{2}(19)$, $p=2$ and V can be considered as a 6- or 10-dimensional module over $G F(4)$ accordingly.
$(\gamma) \mathfrak{X}\left(\bar{p}^{a}\right) \simeq L_{2}(7), p=3$ or 5 , and V can be considered as a 4-dimensional $G F\left(p^{2}\right)$-module.

Proof. We choose the notation such that $W=V \oplus V$, where $\operatorname{dim} V=n+k$ and denote by $V_{\infty}=\{(v, 0): v \in V\}, V_{0}=\{(0, v): v \in V\}$, and $V_{1}=\{(v, v): v \in V\}$ fixed components of Δ. There is a subset $K(\Delta) \subseteq G L(V)$, such that $V_{t}=\{(v t, v): v \in V\}(t \in K(\Delta))$ are the components different from V_{∞}, V_{0} of Δ. Moreover the representations of G on $V_{\infty}, V_{0}, V_{t}(t \in K(\Delta))$ are all isomorphic. Abusing the notation we denote by x also the map that $x \in G$ induces on a component $V \simeq V_{\infty} \simeq V_{0} \simeq V_{t}$. We have $K(\Delta) \subseteq C_{G L(V)}(G)$ and G as a subgroup of $S L(V)$ is generated by 1-irreducible subgroups of order r. Apply 6.2. Hence there is a number d such that either $n=k d, V$ can be considered as an indecomposable or irreducible G-module over $G F\left(p^{k}\right)$ or $n=l d$, $l \geqslant k, V=V_{R} \oplus V^{R}\left(R \in \mathcal{S}^{*}, R \subseteq G\right)$ is a G-decomposition with $V_{R}=V_{G}$ and V^{R} can be considered as a d-dimensional $G F\left(p^{l}\right)$-module.

Assume $O_{p}(G) \neq 1$. Then V is a indecomposable $(d+1)$-dimensional $G F\left(p^{k}\right)$-module of G. The nontrivial elements of $O_{p}(G)$ induce transvections and thus $d+1=2$ and (a) follows.

From now on we assume $O_{p}(G)=1, G / Z(G)$ is quasisimple, and we note, that $r \mid \varphi_{d}^{*}\left(p^{k}\right)$ respectively $r \mid \varphi_{d}^{*}\left(p^{l}\right)$.

Suppose $d=1$. As $G / Z(G)$ is nonsolvable, we have that V is G-irreducible, i.e. $n=k$. So $G=E(G) * Z(G)$, where $E(G)$ is an irreducible subgroup of $S L\left(2, p^{n}\right)$ and $r=|Z(G)|$ divides $|E(G)|$. (b) (i) and (c) (i) follow.

So from now on we assume $d>1$. By 2.12 we have $G=E(G)$.
To (b). Suppose $G / Z(G) \simeq \mathscr{X}\left(p^{a}\right)$ is a Chevalley group over $G F\left(p^{a}\right)$.
Case 1. V is irreducible. $d+1$ must be even, as $G=G^{\prime}$ and for involutions $x \in G-Z(G)$ we have $\operatorname{dim} V_{x}=(d+1) / 2$. If $\mathfrak{X} \neq A_{1}$ we have by $5.2 X=A_{l}, V$ is the standard module, $l=d, k=a$, or $\mathfrak{X}={ }^{2} A_{l}, l=d, k=2 a$. In both cases there are p-elements $t \in G$, which induce on the $G F\left(p^{k}\right)$-space V transvections, contradicting $d>1$. Thus $\mathfrak{X}=A_{1}$. By $5.2 d=2, p>2, k=a$. But then $d+1=3$ is odd, which excludes this case too.

Case 2. V is completely reducible, i.e. for $R \in \oint^{*}, R \subseteq G, V^{R}$ is the nontrivial irreducible submodule of G on V. Use Herings result [8] or 5.2 and find an p-element $x \in G$, with $\operatorname{dim}\left(V^{R}\right)_{x} \geqslant\left(\operatorname{dim} V^{R}\right) / 2$, a contradiction.

Case 3. V is indecomposable but not irreducible. Denote by U the d-dimensional $G F\left(p^{k}\right)$-composition factor of G on V. Apply 5.2 to the pair (G, U). As in case $1 d+1$ is even. Suppose $X=A_{l},{ }^{2} B_{l}$, ${ }^{2} D_{l}, G_{2}$, or C_{l}. Then $k \mid a$ and U can be considered as the natural $G F\left(p^{a}\right)$-module read as a $G F\left(p^{k}\right)$-module. Since $d+1$ is even the cases $A_{l}(l$ odd $),{ }^{2} B_{l},{ }^{2} D_{l}, G_{2}, C_{l}$ fall out. If $\mathfrak{X}=A_{l}$ by a result of Higman [9] we get $l=2, p^{a}=2$.

If $X={ }^{2} A_{l}$ and U is standard, then $l \leqslant 2$ (consider the action of transvections of ${ }^{2} A_{l}\left(p^{a}\right)$ on V). However for $l=2 G$ contains an element x of order $\left(p^{a}+1\right) /\left(3, p^{a}+1\right)$, which has eigenvalues $\lambda, \lambda, \lambda^{p^{a}-1}$ on its 3 -dimensional standard module $\quad\left(|\lambda|=\left(p^{a}+1\right) /\left(3, p^{a}+1\right)\right)$. For $y \in C_{G}(x)$ of order p we get $\operatorname{dim} V_{v}>(\operatorname{dim} V) / 2$, a contradiction.

To (c). We now assume $G / Z(G) \simeq \mathscr{X}\left(\bar{p}^{a}\right), \bar{p} \neq p$, and $\varphi_{n}^{*}(p)| | G \mid$. We apply 4.2 and observe, that $r^{2} \chi|G|$ if $r||G|$ and $r| p_{n}^{*}(p)$. Moreover $r \leqslant 2 n+1$, if $X\left(p^{a}\right) \neq A_{1}(7) \simeq A_{2}(2)$.

So assume first $r>2 n+1$ and $\mathscr{X}\left(p^{a}\right) \simeq A_{1}(7)$. Then $r=3 n+1=7$. As $\bar{p} \neq p$ we have that V is irreducible and $d+1=3$, which is impossible as usual.

So we have from now on $\varphi_{n}^{*}(p) \leqslant(n+1)(2 n+1)$. By Hering [7] we have one of the following cases:

$$
\begin{aligned}
& \varphi_{n}^{*}(p)=n+1 \text { and } p^{n}=2^{4}, 2^{10}, 2^{12}, 2^{18}, 3^{4}, 3^{6}, 5^{6}, \\
& \varphi_{n}^{*}(p)=2 n+1 \text { and } p^{n}=2^{3}, 2^{8}, 2^{20}, \\
& \varphi_{n}^{*}(p)=(n+1)(2 n+1) \text { and } p^{n}=p^{2}, 3^{18}, 17^{6} .
\end{aligned}
$$

We pick r as the maximal prime divisor of $\varphi_{n}^{*}(p)$ and denote by m_{G} the minimal degree of a nontrivial, projective representation of \boldsymbol{G}^{\prime} over a field of characteristic p.

Case 1. $r=2 n+1$. By 4.2 we have one of the following:

$$
\begin{aligned}
& X\left(\bar{p}^{a}\right)=A_{l}(2) \quad(l \geqslant 3), 2 n+1=2^{l+1}-1, m_{G} \geqslant 2^{l}-1=n, \\
& X\left(\bar{p}^{a}\right)=A_{1}(r), m_{G} \geqslant n, \\
& X\left(\bar{p}^{a}\right)=A_{2}(4), r=7, m_{G} \geqslant 4 .
\end{aligned}
$$

If V is irreducible or indecomposable we have $n=d k$ and $d+1 \geqslant$ $\geqslant m_{G}$, implying $k=1, d=n$. If V is completely reducible we have $d \geqslant m_{G}$ and again $k=l=1$ and $d=n$. As $G=G^{\prime}$, we have that $n+1$ is even. Hence $(n, p)=(3,2)$. Inspecting $G L(4,2) \simeq A_{8}$ (note that $A_{1}(7) \simeq A_{2}(2)$ was considered under (b)), we see that this case does not occur.

Case 2. $r=n+1=\varphi_{n}^{*}(p)$. Suppose $k=1$, then $\operatorname{dim} V=n+1=r$, which is impossible as usual. Thus $k \geqslant 2$.
$m_{G} \leqslant d+1=(n+k) / k<(r+2) / 2$ if V is irreducible or indecomposable and $m_{G} \leqslant d \leqslant n / l \leqslant n / k<r / 2$ if V is completely reducible. Comparing with 4.2 and using the bounds for m_{G} [14], this yields $l=k=2$. We have in the irreducible case the following possibilities for the pair $\left(\mathscr{X}\left(\bar{p}^{a}\right), d+1\right)$:

$$
\begin{gathered}
\left(L_{m}(2), 2^{m-1}\right), \quad\left(L_{2}(r),(r-1) / 2\right), \quad\left(L_{2}(r),(r+1) / 2\right), \\
\left(U_{4}(2), 4\right) \quad \text { or } \quad\left(L_{3}(4), 4\right)
\end{gathered}
$$

If V is reducible we get for the pair $\left(X\left(\bar{p}^{a}\right), d\right)$ the following possibilities:

$$
\left(L_{m}(2), 2^{m-1}-1\right), \quad \text { or } \quad\left(L_{2}(r),(r-1) / 2\right)
$$

Suppose first $G \mid Z(G) \simeq L_{m}(2)$. If $m \geqslant 5$, then $Z(G)=1$ and G contains elementary abelian 2 -subgroups of rank $(m / 2)^{2}$ if m is even and of rank $\left(m^{2}-1\right) / 4$ if m is odd. This conflicts with a result of Ostrom [18]. If $m=4$, then $d+1 \leqslant 4$. The result of Ostrom forces $|Z(G)|=2$, which is however impossible as $L_{4}(2)$ has no proper projective module of dimension $\leqslant 4$. If $G / Z(G) \simeq L_{2}(7) \simeq L_{3}(2)$ we may assume $p \neq 2$ because of (b). Thus $n=6$ and $p=3$ or 5 and G acts on V reducibly or irreducibly.

So we assume $G / Z(G) \simeq L_{2}(r), r \geqslant 11$, and $d+1=(n+1) / 2$ is even. Hence $(n, p)=(10,2),(18,2) . G \mid Z(G) \simeq L_{2}(11), L_{2}(19)$ and V can be considered as a 6 -dimensional, respectively 10 -dimensional $G F(4)$-module. However $L_{2}(11), L_{2}(19)$ do not have irreducible 2modular representations of degree 6 or 10 respectively (see for instance [5]). Hence V must be indecomposable as in the completely reducible case we would have $\operatorname{dim} V_{x}=2+\operatorname{dim}\left(V^{R}\right)_{x}>(\operatorname{dim} V) / 2$ for an involution $x \in G$ and $R \in S^{*}, R \subseteq G$. Suppose finally $G / Z(G) \simeq$ $\simeq U_{4}(2)$ or $\left(L_{3} 4\right)$. Then $d+1=4, p=3$ or 5 , and V is irreducible.
6.10. Theorem. Suppose G satisfies hypothesis $6.1,2 k \neq n$, and $k<n$. Set $G_{0}=\langle R| R \in \operatorname{Syl}_{r}(G), r\left|\varphi_{n}^{*}(p)\right\rangle$. Then $G_{0} / Z\left(G_{0}\right) \simeq L_{2}(7)$ or G_{0} is solvable.

As a corollary we have:
6.11. Theorem. Suppose G satisfies hypothesis 6.0 with $q=p^{k}$ and $\operatorname{dim}_{G F(q)} V=d+1$. Set $G_{0}=\langle R| R \in \operatorname{Syl}_{r}(G), r\left|\varphi_{d}^{*}(q)\right\rangle$. Then one of the following assertions holds:
(a) $d \leqslant 2$.
(d) G_{0} is solvable.
(c) $G_{0} / Z\left(G_{0}\right) \simeq L_{2}(7)$.

Proof of 6.10. Let G_{0} be nonsolvable. By $6.1 G_{0}$ fixes Δ pointwise. Clearly $G_{0} \unlhd G$ and $O_{p}\left(G_{0}\right)=1$. Apply 6.2 as in the proof of 6.9 . Thus we can consider G_{0} as a subgroup of $S L(V)$, where V is a fixed component of dimension $n+k$. Moreover there is a number d, such that either $n=k d, V$ can be considered as a $(d+1)$-dimensional $G F\left(p^{k}\right)$-module (irreducible or indecomposable) or $n=l d, l \geqslant k, V=V_{R} \oplus V^{R}$ is a G_{0}-decomposition for $R \in \mathbb{S}^{*}, R \subseteq G_{0}$, and V^{R} is a $G F\left(p^{l}\right) G_{0}$-module. We apply 2.9 to G_{0} and the nontrivial, irreducible G_{0}-factor U on V. By our assumptions the case (d) of 2.9 falls out. If $F\left(G_{0}\right) \nsubseteq Z\left(G_{0}\right)$ by 2.9 we have $r=n+1$. Since $G_{0} \subseteq S L(V), n+k$ is even (consider the action of involutions) i.e. $k \geqslant 2$. On the other hand $C_{\operatorname{End}(U)}\left(G_{0}\right) \simeq G F(p)$. and $d=n$, a contradiction. So assume $F\left(G_{0}\right) \subseteq Z\left(G_{0}\right)$. By our assumptions and 2.12 we have $G_{0}=E\left(G_{0}\right)$. If $G_{0} / Z\left(G_{0}\right)$ is a Chevalley group of characteristic p, then by $6.9 G_{0} / Z\left(G_{0}\right) \simeq L_{3}(2), p=2$.

If $G_{0} / Z\left(G_{0}\right)$ is a Chevalley group of characteristic $\bar{p} \neq p$, we have by $6.9 k=2$ and the triple $\left(G_{0} / Z\left(G_{0}\right), p, n\right)$ is one of the following:

$$
\begin{gathered}
(X, p, 6) \quad\left(X \simeq L_{2}(7), \quad U_{4}(2), L_{3}(4) ; p=3,5\right), \\
\left(L_{2}(11), 2,10\right), \quad\left(L_{2}(19), 2,18\right)
\end{gathered}
$$

In the cases $L_{2}(7), U_{4}(2), L_{3}(4) p^{6}-1$ divides the order of G. Let. $T \in \operatorname{Syl}_{s}(G)$, where $s=13$ for $p=3$ and $s=31$ for $p=5$. Then $s>|\Delta|$ i.e. T fixes Δ pointwise. Thus T is faithful on V. However $\left(\left|\operatorname{Aut}\left(G_{0}\right)\right|, s\right)=1$ implies $G_{0} \subseteq C_{G}(T)$, a contradiction. If $G_{0} / Z\left(G_{0}\right) \simeq$ $\simeq L_{2}(11)$ or $L_{2}(19)$ we set $s=31$ for $p^{n}=2^{10}$ and $s=73$ for $p^{n}=2^{18}$. The same argument as above gives a contradiction.

Suppose $G_{0} / Z\left(G_{0}\right)$ is alternating of degree $m, m \geqslant 9$ or $m=7$. If
$m=7$, then $r=5$ or 7 . As $d>2$, we have $\varphi_{n}^{*}(p) \leqslant(n+1)(2 n+1)$. If $k=1$, then $d=n=3, r=2 n+1=7$, and $p=2$ (see proof of 6.9). But there is no translation plane of order 16 with A_{7} as a collineation group [4]. Thus $k \geqslant 2$ and then of course $k=l=2$. Now $n=6$ and $p=3$ or 5. As above this yields a contradiction. If $m \geqslant 9$, we note that the minimal degree of a nontrivial, projective representation of A_{m} is $\geqslant m-2$ [21] and $m \geqslant s$ for any prime s dividing $\left|G_{0}\right|$. Hence $d+1 \geqslant m-2 \geqslant r-2 \geqslant n-1$. So $k=1$, $n=d$. Now $r=$ $=a n+1 \leqslant m \leqslant n+3$ implies $r=n+1$. But then $\operatorname{dim} V=r$, a contradiction.

Finally assume that $G_{0} / Z\left(G_{0}\right)$ is sporadic. Let $r=a n+1$ be the maximal prime dividing $\varphi_{n}^{*}(p)$ and denote by $m=m_{G_{0}}$ the minimal degree of a nontrivial, projective representation of G_{0}. Suppose s is a prime with $s^{2} \mid \varphi_{n}^{*}(p)$. Thus $m \leqslant s$. However m can not be so small (look for instance at extraspecial or Frobenius subgroups in G_{0} or use the degrees of irreducible characters for sporadic groups). Hence $\varphi_{n}^{*}(p)$ is square-free. If $a \geqslant 3$, then $m-1 \leqslant n<r / 3$. Again m will be too small. Hence $\varphi_{n}^{*}(p) \leqslant(n+1)(2 n+1)$.

Suppose $r=2 n+1$. The list in the proof of 2.9 tells us, that for the pair (p, n) we have the following possibilities: $(2,3),(2,8),(2,20)$, $(3,18),(17,6)$. Now $n \neq 3$ as $G L(5,2)$ contains no sporadic group. As $n+k$ is even, we have $k \geqslant 2$. But then $d \leqslant n / 2$ and $m \leqslant d+1$. Again m is too small.

Thus $\varphi_{n}^{*}(p)=n+1$ and $(p, n)=(2,4),(2,10),(2,12),(2,18)$, $(3,4),(3,6),(5,6)$. Now $\operatorname{dim} V=n+k$ is even, i.e. k is even. Now $k \geqslant 4$ would imply $m \leqslant(r+3) / 4$, which is clearly impossible. Thus $k=2=l$. As $d+1$ is even too we have $(p, n)=(2,10),(2,18)$, $(3,6),(3,5)$. Again by a rough inspection of the lower bounds for m we see that only the case $G_{0} \mid Z\left(G_{0}\right) \simeq M_{22}, n=10, d+1=6$, V is a 6 -dimensional, irreducible $G F(4)$-module can occur. However in this case there are involutions $x \in G_{0}$ with $\operatorname{dim}_{G F(4)} V_{x}=4$, a contradiction.

REFERENCES

[1] P. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc., 13 (1981), pp. 1-22.
[2] U. Dempwolff, Zentralisatoren zentraler Involutionen in $L_{n}(2)$, Ill. J. Math., 17 (1973), pp. 465-497.
[3] U. Dempwolff, On the second cohomology of $G L(n, 2)$, J. Austral. Math. Soc., 16 (1975), pp. 207-209.
[4] U. Dempwolff - A. Reifart, The classification of the translation planes of order 16I, Geom. Dedicata, 15 (1983), pp. 137-153.
[5] P. W. Donovan - M.R.- Freislich, Indecomposable representations in characteristic two of the simple groups of order not divisible by eight, Bull. Austral. Math. Soc., 15 (1976), pp. 407-419.
[6] D. Gorenstein, Finite simple groups, Plenum Press, New York, London, 1982.
[7] C. Hering, Transitive linear groups which contain irreducible subgroups of prime order I, Geom. Dedicata, 2 (1974), pp. 4 5-460.
[8] C. Hering, Transitive linear groups which contain irreducible subgroups of prime order II, J. Alg., 93 (1985), pp. 151-164.
[9] D. Higman, Flag transitive collineation groups of finite projective spaces, Ill. J. Math., 6 (1962), pp. 434-446.
[10] Y. Hiramine, On (G, Γ, n, q)-translation planes, to appear.
[11] B. Huppert, Endliche Gruppen I-III, Springer, Berlin-Heidelberg-New York, 1967-1982.
[12] V. Iha, On tangentially transitive translation planes and related systems, Geom. Dedicata, 4 (1975), pp. 457-483.
[13] V. Iha - M. Kallaher, On spreads admitting projective linear groups, Canadian J. Math., 33 (1982), pp. 1487-1497.
[14] V. Landazuri - G. Seitz, On the minimal degrees of projective irreducible representations of finite Chevalley groups, J. Alg., 32 (1974), pp. 418-443.
[15] M. Liebeck, On the orders of maximal subgroups of the finite Chevalley groups, Proc. London Math. Soc., 50 (1985), pp. 426-446.
[16] M. Liebeck, The affine permutation of rank three, to appear.
[17] R. Martineau, On the 2-modular representations of the Suzuki groups, Amer. J. Math., 94 (1972), pp. 55-72.
[18] T. G. Ostrom, Elementary abelian 2-groups in finite translation planes, Arch. Math., 36 (1981), pp. 2-21.
[19] R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math., 12 (1960), pp. 606-615.
[20] R. Steinberg, Representations of algebraic groups, Nagoya J. Math., 22 (1963), pp. 33-56.
[21] A. Wagner, An observation on the degrees of projective representations of the symmetric al alternating group over arbitrary fields, Arch. Math., 29 (1977), pp. 583-589.
[22] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3 (1892), pp. 265-284.

Manoscritto pervenuto alla redazione il 24 ottobre 1985.

