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A Class of Finite q-Series. - III.

H. M. SRIVASTAVA (*) (**)

SUMMARY - Simple proofs based only upon some rather elementary results
are presented for several interesting generalizations (involving series with
essentially arbitrary terms) of a number of finite summation formulas

for certain classes of hypergeometric functions of one and two variables.
Applications of these general summation formulas to various multivariable
hypergeometric functions, and their further generalizations (and unifications)
and q-extenrions, are also considered. The main results (2.3), (4.5), (6.1),
(6.2) and (6.12) below, and their special cases including (for example) (2.1), 9
(3.1), 9 (3.5), (3.8), (4.1), (4.3), (5.1), (5.3) to (5.6), (6.14), (6.15) and (6.18),
are believed to be new.

1. Introduction.

In the usual notations, let

and define the binomial (or combinatorial) coefficient for a

(*) Indirizzo dell’A. : Department of Mathematics, University of Victoria,
Victoria, British Columbia V8W 2Y2, Canada.

(**) Supported, in part, by NSERC (Canada) under Grant A-7353.
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complex number A, by

Also let IA.1, and ~vn~ be arbitrary complex sequences. In a

recent paper [4] we showed, for an arbitrary non-negative integer N,
that

and also gave a q-extension of (1.3). Subsequently, in terms of a
bounded double sequence ~S~(t, M)I, we proved the finite summation
formula [5]

and also derived a q-extension of a m2.cltivariable generalization
of (1.4).

Each of our earlier results (1.3) and (1.4) was motivated by, and
provides an interesting unification (and generalization) of, a fairly large
number of finite summation formulas for hypergeometric functions
of one and two variables, which are scattered in the literature

(see [4] and [5] for details). The object of the present sequel to our
earlier papers [4] and [5] is first to derive a multivariable extension
of a mild generalization of (1.3) and show how this extension can be
applied to deduce finite summation formulas for various classes of

hypergeometric functions of two, three and more variables. We
then prove, using some rather elementary results, several similar

generalizations (involving series with essentially arbitrary terms) of
the finite hypergeometric summation formula of Manocha and Sharma
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(cf. [1], p. 475, Equation (31)):

which was proven in [1] and, once again, in a recent paper by Qureshi
and Pathan [3] using the same method based upon the fractional
derivative operator Ð: defined by

Finally, in Section 6 we present some further generalizations (and
unifications) as well as q-extensions of our main results considered
in Sections 2 and 4 below. Our multivariable summation formulas

(2.3), (4.5), (6.1) and (6.2), the q-summation formula (6.12), and many
of their numerous special cases considered in this paper are believed
to be new.

2. Generalizations of the summation formula (1.3).

By closely examining our proof of the hypergeometric form of
the finite summation formula (1.3), detailed in Section 2 of our earlier
paper [4], we are led rather immediately to an obvious generalization
of (1.3) in the form:
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which would evidently reduce to (1.3) in the special case when

More generally, y for every bounded multiple sequence

we shall show that

where, y for convenience, y

provided that the multiple series in (2.4) converges absolutely.

PROOF. Let 8 denote the left-hand side of the summation

formula (2.3). Then, within the r-dimensional region of convergence
of the multiple series in (2.4), we find from (2.3), (1.1) and (1.2) that
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Since

where 3m,n is the familiar Kronecker delta, the innermost sum in the
last expression for 8 is nil unless I + m = N (in which case the sum
is 1), and we have

or, equivalently,

which, in view of the definition (2.4), immediately yields the

right-hand side of the summation formula (2.3).
For z, = ... = zr = 0, our general result (2.3) would reduce at once

to the finite summation formula (2.1).

3. Finite summation formulas involving multivariable hypergeometric
functions.

By suitably specializing the multiple sequences

the general result (2.3) can be applied to derive various finite

summation formulas involving certain classes of hypergeometric
functions of several variables, such as the (Srivastava-Daoust)
generalized Lauricella function of r + 2 variables (cf . [6], p. 37,
Equation seq.). In particula~r, if we take r = 1, and let {,i (1, m)}
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be a bounded double sequence, then this special case of (2.3) may be
stated in the form:

where, y for convenience,

provided that the series in (3.2) is absolutely convergent.
In (3.1) we now set

and

and interpret the inner triple series occurring on the left-hand side
of (3.1) as Srivastava’s triple hypergeometric function 1"~3~[x, y, z]
(cf., e.g., [6], p. 44, Equation (14) et seq.), and we shall obtain the
finite summation formula:
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where ( a~ ) abbreviates the array of p parameters a1, ... , a~ , with

similar interpretations for (b~), (cr), (d,), (a~), et cetera, an empty
product being understood as 1.

An interesting special case of (3.5) occurs when we set

and identify the resulting hypergeometric function 2F 1 as a Jacobi
polynomial jP~(~) defined by

We thus obtain the summation formula:

A very special form of our summation formula (3.8) when
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happens to be the main result in an earlier paper by Pathan ([2],
p. 59, Equation (2.3)) who indeed used; a markedly different method
to prove this special case of (3.8).

We remark in passing that the special cases of both (3.5) and (3.8), y
when z = 0, were derived in our paper [4] as obvious consequences
of the general result (1.3).

4. Generalizations of the summation formula (1.5).

Let and be arbitrary complex sequences. Then a closer
look at (1.5) would suggest the existence of a straightforward
generalization of (1.5) in the form:

which evidently reduces to (1.5) in the special case when

In terms of a triple sequence {A (1, m, n)l, the finite summation
formula (4.1) admits itself of a further generalization given by

which corresponds to (4.1) when we set

More generally, y for every bounded multiple sequence
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we now show that

provided that the multiple series in (4.5) converges absolutely.

PROOF. Denoting, for convenience, the left-hand side of the

summation formula (4.5) by 8*, we find from (4.5), (1.1) and (1.2) that

it being assumed that the multiple series in (4.5) converges absolutely.
Now apply the elementary identity
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which immediately yields the reduction formula

for any bounded sequence ~ f (n)~, and we readily obtain

which, upon interchanging the order of summation appropriately, y
gives us

This evidently completes the proof of our summation formula (4.5)
which would reduce at once to (4.3) in the special case when

and

5. Applications of the general result (4.5).

Just as in the case of the summation formula (2.3), we can suitably
specialize the multiple sequence

with a view to applying the general result (4.5) in order to deduce
various finite summation formulas involving such classes of multivariable
hypergeometric functions as the (Srivastava-Daoust) generalized
Lauricella function of r + 2 variables (cf. [6], p. 37, Equation (21)
et seq.). In the particular case when r =1, if ~C(x, 1, m, n)) is a
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bounded quadruple sequence, (4.5) assumes the form:

provided that each side of (5.1) exists.

In (5.1) we now put

and interpret the inner triple series occurring on the left-hand side of
(5.1) as Srivastava’s triple hypergeometric function F(3)[X ,y, z] (cf ., 7
e.g., [6], p. 44, Equation (14) et seq.). Upon interpreting the inner
series on the right-hand side of (5.1) as a generalized hypergeometric
function, y we thus obtain the finite summation formula:
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where, for convergence of the generalized hypergeometric series,

For z --. 0, the finite summation formula (5.3) evidently yields

which, for p = 1~ == 0, reduces immediately to the elegant form:
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Formula (1.5) is an obvious special case of (5.5) when

Yet another special case of the general hypergeometric summation
formula (5.3) occurs when we set r = s = u = v = 0. Upon simplifying
the right-hand side of (5.3) in this special case, we obtain the

summation formula

which incidentally may be regarded as a straightforward three-variable
extension of the hypergeometric summation formula (5.4).
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6. Further generalizations and q-extensions.

Our proof of the general multivariable summation formula (4.5)
depends heavily upon the reduction formula (4.7). If, instead of (4.7),
we make use of the series identity (4.6), we shall similarly obtain an
interesting further generalization of (4.5) in the form:

which would immediately yield (4.5) in the special case when Y = y,
More generally, y in terms of a bounded multiple sequence

we can apply the proofs of (2.3) and (4.5) mutatis mutandis in order
to derive the following unification (and generalization) of the
multivariable summation formulas (2.3) and (4.5):
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which, in view of the series identity (4.6), reduces to (6.1) in the

special case when

In order to deduce the multivariable summation formula (2.3) as
a special case of (6.2), we set Y =: x and

and make use of the definition (2.4) and the elementary combinatorial
series identity (2.5).

With a view to presenting the q-extensions of the various finite
summation formulas considered in this paper, we begin by recalling
the definition (of. [6], p. 346 et seq.)

for arbitrary q, ~, and p, so that

and (cf. Equation (1.1))

for arbitrary A and p, ~M=~0y -1, - 2, ....
We shall also need the q-binomial coefficients defined, for

arbitrary A, by Equation (1.2))
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so that, if N is an integer,

Since

(6.10)

and

which indeed follow readily from (6.8) and (6.9), y it is not difficult
to prove (along the lines detailed in Sections 2 and 4) the following
q-extension of the general result (6.2):

which holds true whenever both sides exist.
In the special case of the q-summation formula (6.12) when the

constraint (6.3) is satisfied, if we apply the q-series identity (cf .
Equation (4.6))
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which is an immediate consequence of the q-binomial expansion (c f . [6],
p. 348, Equation (274)), we obtain the result

which is a q-extension of the multivariable summation formula (6.1).
For Y = y, the 1-series occurring on the right-hand side of (6.14)

reduces to its first term given by 1 = 0, and we thus find from (6.14)
that

which is a q-extension of the multivariable summation formula (4.5).
The q-summation formula (6.15) can indeed be deduced directly

from (6.12) by setting Y= y, and making use of the constraint (6.3)
and the identity (c f . Equation (4.7))

which is an immediate consequence of (6.13).
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Finally, we deduce a q-extension of the multivariable summation
formula (2.3) as a special case of ( 6.12 ) . Setting ~’’ = x in (6.12) and
using the constraint (6.4), if we appeal to the elementary q-identity :

which is a q-extension of the combinatorial series identity (2.5), we
obtain from (6.12) the multivariable q-summation formula:

where

provided that the multiple series in (6.19) converges absolutely.
Formula (6.18) provides a q-extension of the multivariable

summation formula (2.3). Its special case when (4.8) holds true in
conjunction with (2.2) and

leads to a q-extension of (1.3), which indeed was given earlier by
us [4]. For r == 1, (6.18) would immediately yield a q-extension of
the summation formula (3.1). Furthermore, in view of the limit

relationship (6.7), and since

each of the multivariable q-summation formulas (6.12), (6.14), (6.15)
and (6.18) would naturally yield the corresponding results (discussed
in this paper) in the limit when q 2013~ 1 in an appropriate manner.
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