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Generalized Solutions by Cauchy’s Method
of Characteristics.

STEFAN MIRIC0103 (*)

SUMMARY - The classical Cauchy’s Method of Characteristics is extended to
obtain nonlocal generalized solutions of First Order Partial Differential
Equations that in the case of the Hamilton-Jacobi Equation of Dynamic
Programming associated to an optimal control problem coincide with
the so called i value (Bellman’s) function » and provides the optimal
trajectories and the optimal controls.

1. Introduction.

The aim of this paper is to use Cauchy’s Method of Characteristics
to obtain nonlocal generalized solutions for boundary value problems
of the form:

defined by functions I’( ’ , ’ , ’ ) : ~co( ’ ) : Xo - R
that may not be even differentiable.

Following the classical Cauchy’s Method of Characteristics we
introduce two « marginal » functions (i.e. defined by « min » or « max »

operations) in terms of the components of the « characteristic flow »
which we call marginal characteristic solutions of the problem (1.1)-(1.2)

(*) Indirizzo dell’A. : University of Bucharest, Faculty of Mathematics,
Academiei 14, 70109 Bucharest, Romania.
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and prove that under some hypotheses these functions are a.e. solutions
that are almost everywhere differentiable satisfying equation (1.1)
almost everywhere (a.e.) and satisfying also (1.2) and the condition:

Under some other type of hypotheses on the components of the
characteristic flow we prove that the marginal functions mentioned
above are stratified solutions that are « weakly C1-stratified functions&#x3E;&#x3E;
(in a sense to be defined in Section 3) that veri f y the boundary condi-
tion (1.2) and the following property : for any x E X there exists px E .Rn
such 

Since on open strata of .X a stratified solution satisfies (1.1) in
the classical sense and, on the other hand, lower dimensional strata
have zero Lebesgue measure, a stratified solution whose set of de-

finition, .X, is n-dimensional and satisfies (1.3) is a particular type of
a.e. solution that has properties (1.4)-(1.5) at the points at which

does not verify (1.1) in the classical sense.
If the data, F( ~, -, ~ ) and ~co( ~ ), of the problem (1.1)-(1.2) are

only weakly C1-stratified (as it is the case for the Carathéodory-Bellman-
Isaacs equation of Dynamic Programming in Optimal Control Theory
and Calculus of Variations for some classes of problems) then a
« stratified characteristic orientor field » that becomes the well known
characteristic vector field in the case I’( ~ , ~ , ~ ) is differentiable is

introduced and the existence of a  piecewise smooth characteristic
flow » is postulated; the possibility of using more general  contin-
gential ~ or « peritangential » characteristic orientor fields using ex-
treme contingential derivatives (e.g. [17]) and, respectively, Clarke’s
generalized gradient ([6]) is also discussed.

It is well known that the classical Cauchy’s Method of Character-
istics ([2], [7], [11], [12], [15], etc.) provides only local solutions (of
class C2) in the case A c .R2n+1 is open, ~o c Rn is a (n - I )-dimensional
differentiable manifold of class C2 and the functions F( ~ , ~ , ~ ) and uo(. )
are of class C2 and satisfy certain « compatibility » and  transvers-
ality » conditions while in fields such as Calculus of Variations,
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Optimal Control Theory, Theoretical Mechanics, there are many
problems that require global (or, at least non-local, maximal with
respect to the domain of definition} solutions for problems of the
form (1.1)-(1.2) defined by functions F(., ., .) and ~co( · ) that do not
enjoy the above mentioned properties. Moreover, the so called « value
(Bellman’s) functions » for important classes of Optimal Control and
Calculus of Variations problems are shown to be differentiable in some
regions but not so, and even discontinuous at some other points
([9], [21], etc.) and all the same may be interpreted as «solutions
of the so called Carathéodory-Bellman-Isaaes equation of Dynamic
Programming which is of the form (1.1)-(1.2) ([3]-[5], [9], [10], [13],
[19]-[21] etc.). The value functions of an important class of variational
problems are proved in [10] to be locally Lipschitz and the optimal
control problems studied in the literature show that for significant
classes of such problems ([3]-[5], etc.) the value functions, while not
necessarily continuous, are stratified functions that satisfy the equa-
tion of Dynamic Programming in a certain generalized sense (e.g.,
(1.4)-(1.5)) even at points at which it is not (Frechet) differentiable.

On the other hand, an increasing number of papers (see [2], [8],
[10], [15] and their references) are dealing with generalized solutions
that usually are locally Lipschitz f unetions satisfying equation (1.1)
almost every2vhere but it seems that no attempt has been made so far
to obtain such solutions using Cauchy’s Method of Characteristics.

In Section 2, as a direct generalization of the Method of Character-
istics, we use the above mentioned general procedure to characterize
a.e. solutions for problems of the form (1.1)-(1.2) that are « classical »
in the sense that the data (F-, ’, ’) and uo( · ) are of class C2 and have
an additional property implied (locally) by the well known com-

patibility and transversality conditions. The main result in this section
is Theorem 2.11 in which the marginal characteristic solutions defined
in terms of the characteristic flow are proved to be a.e. solutions.

In Section 3 we consider more general, « stratified» problems of
the form (1.1)-(1.2) defined by functions F( · ) and uo(.) that are weakly
C1-stratified and have some additional properties that allow the

introduction of the characteristic orientor field and the proof of the
same type of results as in the case of the classical problems. The
flow of the characteristic vector field is replaced in this case by a
certain «piecewise smooth characteristic flow &#x3E;&#x3E; so that the marginal
characteristic solutions defined in the same way as for the classical
problems are proved to be stratified solutions.

The main shortcoming of the method, consisting in the «implicit
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definition of the solutions in terms of the characteristic flow, may be
overcome for particular classes of problems for which the characteristic
flow may be more thoroughly described. The results in [21]-[22]
concerning subanalytic marginal functions lead to the existence
theorems like the following one: if .F’( ~ , ~ , ~ ) and ~o ( ~ ) are analytic
functions and if the first component o f the characteristic is a proper
mapping then the problem (1.1 )- (1.2 ) has two strati f ied solutions (which
are subanalytic functions).

Similarly, for the Cauchy problem in [10] considered as Example 4.1,
in Section 4 of this paper, it is proved, under apparently weaker
hypotheses that the minimal characteristic solution is globally defined,
locally Lipschitz and coincides with the so called «variational solu-
tion. Three other examples illustrating the results in the paper and
also the fact that discontinuous a.e. or stratified solutions may have

a « physical» meaning are studied in Section 4.

As already remarked, the marginal characteristic solutions intro-
duced in this paper are generalized solutions in the sense considered
in [2], [10], etc., whenever they are locally Lipschitz on open subsets
of moreover, in the case the « partial functions » F(x, ~ , v) are
either convex or concave for any one may prove
that the marginal characteristic solutions are «viscosity solutions »
in the sense of [8], [15], etc., whenever they are continuous on open
subsets of .R~.

As it is proved in [10], [15] and other recent papers, the value
functions of some classes of problems in Optimal Control, Calculus
of Variations and Differential Games are locally Lipschitz functions
that are a.e. and also « viscosity solutions» of the equation of Dy-
namic Programming but, on the other hand, as Example 4.5 shows,
this equation may have yet other solutions (even in the classical sense,
hence a.e. or viscosity solutions) than the value function.

While more precise relations with other types of solutions and
results in the literature remain objectives of further research, the
marginal characteristic solutions in this paper seem to be the only
ones in the literature that lead directly to the value function of optimal
control problems as generalized solutions of the Carathéodory-Bellman-
Isaacs equation of Dynamic Programming; moreover, the generalized
Cauchy’s Method of Characteristics thus employed provides not only
the value function but also the optimal trajectories (and sometimes,
the optimal controls, too) of the corresponding optimal control

problem.
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The results in this paper extend to general boundary value problems
of the form (1.1)-(1.2) and improve previous results of the author

concerning the Carathéodory-Bellman-Isaacs equation of Dynamic
Programming in Optimal Control Theory ([18]-[20]).

2. A.E. characteristic solutions.

In what follows 1~n denotes the n-dimensional Euclidian space
and  - , - ~ the scalar product in such a space; if X c Rn then Cl (X)
denotes the closure and Int (.X) the interior of the subset X in the
usual topology. If .X c Rn is a differentiable submanifold (e.g. [1],
[14], etc.) then denotes the tangent space of X at the

point x E X considered as a subspace of Rn. If the mapping f ( - ) :
X c is (Frechet) differentiable at x E Int (X) then c

E L(.~Rn, denotes the derivative of f ( - ) at x considered as a linear
mapping (coinciding with the usual matrix of partial derivatives when
coordinate systems are considered in R~ and .Rm) ; if X c .I~ then we
denote f’ (x) = D f (x) -1 and if f ( - , - , - , - , - ) is a mapping depending
on several (possibly vector) variables then denotes the
i-th partial derivative of f ( - , - , - - , - ) .

We recall that in classical Cauchy’s Method of Characteristics

(e.g. [2]. [7], [11], [12], etc.) the data of the problem (1.1)-(1.2) are
assumed to satisfy the following hypotheses:

HYPOTHESIS 2.1. open, Xo c Rn is ac
(n -1)-dimensional differentiable submanifold of class 02 and F(.):
A - R, us(.): are of ctass C2.

HYPOTHESIS 2.2. There exists xo E Xo and po e Rn such that the
« compatibility » conditions :

as well as the « transversality» conditions :

are veri f ied at the point
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The main tools of Cauchy’s Method of Characteristics are the
characteristic vector field, ~~( - ) : A -~ .I~2n+1, the characteristic flow,
~F( - , - ) : B c .R X A - A, the initial characteristic multifunction Po( ~ ) :
Xo - and the « initial characteristic strip » Ao c A defined as
follows:

DEFINITION 2.3. If F(.): A C Rand uo( - ) : Xo c .Rn -~ .R
defining the problem (1.1)-(1.2) satis f y Hypothesis 2.1 then A --*
~ R2n+1 defined by:

is said to be the characteristic vector field of the problem, the mapping

for which

is the maximal (non-continuable) solution of the initial value problem:

for any z E A and B = f(t, z) ; z E A, t E I(z)} is said to be the character-
istic flow of the problem, the multifunction Po(.): Xo ~ defined by :

is said to be the initial characteristic multifunction and the subset Ao c A
defined by :

is said to be the initial characteristic strip of the problem (1.1)-(1.2).

Since the characteristic vector field ~,(-) in (2.4) is of class C1

(if Hypothesis 2.1 is satisfied), from the general theory of Ordinary
Differential Equations (e.g. [1], [11], [12], [14]) it follows that for any
z = (x, p, v) E A there exists a unique maximal (noncontinuable)
solution, ZF( ~ ; z) : I (z) ~ A, of the problem (2.5), the interval I(z)



323

is open, the subset B = ~(t, z) ; z E A, is open and the
characteristic flow, Z~( ~ , ~ ) : B --~ A in Definition 2.3 is of class 01
with respect to both variables and of class C2 with respect to the first
one verifying the relations:

On the other hand, if Hypothesis 2.2 is also satisfied then from
the implicit functions theorem ([1], [14], etc.) it follows the existence
and uniqueness of a 01-mapping, po( ~ ) : Rn defined on a neigh-
bourhood X, of xo in that is a selection of the multifunction Pro(.)
(defined in (2.6)) i.e. it verifies:

in which case the subset Al c A defined by:

is a (n - I)-dimensional submanifold of class C1 in R2n+1 and moreover,
there exists an open interval I c R containing the origin and a
relatively open neighbourhood Å2 c Al of the point zo = (xo, po, no(xo))
such that I the restriction mapp is a Cl-

diffeomorphism and the function defined by:

is the unique (local) solution of the problem (1.1)-(1.2) that satisfies
the additional condition:

In fact, since ~c( ~ ) verifies condition:

relation (2.12) is verified at each point y E .X2 = prlA (po being
replaced, obviously, by po(y)).

Moreover, for any subset Bi c f(t, z) E t E I(z)l contain-

ing the points of the form (0, z) and for which the restriction mapp
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X( ~ ; ~ ) ~Bl is a Cl-diffeomorphism, the corresponding function, u( ~ )~
defined as in (2.11) is a solution of the problem (1.1)-(1.2) and sat-
isfies (2,.12)-(2.13).

However, very simple examples ([2], [7], [12], etc.) show that

generally, y the first component, X( ~ ; ~ ), of the characteristic flow
fails to be a diffeomorphism on larger subsets of B and actually global
(i.e. solutions defined on X = pr1A) classical solutions of problems of
the form (1.1)-(1.2) do not exist except for some very special classes
of problems.

Some examples in Optimal Control Theory as well as the results
to follow justify the following extension of the class of locally Lip-
shitz generalized solutions in the literature:

DEFINITION 2.4. A function u( ~ ) : said to be an a. e.
solution of the problem (1.1 )- (1.2 ) if it satisfies (1.2), X has property
(1.3), a.e. (almost everywhere) differentiable and satis f ies equa-
tion (1.1) a. e. on Int (X).

it, in addition, u( ~ ) is locally Lipschitz (continuous) then it is said
to be a Lipschitzian (respectively, continuous) a.e. solution.

REMARK 2.5. In [2], [10] and in many other papers, a « general-
ized solution &#x3E;&#x3E; of the problem (1.1)-(1.2) is a Lipschitzian a.e. solution
in the sense of Definition 2.4; a «viscosity solution » in the sense
of [8], [15] and some other recent papers is a continuous function u( ~ )
defined on an open subset X E I~n satisfying the boundary condition
(1.2) and the relations:

where the (Frechet) « semi-differentials » D+u(x) (« super-differential »)
and ( sub-differential ») are defined by:
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Due to the well known Rademacher’s theorem according to which
a locally Lipschitz mapping is a.e. differentiable and to the obvious
fact that ~c( ~ ) is differentiable at x iff D+u(x) = D-u(x) = Du(x), a
locally Lipschitz viscosity solution is also a lipschitzian a.e. solution
in the sense of Definition 2.4; on the other hand, an a.e. solution in
the sense of Definition 2.1 may be discontinuous (and this makes it
applicable to some classes of optimal control problems with discon-
tinuous value functions ([9], [21], etc.)) hence it may not be a viscosity
solution; since conditions (2.14) must be verified at each point, even
a lipschitzian a.e. solution may not be a viscosity solution as simple
examples ([15]) show and, on the other hand, since there exist nowhere
differentiable continuous functions, a viscosity solution may not be
an a.e. solution in the sense of Definition 2.4.

The a.e. solutions in Definition 2.4 may be too general as no other
regularity properties are required so nothing is known about the

behaviour of these solutions at the points at which they are not dif-
ferentiable ; except the continuity property, this is also the case of

viscosity solutions at the points x E X at which D+u(x) = D-u(x) - 0.
On the other hand, we shall consider only a.e. « characteristic )y

solutions defined in terms of the characteristic flow and this should

imply certain properties at the points at which such a solution does
not satisfy equation (1.1) in the classical sense; for stratified character-
istic solutions such a property is given by (1.4)-(1.5) but for a.e. char-
acteristic solutions a property of this kind is yet to be found and may
be expressed, perhaps, in terms of the extreme contingential (Dini)
derivatives (e.g. [17]).

Condition (1.3) for the a.e. solutions in Definition 2.4 not only
eliminates the trivial case in which Int (X) = 0 and u( ~ ) is nowhere

differentiable but also requires every point in .X to be a limit of points
at which equation (1.1) is satisfied in the classicael sense. Condition (1.3)
may be droped in the case of stratified solutions to be studied in Sec-
tion 3 since in this case equation (1.1) is satisfied in the generalized
sense (1.4)-(1.5) on sets that may have empty interior.

The general procedure to obtain generalized « characteristic solu-
tons » of the problem (1.1)-(1.2) has the following two steps:

I) One considers the (initial characteristic multifunction » Po( . )
defined in (2.6), the «initial characteristic strips, Ao c A in (2.7) and
the restriction of the characteristic flow, ZF( ~ ; ~ ) = (((. ; .), P( ~ ; ~ ),
V(’; )) at Ao restricting (possibly) the interval I(z) = (t-(z), t+(z)) c R
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on which ~F( ~ ; z) is defined such that:

II) One defines the subset and the multifunctions Q( ~ )
and W( ~ ) as follows:

then one chooses an a.e. differentiable selection u( ~ ) : X - R of the
multifunction W( ~ ) whose derivative, .Du( ~ ), is an a.e. selection of
the multifunction Q( ~ ) satisfying the conditions:

Since (2.16) implies: Xo c X, Q(x) = and W(x) _ for

any z E Xo , from the fact that I’( - , ~ , ~ ) is a first integral of the char-
acteristic vector field l~p(., ., . ) ([2], [7], etc.) hence verifies:

it follows immediately:

PROPOSITION 2.6. If the data F(., ., .) and uo(.) satisfy Hypo-
thesis 2.1, the initial characteristic multi f unction Po(.) in (2.6) has non-
empty values at each point in Xo and X c En defined by (2.17) satis f ies
(1.3) then any a.e. differentiable selection u(.): ~’ --~ .R of W(.) satisfying
(2.20)-(2.21) is an a.e. solution of the problem (1.1)-(1.2) in the sense

of De f inition 2.4.

Obvious candidates for a.e. differentiable selections satisfying con-
ditions (2.20)-(2.21) are the « marginal » selections :
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where ~~ (respectively, X) is the subset of all points x E X at which
the minimum in (2.23) (respectively, the maximum in (2.24)) exists;
in view of the results to follow we shall call ~cm( · ) and uM( · ) marginal
characteristic solutions of the problem ( 1.1 )- ( 1.2 ) .

Since for ’Um( . ) and u~( · ) the same type of results are valid shall

consider in what follows only the « minimal» characteristic solution

um( . ).
We shall prove next that for the « classical » problems in Propo-

sition 2.6 for which Po( - ) is single valued and of class C~, the func-
tion um( - ) in (2.23) (and also uM( - ) defined in (2.24)) is a.e. differentiable
and satisfies (2.20)-(2.21) and therefore, since (2.16) implies the fact
that ’Um(.) verifies (1.2), it remains to prove for more particular clas-
ses of problems that its domain, satisfies (1.3) or, at least, the
weaker condition to prove that u~( · ) is indeed an a.e.
solution of the problem (1.1)-(1.2) in the sense of Definition 2.4.

In the remaining of this section we shall assume that the problem
(1.1)-(1.2) is « classical» in the following sense:

DEFINITION 2.7. The problem (1.1)-(1.2) is said to be classical i f
its data F(., ., .) and uo(.) satis f y Hypothesis 2.1 and the initial char-
aeteristie multifunction Po(.) defined in (2.6) is single valued and of
class Cl.

As already mentioned, in actual classical problems only a local
selection po(’) of P( · ), of class C1, was obtained under the additional
compatibility and transversality conditions (2.1)-(2.3); in fact, a
boundary value problem it is not well defined only by the conditions
(1.1)-(1.2) but also by condition (2.12) defined by a fixed selection
po ( - ) of the multifunction Po ( · ) . It follows that for the same data

F( ., ., .) and uo( · ) one may consider a boundary value problem of
the form (1.1)-(1.2), (1.8) for every selection po( · ) of P,(.), of class C~,
which explains many non-uniqueness cases in the literature.

We note that if the problem (1.1)-(1.2) is classical in the sense of
Definition 2.3 then the initial characteristic strip Ao defined in (2.7)
is a (n - I)-dimensional differentiable submanifold of class C’ of the
open subset and the subset Bo c R x.Å defined by:

is a n-dimensional differentiable submanifold of class C’ of the open
subset From (2.7) and (2.25) it follows that the
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tangent space of Ao at z = (y, Po(y), uo(y)) E Xo, is given by:
TzAo = f(g, DPo(y) ~ y, Duo(Y) y) ; 9 E and the tangent space of
Bo at the point is given by: 

To prove the main result of this section we need two preliminary
results.

In view of its extension to a more general case in Section 3, we give
the proof of the next lemma which is a global version of a result that
is usually hidden inside the proof of the Cauchy’s existence theorem
([7], [11], [12], etc.).

LEMMA 2.8. If ZF(-; -) _ (X(-; ~),P(’; J .), V(.; J 
is the flow of the characteristic vector field ~’F( - , ~ , - ) defined in (2.4)
then for any z = (x, p, v) E A, t E p, v) the

functions r( - ; z, t, z) : I(z) - R defined by:

satis f ies :

and is the unique solution of the initial value problem:

In particular, if the problem (1.1)-(1.2) is classical in the sense of
Definition 2 . ? then :

PROOF. - We shall use the already mentioned fact that .F’( ~ , ~ , ~ )
is a first integral of the characteristic vector field ~(’y ’y ’) (i.e. sat-
isfies (2.22)) and the well known properties of the flow of a smooth
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vector field (e.g. [1], [14]) among which we mention relations (2.8)
and the fact that: == z for any and z E TzA =
== R2.n+l.

We note first that from (2.4) it follows:

and therefore, since DZF(t; z). (t, z) = D1ZF(t; z) ~ t + D2ZF(t; z) ~ z, from
(2.26) and (2.31) it follows (2.27). 

-

Further on, from (2.27) it follows: z ) = v -  p, hence

r( ~ ; z, t, z) verifies the initial condition (2.29); to prove that this

function is a solution of the « affine )) differential equation (2.28) we
use (2.27), (2.8), (2.31) and the rules of differentiation to write suc-
cessively :

If (1.1)-(1.2) is a classical problem in the sense of Definition 2.7
then from (2.6)-(2.7) it follows that for any and

one has : hence r(0 ; z, t, ‘z) = 0 ; fur-
ther on, since Ao and Bo are differentiable manifolds, from (2.22) it

follows that z) ~ (t ~ z) .--- 0 for any (t, z) E Bo, (t, z) E
E T(t,z)Bo hence in this case the function r(.; z, t, z) defined in (2.26)
is a solution of the linear differential equation: r’= - D.F’(ZF(t; z)) ~
. (0, 0, r) and therefore from the fact that r(0; z, t, z) = 0 it follows

(2.30) and the lemma is completely proved.
An essential tool for the results to follow is given in the next lemma

caracterizing the derivatives of the « marginal functions » of the form
(2.23) and (2.24):
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LEMMA 2.9. Let Yc .Rm be an n-dimensional differentiable sub-

manifold of class 01, n  m, let h(.): Y -~ Rn, g(.): Y -~ R be of class C,
and let f ( ~ ) : Xc h( Y) --~ R be defined by:

(i) If x E Int (X), y E Y, h(y) = x, g(y) = f (x), f(.) is differen-
rentiable at x and Dh(y) E L(TlI Y, Rn) is surjective then the derivative

of f(.) at x is given by :

for which = x

(ii) I f Int (~) ~ ø and f ( ~ ) in a.e. differentiable on Int (X) then
its derivative, Df(.), is given by (2.33) at almost all points x E Int (X).

(iii) If h( ~ ) is proper (i.e. h-1(.g) c Y is compact whenever K C Rn
is compact) then .X = h( Y), f(.) is lower semicontinuous at every point
x E X and locally .Lipschitz at almost all points in X hence, i f in addition
Int (h( Y)) ~ 0 then f(.) is a.e. differentiable and satisfies (2.33) a.e. on
Int (X) = Int (h( Y)) .

(iv) If h(.) is proper and its derivative is surjective at each point
y E Y then X = h( Y) c Rn is open and f(.) is locally Lipschitz at every
point x E X hence a.e. differentiable and satisfies (2.33) a.e. on X.

PROOF. (i) Since dim ( Y)= n, if Y, Rn) is surjective then
it is a linear isomorphism hence from the inverse functions theorem
it follows that there exists an open neighbourhood U of y E Y such
that the restriction mapp hu(.) = h(.) U is a Cl-diffeomorphism; if

c(.): (- y, y) - Rn is of class 01 and satisfies: c(O) = x, c’(0) = x
then there exists 0  r  y such that c(t) E h( U) for any t E (- r, r)
and k(t) = h~~(c(t)), t E (- r, r) satisfies: k(O) = y, k’(0) = 9 (since

= x). Since f (x) = g(y), f (c(t)) ~ f (l~(t)) for any t E (- r, r)
and f(.) is assumed to be differentiable at x one has: =

= lim (f(c(t)) - from the above inequality it follows that for
t-+O

any t E (0, r) one has : (f (c(t)) - f(x))/t c (g(k(t)) - g(y))It - as

t --~ 0+ hence reasoning in the same way for
t E (- r, 0) one obtains the reversed inequality and (2.33) is proved.
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(ii) From Sard’s theorem (e.g. [1], § 5) it follows that almost

all points x E h( Y) are regular values of h( - ) i.e. Dh(y) is surjective at
any point y E hence if Int (X) ~ 0 and f(.) is a.e. differentiable

then at almost all points x E Int (X) c h( Y) f ( · ) is differentiable and

Dh(y) is surjective at any point y E h-1(x) and therefore the statement
follows from (i).

(iii) If h( - ) is proper than for any x E h( Y) the subset h-1(x) c Y
is compact hence the minimum in (2.32) exists.

To prove that f ( - ) is lower semicontinuous at x = h( Y) it

suffices to show that for any sequence Xk ~ 0153 for which - a

one has: since h( · ) is proper and g( · ) is continuous it fol-
lows that for any k E N there such that ==

- g(Yk) and also that is bounded hence it has a convergent sub-
sequence, say Since h( - ) and g( - ) are continuous, one
has: h(y) = x and a = lim == lim 9(Yk.) == ’" 

km-co

We prove now that there exists a subset A c Rn of zero Lebesgue
measure such that for any x E the function f( .) defined in (2.32)
is locally Lipschitz on a neighbourhood of x; we take A to be the set
of critical values of h( - ) (i.e. x E A iff there exists y E h-1 (x) such that
Dh(y) is not surjecti-v-e) which, according to Sard’s theorem has meas-
ure zero in .Rn.

Since xo E X~A is a regular value of h( - ) and h( - ) is proper, there
exists a compact neighbourhood G of xo in .Rn such that each point
x E G is a regular value of h( - ) (otherwise it would exist a sequence
yk - yo e h-1(xo) such that det (Dh(yk)) - 0 for any k E N hence
det (Dh(yo)) = 0 contradicting the fact that xo is a regular value).
Since h( - ) is proper, the subset h-1(G) c Y is compact hence it may
be covered by a finite family of open subsets Yl, Y2, ..., Yk c Y such
that the restrictions hj(·) = = 1, 2, ... , k are C1 diffeo-

morphisms and therefore the function f ( - ) in (2.32) is given on G by:
= min ~g(h~ 1(x)) ; ~ =1, 2, ..., xEG. Since the functions )),

j = 1, 2, ... , k are of class 01 function f ( - ) turns out to be Lipschitzian
on an open neighbourhood Go c G of zo and according to Rademacher’s
theorem is a.e. differentiable.

(iv) If Dh(y) is surjective at each point y E Y then the same proof
as above shows that X = is open and f ( · ) is locally Lip-
shitz at each point x E X.
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REMARK 2.10. The examples to follow show that one cannot ex-
pect more regularity properties of the marginal function f ( - ) in (2.32)
unless more hypotheses are added to those in statement (iii) of the
Lemma 2.9.

At critical values of h( - ) the function f ( · ) may not be continuous
even if h( - ) is proper as the following example shows: if h(y) = y3 + y2
and g( y) = y for any y ~jR = Y then f ( · ) is given by: f (x) = 
if x ~ 4~2 7 and f (x) = h21 (x) if x &#x3E; 4/2 7 where hl ( · ) and h2( .) are the
strictly monotone restrictions of h( · ) : hl( · ) = h( · ) ~ (- oo, - 2/3), h2( · ) _
- h( · ) ~ (0, oo) ; it is easy to see that f ( · ) is not continuous at xo = 4/27
which is a critical value of h( - ).

On the other hand, if h( · ) is not proper then f ( · ) may not be lower
semicontinuous even at points that are regular values of 11,(.): if

h(y) = y - egp (y) and g(y) = y for any y E l~ = Y then f ( - ) is given
by: f (x) = h~ ~(x) if x E (- exp (-1), 0), f (x) if x &#x3E; 0 and

f(0) = 0 where hl(·) = 11,(. )J(- 00,-1) and h2(-) = h(·)~(-1, oo) ; f (.)
is not lower semicontinuous at xo = 0 ( f (0 -) == - 00, f (0 +) _

= 0) which is a regular value of h( · ).
From Lemmas 2.8 and 2.9 it follows very easily the next theorem

validating the functions um(.) and ~cM( · ) defined in (2.23) and (2.24),
respectively, as generalized solutions of the problem (1.1)-(1.2) under
appropriate hypotheses on the components of the characteristic flow,
~(-; ’) = (.g( - ; · ), P( - ; · ), Y( · ; - )) in Definition 2.3:

THEOREM 2.11. Let us assume that the problem (1.1)-(1.2) is clas-

sical in the sense of De f inition 2.7 and the Xm c X defined in
(2.23) satis f ies condition (1.3).

(i) If a.e. differentiable then it is an a.e. solu-
tion of the problems (1.1)-(1.2) in the sense of Definition 2.4.

(ii) If the restriction ~( - ; - ) (Bo of the f irst component of the char-
acteristic flow is proper then = .X(Bo) and um( · ) is an a.e. solu-

tion of (1.1 ) - (1.2 ) which is lower semicontinuous at each point and a. e.
locally Lipschitz on Xm .

(iii) If the restriction mapp X(.; .) IBo is proper and its derivative
is surjective at each point in Bo then Xm = .X = c .Rn is open
and Lipschitzian a.e. solution of the problem (1.1)-(1.2) in
the sense of De f inition 2.4.

PROOF. To prove (i) we note that from statements (i) and (ii)
Lemma 2.9 it follows that at almost all points x E Int the func-
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tion ~cm( ~ ) given by (2.23) (which is of the form (2.32)) is differentiable
and for any (t, z) E Bo, x E Rn and (t, ~) E for which:

its derivative is given by:

From (2.26) and (2.30) in Lemma 2.8 it follows that DV(t;z)-
~ (t, z) == P(t; z), DX(t; z) ~ (t, z)~ hence (2.34)-(2.35) imply: =

= P(t; z), for any T E Rn and any (t, z) E Bo that satisfy (2.34)
and therefore = P(t; z) E Q(x) a.e. on Xm which means, ac-
cording to Proposition 2.6 that um( ~ ) is an a.e. solution of the pro-
blem (1.1)-(1.2) in the sense of Definition 2.4.

Statements (ii) and (iii) in the theorem obviously follow from the
statements (iii) and (iv) in Lemma 2.9, respectively.

REMARK 2.12. For the problems of the form (1.1)-(1.2) for which
the characteristic flow ZF( ~ ; ~ ) _ (~( ~ ; ~ ), P( - ; ~ ), Y( ~ ; - )) : B --~ A
may be sufficiently well characterized Theorem 2.11 furnishes as a.e.
solutions the «characteristic extremal solutions &#x3E;&#x3E; ’Um(.) and uM( ~ }
defined in (2.23) and (2.24), respectively; other characteristic a.e._

solutions may be obtained by Proposition 2.6 whenever the character-
istic flow allows the characterization of other a.e. differentiable selec-
tions satisfying conditions (2.20)-(2.21).

On the other hand, results of the type of those in Lemma 2.9 for
the  semi-differentials » (2.15) of the marginal functions of the form
(2.32) may provide criteria under which the extremal characteristic
solutions um( ~ ) and ~cM( ~ ) are also (viscosity solutions » in the sense
of Remark 2.5; this topic is a subject of current research.

3. Stratified problems and solutions.

The theory of stratified sets and mappings initiated by E. Whit-
ney ([25]) and extensively developped R. Thom ([24]), J. Mather ([16])
and other mathematicians working in Differential Topology had been
successfully applied also in other areas of Mathematics such as Cal-
culus of Variations ([23]) and Optimal Control Theory ([4], [22], etc.)..

The example of Subanalytic sets and functions ([4], [22]-[23]}
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show that the class of stratified sets and mappings is a significant
one from the point of view of applications and its most important
feature is the possibility of developping a « calculus» » very similar
to the one that is valid for differentiable mappings defined on dif-
ferentiable manifolds.

In view of this necessity the original definition of the so called
«Whitney stratified sets and mappings ~) was weakened in [20] to
introduce « weakly stratified sets and mappings » that contain as

particular cases the classical differentiable mappings defined on open
sets or on differentiable manifolds.

In what follows only the very few properties of the weakly stratified
sets and mappings needed in the context of this paper will be presented.

Throughout in the sequel, a nonempty subset X c jR" is said to
be weakly Ck- gtratified of dimension m  n, for some k E {1, 2, 2 ....1 C&#x3E;O, m)
if it has a locally finite partition 8 (i.e. any compact subset intersects
only a finite number of members of S) into connected differentiable
submanifolds of Rn, of class Ck, called strata, among which at least
one is m-dimensional and the others are of lower dimension; X is
said to be Ck-stratified if the « stratification has the following ad-
ditional property: if E 8, 82 and 81 r1 Cl (S2 ) ~ 0 then 81 c
c Cl (~2) and dim (S,)  dim (S2) ; the subset X is said to be Whitney
Ck-stratified if it is Ck-stratified and whenever xk -&#x3E; x E 81 E S, Xk E

for any one has: Txs1 c lim Tx 82 where the limit is

taken in the Grassmann manifold of the suspaces of Rn.
A stratification 8 of X is said to be compatible with a given family

~ of subsets of Rn if every member of A is either disjoint of X or a
union of strata from 8.

The tangent space of X at a point x E X with respect to a strati-

fication 8 is defined as follows: if x E S E 8.
A mapping f(.) : X c .Rn -&#x3E; Rm is said to be weakly Ck-stratified if

there exists a weak Ck-stratification Sf,X of .X such that for any 8 
the restriction mapp is( . ) = /(-)IS is of class ek; f ( ~ ) is said to be a

weakly Ck- gtratified submerssion if there exists a weak Ck-stratification
of X and a weak Ck-stratification Sf(X) of f (X ) c such that for

any one has: f (~S) E Cf(X) and the restriction mapp fs(-): S -* 
is a submerssion of class ek; Ck-stratified mappings and submerssions
are defined in a similar way.

The derivative of f(.) with respect to the stratification Sf,X is defined
as follows: = D fs(x) E L(TxX, R~) if x 
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We note that at points in open (i.e. n-dimensional) strata the above
derivative coincides with the usual (Fréchet) one but at points in
lower dimensional strata a ek-stratified mapping may be even di-

scontinuous.

DEFINITION 3.1. A f unction u(.): X c .R is said to be a

stratified solution of the problem (1.1 )- (1.2 ) if it is weakly C1-stratified,
satisfies (1.2) and for any x E X there exists px E .Rn such that (1.4)-(1.5)
are veri f ied.

REMARK 3.2. Since in case X c ..Rn is open a function u(.): X - .R
of class 01 is a particular case of weakly C1-stratified function and
moreover, 7 the only vector px E .Rn satisfying (1.4) is the derivative,
Du(x), a classical solution is a particular type of stratified solution;
on the other hand, a stratified solution that satisfies (1.3) is obviously,
a particular type of a.e. solution in the sense of Definition 2.4.

Stratified solutions as well as the a.e. solutions in Section 2 may
exist not only for the classical problems in Definition 2.7 but also,
for « stratified problems )&#x3E; defined as follows :

DEFINITION 3.3. The problem (1.1)-(1.2) is said to be stratified it its
data, F(-,-,-) and uo(.) have the following properties :

(8.1) The boundary function uo(.): is a stratified solu-
tion of [1.1 )-(1.2 ) (i.e. it is weakly 01-stratified and the initial character-
istic multifunction Po( ~ ) in (2.6) has nonempty values at each point
x E Xo) and Xo c Rn is of dimension m c n -1 as a weakly 01-stratified set ;

(S.2 ) The initial characteristic strip Ao c A defined by (2.7) is

weakly Cl-stratified by a stratification So that has the following property :
for any z = (x, p, v) E Ao and any z = E Tz Ao one has :

(S.3) F ( ., ., .): A - .R is locally Lipschitz and weakly Cl-stra-

tified by a stratification SF of A such that So is compatible with SF which
has the following property: for any z = (x, p, v) E A and any z =
= ( x, P9 v ) E T’z A one has :
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It is easy to see that a classical problem in the sense of Definition 2.7
is a particular type of stratified problem.

In the case of stratified problems the characteristic vector field
defined in (2.4) is replaced by the stratified characteristic orientor field
defined by:

which? on open strata of 8, takes the form (2.4) but at points 
in lower dimensional strata ip(z) may be either a singleton or the empty
set or a linear manifold of TzA; in case C,(-) has empty values on
all lower dimensional strata it turns out to be a piecewise continuous
vector field.

An absolutely continuous mapping Z(-)= (~(’)~jP(’),F(’)):7c
c .R -j- A defined on an interval I that satisfies :

is said to be a characteristic of the problem (1.1)-(1.2).
The next result shows that, as in the classical case, the function

I’( ~ , ~ , ~ ) is a fixst integral of the stratified characteristic orientor field :

PROPOSITION 3.4. If the problem (1.1)-(1.2) is strati f ied then for any
characteristic Z(.): I - A there exists C E R such that;

In particelar, if there exists to E I such that Z(to) E Ao then

PROOF. From Lemma 2.5 in [20] it follows that there exists a
subset J c I of full measure such that Z’(t) E Tz(t)Å for any t E J;
further on, from (3.2)-(3.4) it follows that if Z(t) = (X(t), P(t), V(t))
then:
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and therefore

for any (9, q, ~P(t), y~) E Tz(t)A hence DF(Z(t)) ~ Z’(t) = 0 for any

which, according to Lemma 2.6 in [20], implies the fact that
t --~ F(Z(t)) is a constant function.

If Z(to ) E Ao then from (2.7) and (3. ~ ) it follows (3.6) and the

Proposition is proved.
In what follows we denote by C the set of all characteristics Z( . ) _

= (~(’),jP(.),F(.)):7(~(’))c~-~~. satisfying (2.16) and:

hence satisfying also (3.6).
We note that in the case of stratified problems, through the same

point z E Ao may pass several characteristics.
Following the general procedure described in Section 2 we define:

As in the classical case, from (2.16) and (3.8) it follows : Xo c X,
Q(x) = Po(x) and w’(x) - for any x E hence from Propo-
sition 3.4 and Definition 3.1 follows directly:

PROPOSITION 3.5. If the problem (1.1)-(1.2) is stratified in the sense
of De f inition 3.3 and u(.): X -&#x3E; R is a weakly C1-stratified selection

of the multifunction W(.) in (3.11 ) such that for any x E X there exists
Z(.) = (X(.), P(.), V(.») c- C and such that x = X(t) and
px = P(t) E Q(x) satisfies (1.4) then u(.) is a stratified solution of the
problem (1.1 )-(1.2 ) in the sense of Definition 3.1.

As in the case of the characteristic a.e. solutions in Section 2 one
may prove, under suitable hypotheses, that the marginal functions
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um( .) and defined in (2.23) and (2.24), respectively, are stratified
solutions. In the case of stratified problems additional difficulties
arise in connection with the existence and other properties of the char-
acteristics in the set C considered above.

We shal consider the case in which the set C of the characteristics

may be organized as a family of « piecewise smooth flow »-direct
generalization of the situation met in the case of classical problems :

DEFINITION 3.6. Let J C and 13 c .R X A be open subset, let

Z(.; .): 11 -+ J be of class 01 and let S E SF be a stratum such that S c J.
The mapping Z( ~ ; ~ ) is said to be a smooth characteristic flow over

the strat2cm S if thEre exists a vector field ’s(.): A of class 01
such that :

and such that Z(.; .) is the flow of Cs(.).
A mapping Z ( .; .) = (X ( .; .), P( .; .), V(- ; .»): is

said to be a piecewise smooth characteristic flow of the strati f ied problem
(1.1)-(1.2) if there exist the  switching 

with the following properties:

(P. S.1 ) For any k, j, the functions t;(.), t+j(-) are weakly 01-

stratified by So and for any z E Ao satis f y :

and for any stratum S E So and any k, j, either the inequality is strict for
any z E S or = tk (z) (respectively, = t~ (z)) for any z c- S;

(P.S.2) For any and any k=0,1,...,ko-1 1=0,1,...
... , jo -1 there exist the strata 8;, 6k , S~ , aT and the smooth characteristic

Z;(- Ak over the stratum S~ and Z f ( ~ ; ~ ) :
B+ c R X AT over the stratum S+ such that for any z E ~S the follow-
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ing relations hold :

(P.S.3) The first component, X( .; .) of Z(.; .) - (X(.; .),
P(-; ), Y( ~ ; ~ )) has property (2.16) where for any z E Ao the interval

I(z) is defined by:

Obviously, a piecewise smooth characteristic fiow has many of
the properties of the characteristic flow in the classical case.

In particular, a piecewise smooth characteristic flow verifies rela-
tion (2.22) and has the properties in the following analog of Lemma 2.8:

is a piecewise smooth characteristic flow in the sense of De f inition 3.6
then for any z E Ao , t E R and z E TzAo then function (r(.; z, t, z) de-

f ined in (2.26) on the set J(z) = t~ (z) ; k = 0, 1, ... , ko -1,
j = 0,1, ... , jo - 1} and by :

on the set veri f ies relation (2.30).

PROOF. Since according to (3.13)-(3.15), for any t E [ti (z), 0] one
has : Z(t; z) = z), on this interval relation (2.30) follows from
Lemma 2.8 applied to the smooth characteristic flow Zo ( · ; ~ ) .

Assuming that (2.30) is satisfied on the interval [tk (z), 0], we note
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that from (3.15) it follows that for any t E (tk+1(z), t§(z)) one has:

hence using (3.7) it follows:

and therefore one has : r(t; z, t, z‘) r(tk(z); z, t, z) given by (3.19)
as t - ~x (z) ~ t  tx (z) -

From Lemma 2.8 applied to the smooth characteristic flow 
it follows that on the interval [tk+1(z), t,~ (z)] the function r(.; z, t, z)
is the solution of a linear differential equation and since (2.30) is
assumed to be satisfied on the interval [tk (z), 0], one has: r(tk7(z);
z, t, z) = 0 hence (2.30) is satisfied on the interval [tk+1(z), 0]; by
induction it follows that (2.30) is satisfied on the interval [t;¿(z), 0];
on the interval [0, the proof is entirely similar.

The main result of this paper is the following generalization of
Theorem 2.11:

THEOREM 3.8. Let the problem (1.1)-(1.2) be stratified in the sense

of De f inition 3.3, let Zi ( - ; - ) = (X i ( - ; - ), Pi ( - ; - ), Vi(.; .»): Bi c 1~ X
X Ao ~ A, i E J, be piecewise smooth characteristic flows, let X, Q(.)
and W ( - ) be defined as in (3.9 )- (3.11 ), respectively, where C, = {Za( - ; z) ;
i E J, z E Ao~ , and let um ( - ) : X --~ .R be defined by (2.23 ) .

If for every i e 3 the first component, X ~( - , - ) : B z --~ X of Zi( -, - )
is a weakly 01-stratified submerssion by (8Bi’ 8i,x) and u,,,(-) is weakly
C1-stratified by 8m such that Sm is compatible with 8i,x for every i E J,
then ’Um(.) is a stratified solution of the problem (1.1)-(1.2) in the sense
of Definition 3.1.

PROOF. We consider x E Xm, 7 iEJ, (t, z) E Bi such that um(x) _
== Vi(t; z), x = Xi(t; z) ; according to Lemma 2.8 in [18] (an analog
of Lemma 2.9 in Section 2 for stratified marginal functions), for any
x E TxXm one has : Dum(x) -x = DVi(t; z) - (t, z) for any (t, z) E 
for which DXi(t; z) - (t, z) = x. From Lemma 3.7 it follows that
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hence = ~Pi(t; z), for any T E TxXm and therefore, since
Pi(t; z) E Q(x), from Proposition 3.5 it follows that u.(-) is a stratified
solution and the theorem is proved.

REMARK 3.9. In the case of stratified problems, the choice of the
marginal functions ~~.( ~ ) and uM( ~ ), defined by (2.23) and (2.24) re-

~spectively, as (remarkable) stratified solutions is additionally justified
by the results in [22] and [23] according to which ~(’) and 
are subanalytic (hence C°-stratified) provided the piecewise smooth
characteristici flows, Zi( ~ ; ~ ) are subanalytic and their first compo-
nent s are proper mappings on Cl (B i ) .

REMARK 3.10. As some examples from Optimal Control Theory
show, a characteristic orientor field may have not only piecewise
smooth characteristics generated by the piecewise smooth character-
istic flows in Definition 3.6 but also regular characteristics (i.e. that
have a countable number of switching points) or even more general
absolutely continuous characteristics. To cover such cases, the piece-
wise smooth characteristic flow in Definition 3.6 may be further

generalized to « regular » characteristic now ([20]) defined by countable
many switching function tk(-),ti+(-) and such that Lemma 3.7 and
therefore Theorem 3.8 remain valid.

We note that the a.e. solutions in Definition 2.4 may be considered
also for stratified problems not only for the classical ones in Section 2.

Moreover, the general procedure described in Section 2 may be
used not only for stratified (and classical) problems but also for other
types of problems for which a corresponding generalization of the
characteristic vector field may be introduced.

For example, for Hamilton-Jacobi equations of the form:

defined by locally Lipschitz Hamiltonians 2f(’y ’): A c .Rn ~ .1~
the characteristic vector field (2.4) is generalized in [6] by the fol-

lowing « Hamiltonian inclusion » :

where aH(x, p) denotes Clarke’s generalized gradient of H(., .) at

the point 
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It is conceivable that such generalizations of the characteristic
vector field may be found for even more general problems using
suitable generalized derivatives (e.g. [17]).

4. Examples.

EXAMPLE 4.1. We consider the following « Cauchy problem » ([10]) :

defined by the functions B’(~-,’):(To2013~T+~)x~x~~~
r &#x3E; 0, and uo( ~ ) : which are assumed to be of class C2.

Obviously this is a problem of the form (1.1)-(1.2) for which the
initial characteristic multifunction Po(.) defined in (2.6) is given by:

_ ~ H(T, x, Duo(x)), for (T, x) E Xo = ~T~ x Rn hence
it is single-valued and of class C1 and therefore (4.1)-(4.2) is a clas-
sical problem in the sense of Definition 2.1.

It is easy to see that the characteristic flow is completely defined
by the flow of the (non-autonomous) Hamiltonian vector field

p) _ (D3H(t, x~ p), - D2H(t, y p)).
Since the initial characteristic strip Ao in (2.7) is given in this case

lows that if for any the mapping (X(.; a), P(. ; a)): I(a) c
c .R -~ R’~ X Rn denotes the unique non-continuable solution of the initial
value problem:

and if Y( ~ ; cc) is defined by:
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then the set .X c [To, T] and the « minimal characteristic solution »

um( ~ , ~ ) defined by (2.17) and (2.23), respectively, are given by:

From Theorem 2.11 it follows that whenever the subset Xz C X
on which the minimum in (4.6) exists and satisfies condition (1.3)
and ~cm( ~ , ~ ) is a.e. differentiable on Int (Xm), um( ~ , ~ ) is an a.e. solu-
tion of the problem (4.1)-(4.2). Using results of the type of state-

ments (iii) and (iv) in Lemma 2.9 concerning regularity properties of
the marginal functions of the form (2.32) one may obtain corresponding
results concerning the minimal characteristic solution um(., .) in (4.6)
in terms of the first component, X(-, ), of the solution of (4.3). For

instance, as an immediate corollary of Lemma 2.9 we get :

PROPOSITION 4.2. Let us assume that the initial value problem (4.3)
has the following properties: for any (t, x) E [To , T] X .Rn there exists

aERn such that the solution (X(.; a),P(.; a)) of (4.3) is defined on the
interval [t, T] and satis f ies : X(t; a) = x and f or any s E [t, T] one has :
lim IIX(s; a) II - oo (X(8J ° ) is proper).

||a||-&#x3E;oo

Then [To, and u,,, Xm-+R defined by (4.6) is

an (global) a.e. solution of the problem (4.1)-(4.2) that is lower semi-
continuous and a.e. locally Lipschits.

Using different types of results in the theory of Ordinary Differential
Equations one may obtain a large variety of properties of H(., ., .)
and uo( ~ ) that imply the hypotheses in Proposition 4.2.

On the other hand, as in many other problems, very fruitful turns
out to be the so called « variational method » in obtaining interesting
results concerning the properties of the minimal characteristic solu-
tion um(., .) defined in (4.6):

THEOREM 4.3. Let us assume that the data (H., ., .) and uo( ~ ) of
the problem [4.1)-(4.2) are of class C2 and have the following additional
properties :

(i) For any (t, x, p ) E [To , T] X Bn X Rn the second derivative of
H(t, x, -) is negative definite and H(t, x, p) -~ - oo as lip II - 00.
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Then Xm= [To , T] X Rn and the f unction u~, ( ~ , - ) : 
is a (global) locally Lipschitz a.e. solution of the problem (4.1)-(4.2)
that coincides with the « variational solution » in [10].

PROOF. From hypothesis (i) in the theorem it follows that the
« Lagrangean » defined by :

is of class C’ and satisfies: if

and therefore from (4.7) it follows that for any

(t
From the existence theorem for Bolza problems in Calculus of

Variations (e.g. [5], Theorem 11.4 (i) and Section 11.5) it follows now
that for any [t, x) E [To, T] x-R" there exists an absolutely continuous.
mapping x( · ) : [t, T] --~ Rn that minimizes the functional C(x( ~ )) ==

1.’

+fL(s, x(s), x’(s)) ds over all absolutely continuous map-
t

pings x{ ~ ) : [t, that satisfy: x(t) = x. Further on, the neces-

sary optimality conditions in Calculus of Variations (or, equivalently,
Pontryagin’s Maximum Principle, e.g. [5], Section 5.1) imply the

existence of an absolutely continuous mapping p( ~ ) : [t, T] --~ Rn such
that (x( · ), p( ~ )) is a solution of the Hamiltonian system (4.3) and
satisfy the « transversality condition »: P(T) = Duo(x(T)), hence if

we denote a = x(T) then (x( ~ ), p(’)) = (X(.; a), P( · ; a)) is the

solution of the initial value problem (4.3).
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On the other hand, from (4.9) it follows that for any a’e Rn for

which the solution ((X ( . ; a’ ), P( . ; a’ ) ) of (4.3) is defined on [t, T]
and satisfies: X(t; a’) = x one has: P(s; a’) = q(s, X(s; a’), D1X(s; a’)))
for any s E [t, T] and therefore from (4.4) and (4.9) it follows: V(t ; a’) ==
== C(X( ° j a’)).
We have thus proved that for any (t, x) E [To, T] there exists

a C- Rn such that (X ( . ; a), P( . ; a)) is defined on [t, T] and sat-
isfies : X(t; a) = x and V(t ; a) = C(X( . ; a)) ~ C(.X( . ; a’)) for any

for which (X( . ; a’), P( . ; a’)) is defined on l(a’) D [t, T] and
satisfies : X(t; a’) = x; therefore Xm = [To, T] X R’° and the function
u.(-, in (4.6) is given by: um(t, x) = min ~C(x( . )) ; x(t) = x, x( . ) :
[t, T] --~ .R~ is absolutely continuous} which means that it is the

«variational solution)) of the problem (4.1)-(4.2) as defined in [10].
The fact that ~c~( . , . ) is locally Lipschitz follows in the same way as
in the proof of Theorem 1 in [10]; from Rademacher’s theorem and
from Theorem 2.11 (or Proposition 4.2) it follows that um( . , . ) is a

Lipschitzian a.e. solution in the sense of Definition 2.4 for the problem
(4.1)-(4.2).

EXAMPLE 4.4. We consider next the following problem:

which is discussed in several places in [2] and is of the same type as
the problem (4.1)-(4.2) where [To, T] is replaced by .1~.

Standard computations show that the characteristic flow is given by:

first component, X(t; z) == (t, (4t -+- 1)s) is invertible on the subset
and therefore, using (2.11) we obtain the unique

classical solution:

for which the set .X* is the ma~ximal domain of definition that conta~ns.

.Xo = {0} X .R.
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However, the marginal characteristic solutions defined in (2.23)
and (2.24) given in this case by:

are globally defined and coincide; the function u,,(-) above is, obviously,
an a.e. solution as well as a stratified solution and is discontinuous at
the points in .R2BX* hence it cannot be a viscosity solution in the sense
defined in Remark 2.5.

In fact any function u( ~ , ~ ) : .R2 -~ .R that is an extension of the
classical solution u*( ~, ~ ) in (4.11) is an a.e. solution in the sense of
Definition 2.4 but the « characteristic solution in (4.12) has the fol-
lowing remarkable property: for any R2 there exists a

characteristic Z( ~ ) _ (.X( ~ ), P( ~ )), Y( ~ ) : [0, T] -~ A such that: .X(0) E
7 X(T) = xo, um(X(t)) = V(t) for any t E [0, T] and (in the case)

Dum(X(t)) = P(t) a.e. on [0, T] (we allow T E R to be also negative).
Such properties may be important in some applications in Calculus
of Variations, Optimal Control Theory, Theoretical Mechanics, etc.

EXAMPLE 4.5. Let us consider the optimal control problem of

minimizing for any (to, xo) E Eo = {(t, x) E R2; x  tj the functional
tp

C(u(-) ; to, xo) over the set U(to, xo) of all measurable
to

bounded «admissible controls » ~c( ~ ) : [to, t~] ~ 1~ for which the ab-

solutely continuous solution, x( ~ ), of the initial value problem:
.x’= u(t), x(to) = xo is defined on [to, tF] and satisfies the restrictions :
.ae(t)  t for any t E [to, tF) and = tp.

It is easy to see that the partial differential equation of Dynamic
_Programming (known also as Bellman-Isaacs equation) associated to
this problem (e.g. [5], [13], [18], [20], etc.) is the following boundary
value problem of the form (1.1)-(1.2):

Standard computations similar to the ones in the previous examples
.show that the marginal characteristic solutions (2.23) and (2.24) of
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this problem are given by:

These functions are, both, classical, hence viscosity solutions of
the problem (4.13), but only WM( ~ , ~ ) coincides with the so called
« value function » of the optimal control problem defined by: W(t, x) =
= min ~C(u( ~ ) ; t, x) ; ~c( ~ ) E z)) for (t, x) E Eo .

EXAMPLE 4.6. The time-optimal control problem of reaching the
point (0, 1) E .1~2 in minimal time, along the trajectories of the
system:

u( ~ ) : [0, tF] --~ [-1, 1] being measurable, leads to the following
i stratified » boundary value problem:

which is the equation of Dynamic Programming for the considered
optimal control problem.

It is easy to see that the data of the problem : A = 
= - ((0, 1)) , = + 1, Wo(r,) = 0 and the

initial characteristic strip given by: Ao = {((O, 1), 0,;.
8 E R) have the properties in Definition 3.3 that makes the problem
(4.15) a stratified one.

The « natural» stratification A2 , {~ = (x, p, v) e A ;.

of the function F(-,-,-) may be further refined to the Cw-stratification
Sp = IAO i Aos , = 1,2} where:
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such that 80= = 1, 2, 3} is compatible with SF and the stra-
-tified characteristic orientor field in (3.3) is given by:

An easy computation shows that through each point z = ((0, 1),
~~ ~s ~ -1, s), 0) E Ao there passes a unique characteristic 2~(*; z) : I(z) ==
- R ~ A and the mapping ~(’; ’) may be described in an obvious
way as a piecewise analytic stratified flow in the sense of Definition 3.6
which is defined by the (analytic) flows, ~,(*; ), of the vector fields
.~i( ~ ) in (4.16), i = 1, 2, and by the switching functions:

Obviously, the stratifications So and 8p may be further refined
so that t~ ( ~ ) and ti ( ~ ) become C"-stratified by So and satisfy the other
properties in Definition 3.6.

Writing explicitely the components .X( ~ ; ~ ) and Y( ~ ; · ) of the
characteristic flow, ZF(.; ), one may see that the set X defined in
(2.17) is the whole plane, and for any x E the set W(x)
defined by (2.19) consists of two distinct points: if

.X(t; x) = x and t  0 and T~’2(x) _ - t if X(t; x) = x and t &#x3E; 0.

It is easy to see that the two marginal functions defined in (2.23)
and (2.24) given in this case by: = W2(x) and = 

for any Xm = X = R2 are C°-stratified solutions (and also
a.e. solutions in the sense of Definition 2.4) of the problem (4.15),
the maximal characteristic solution, yYM( ~ ) = ~W’’1( ~ ) which is discon-
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tinuous at some points including (0, 1) being the minimal-time
function of the considered time-optimal control problem ([9]); the
minimal characteristic solution, ~~n( ’ ) = W2( ’ ) (which is also discon-
tinuous at some points) has the following interpretation: for any

is the minimal time in which the point
$l! = (0, 1) can be steered to x along the trajectories of the differential
system defining the optimal control problem.
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