
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

RADOSLAV DIMITRIĆ
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On Subfunctors of the Identity.

RADOSLAV DIMITRI0107 (*)

1. Introduction.

This note is concerned with the study of multiplicative and he-
reditary functors i.e. those subfunctors 1" of the identity satisfying, for
every B  A, (B + and FB = B n FA respectively.
It also discusses some concepts of .F’-purity, connected with Fuchs’
Problem 15 (in [2 ] ) and the note is to be considered as an introduc-
tion to a more thorough treatment of this Problem. Some of the ideas
here have been anticipated in [1].

Throughout we deal with a category of (unital) R-modules were B
is a commutative ring with unit. F will denote a subfunctor of the
identity in that category i.e. (an additive) functor such that, for every
homomorphism f : B --3- A, Ff = flFB (thus and 

This implies in particular that, for every B  A, (B + FA) IB  F(A IB)
and that I~’ commutes with direct sums.

By purity we mean RD-purity denoted by B c ,~ A, meaning that
every equation rx = b E B (r E R) having solution x E A also has a
solution in B.

2. Multiplicative functors.

DEFINITION 1. A subfunctor of the identity is called 

pticative if, for every submodule B of an R-module A, 
- ( B + 

(*) Indirizzo dell’A.: ul. 29. Novembra, 108, 11000 Beograd, Jugoslavija.
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The following proposition describes all multiplicative functors in
the category of modules over PID’S.

PROPOSITION 2. If .R is PID, then a subfunctor F of the identity
is multiplicative if and only if it is a multiplication by an r E .R.

PROOF. One way is trivial. Assume now that F is multiplicative.
Every .R-module A is a quotient of a free module: A == (0 
This gives FA = (B + (B + = rA, for 

A characterization of multiplicative functors is given in

THEOREM 3. The following are equivalent:

( 1 ) .~’ is multiplicative;

(2) F is epi-exact i.e. if is an exact se-

quence, then so is FA S FC -j- 0;

( 3 ) ~’ is a radical i.e. F(AIFA) = 0, for every .A and 
== ~A : FA = 01 is closed under quotients and submodules.

PROOF. (1) « (2 ) : The relations qFA = (B + 
prove this part immediately.

(1) ~ (3) : F(AIFA) - (FA + = 0. Now, if A. e X,
then F(AjB) == (B + 0, thus JV is closed under quo-
tients.

(3) ~ ( 1 ) : Since AIFA the hypothesis that J~ is closed un-
der quotients, gives + == 0 = F(Aj(B + I’A)) -
== .F’(A JB/(B + so that

This implies -f- FA)/B, thus proving that F is indeed

multiplicative.
The theorem that follows enables us to work with classes of modules

closed under submodules, quotients and direct products as well as
with filter like families of ideals of .R closed under arbitrary intersec-
tions, instead of working with multiplicative functors. We give its
detailed proof.

THEOREM 4. There is a bijective correspondence between:

(1) Multiplicative functors.
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(2) Classes of modules closed under submodules, quotients and
direct products.

(3) Families F = R) satisfying

PROOF. (1) -+ (2): For given multiplicative functor .I’ define 
= FA =0}. C, is clearly closed under submodules and quotients
(Theorem 3). If A 2 E CF (i E I ) , then for every j E I, 0 = _

Therefore, for every

, is also closed under

arbitrary products.

(2) - (1 ) : For given class C of modules closed under submodu-
les, quotients and direct products, y define Fe by FeA = the smallest
submodule B of A such that E C. We show that Fe satisfies (3)
in Theorem 3: By the way we defined Fe, = 0. If

FeA == 0 i.e. A E e it gives and B e C, for every BA.
Hence = Fe(AIB) = 0, and this proves that X is closed under
submodules and quotients.

The correspondence ( 1 ) H ( 2 ) is bijective:

.F -¿. E eF or equivalently F(AjFcFA) = 0 1 hence
(FCFA + = 0 i.e. FA By Theorem 3, F(A IFA) = 0,
thus, by the definition of we get F = 

b ) If, for we get

and, by the known fact we obtain

(3)~(2): .~ --~ ~~- _ ~A ~ I for every x E A, It is
clear that Cy is closed under submodules. That it is closed under

quotients we see from the fact that if x E A IB then ann e Y
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and a ) applies. If Cy ( i E I ) , then, for every ,~ .
For arbitrary

The correspondence ( 2 ) H ( 3 ) is bijective:

for every x in A, ann x E « four

every x in A, B/ann x c- C « for every x in A., .
This implies that A e C since A is the quotient of

(the last equivalence is valid since .R is

assumed to be having a unit) .
The correspondence (1 ) H (3 ) is realized by

= the smallest submodule B of A such that for every
~ E AIB, ann x E Y.

Notice that if Y # # in Theorem 4, then E Y.
Also 0 e Y « F is zero functor =&#x3E; e = the category of R-modules.
If .R is PID, then by Proposition 2, the only multiplicative functors

are multiplications by r E B, thus C consists of all R-modules bounded
by a fixed r E R, while Y == for an 

3. Hereditary functors.

A very important class of f unctors, in a sense dual to multiplicative
functors, is introduced in

DEFINITION 5. Call a subfunctor 1~ of the identity hereditary if
for every submodule of an R-module A, FB = B r1 FA.

As a corollary to this definition, we derive that for a hereditary
functor F and arbitrary R-modules C, D, FC = F(C r1 D) .

Combining Proposition 1.4 and Exercise 1.1 in [4] we state

THEOREM 6. The following are equivalent:

( l ) 1~’ is hereditary;
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(2) F is left exact i.e. if 0 --~- B ~ ~A~. --~ C is an exact sequence,
then so is 0 - FB * FC;

(3) F2 = F and = {A: = A~ is closed under submodules.

PROOF. (1) =&#x3E; (2): Exactness at FB is straightforward since F is a
subfunctor of the identity. The exactness at T’A is established from
the chain of equalities:

(2) z4- (3): The exact sequence 0 induces
another exact sequence 0 that gives F2 = F.
If FA = A and B A, then exactness induces
exactness of 0 - FB - A - thus FB = B ; this shows that
is closed under submodules;

(3) =&#x3E; (1): Let FA e G so B n FA e G or equivalently
FB  B n FA = F ( B n FA) ~ FB therefore F is hereditary.

One of several important characteristics of hereditary functors is

to be found in

PROPOSITION 7. A subfunctor of the identity commutes with
inverse limits if and only if it is hereditary and commutes with direct
products.

PROOF. By a known fact, .F commutes with inverse limits if and
only if it commutes with direct products and equalizers. The last
condition is equivalent to heredity of F.

Here, for the sake of completeness and usefulness, y we state Pro-
position 3.3 from [4].

THEOREM 8. There is a bijective correspondence betw een :

(1) Hereditary functors.

(2) Classes C of modules closed under submodules, quotients
and direct sums.

(3) Families ideals of 1~ (called pretopologies on R) satisfying
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PROOF. The correspondences are as follows:

At the end of this section we examine subfunctors of the identity
that are at the same time hereditary and multiplicative.

PROPOSITION 9. For a subfunctor F of the identity, the following
are equivalent:

( 1 ) F commutes with direct limits;

(2) for every homomorphism f : B - A, can-

onically ;

(3) for every subgroup there is a canonical isomorphism
7

(4) .F is hereditary and multiplicative;

(5) I’ is exact.

PROOF. (1) ~ (2): By the ’known fact, .F (being a subfunctor
of the identity) commutes with direct limits if and only if it commutes
with coequalizers or, equivalently, with coqernels. This is exactly (2);

(2) =&#x3E; (3) is obvious;

(3) « (4) ~ (5): If 0 --~ B -j- A ---~ C -~ 0 is exact, then by
Theorems 3 and 6, 0 -+ FB -+ FA -+ FC - 0 is exact if and only if F
is multiplicative and hereditary. The latter sequence is exact if and

only if FAIFB F(AfB) canonically;

(3), (4) ~ (1) : If is a direct spectar,
then where B = i  j}  + Ai. F-in-

duced spectar is
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thus F commutes with direct limits.

PROPOSITION 10. If F is a subfunctor of the identity in the cate-
gory of modules over a PID, then F is multiplicative and hereditary
if and only if I’ is the Zero-functor or the identity itself.

PROOF. By Proposition 2, F is multiplication by an r E .R. Since F
is hereditary, we have rl~ == .1~ n rQ (Q-the quotient field of .R) ; this
is possible only if r is invertible so the only choices are either r = 1
or r = 0.

4. 

Following Fuchs (we only change the name a little; see [2], Prob-
lem 15) we have

DEFINITION 11. For a subfunctor F of the identity, call the exact
sequence

F-exact if the induced sequence

There are several concepts of F-purity introduced in the literature.
For instance, Nunke in [3] calls the exact sequence E, F-pure if it

is an element Ext (AIB, B).
If n = k.m, the exact sequence 0 - -+ Z(n) - Z(m) -~ 0

gives an example of n-exact sequence in the category of Abelian

groups; this sequence is not n-pure in Nunke’s sense. Conversely
Nunke D-pure but is not D-exact

sequence (D being the divisible part of a group).
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THEOREM 12. If .F’ is a subfunctor of the identity and E a given
exact sequence, then the following are equivalent:

(1) .E is F-exact;

( 2 ) .F’B = B n FA and F(AfB) = (B + 

(3) F(AfB) canonically.

PROOF. The same reasoning applies as in proofs of Theorems 3
and 6.

EXAMPLES. 1. By Theorem 29.1 in [2], .E is pure exact if and

only if it is r-exact, for every r E I~.

2. If E is pure exact, then it is S-exact (here S denotes the
socle subfunctor). By Theorem 12 we need to show only that 
== (B + The last follows from the known fact (see e.g. The-
orem 28.1 in [2]) that B is pure submodule of A if and only if for

every C E there is an a e c of the same order as c.

3. If E is splitting, then it is F-exact for every subfunctor F
of the identity. Indeed if A = B 0 C, then B n FA = B n (FB 0
@FC) == FB and F(AIB) == FC = (B EBFA)/B, thus .F’ satisfies both
conditions in Theorem 12 (2).

PROPOSITION 13. Assume that E is an exact sequence, where
A = Åo EB At, with Ao torsion free and A1 torsion. Then .E is T-exact
(T-the torsion functor) if and only if T ( (.Ao -~- B)IB) = 0 or, equiva-
lently, B 

PROOF. By Theorem 12, .E is T-pure if and only if T((Ao + .A.1)/B) ==
- ( B + which is equivalent to T( (Ao + B ) /B ) = 0 or B)
being torsion free. This is same as Ao n B ~ * Ao .

We also introduce

DEFINITION 14. For a subfunctor F of the identity, call the exact
sequence

if the induced sequence

is pure exact.
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PROOF. =&#x3E;: The proof that T(AIB) == (B + is by the same
argument as in Example 2. That TB ~ * TA follows straightforwardly
from B ~ * A.

: We need to prove that B * A. Let ra = b, a E A, b E B,
r E B. Then rqa = qra = qb = 0 so qa E TC. By T-exactness there
is an with qa’ = qa i.e. a - B and qra’ = 0 thus there is a

such that ra’ = b’ . Since TB ~ * TA, there is a TB with

ra’ - rb" - b’ therefore r ( a’ - b" ) = 0 hence r(a - ( a’ - b" ) ) == rac = b.
One can show in a similar fashion that E is pure exact if and only

if it is pure-r-exact for every r c R (see Example I in [1 ] and Exer-
cise 1, § 29 in [2]).

Following Stenstr6m (see [4], Exercise 1, § 6) call the exact se-

quence E (Y is a pretopology on .R) if for every x E C with
ann x there exists YEA mapped upon x, such that ann y = ann x .

THEOREM 16. be hereditary functor and Y the pretopology
corresponding to it in the correspondence given by Theorem 8. Then
the exact sequence E is pure-F-exact if and only if it is Y-pure.

PROOF. ~: Assume that B is pure-F-exact sequence. We prove
that it is To this end, let x E C with ann x c 5-. By Theo-
rem 8, this means that x E FC, therefore there is a y E FA (i.e. ann y E Y) }
such that qy = x. We find a such that qyo= x and ann x  ann ya :
if rx = o, then ry E FB  * FA so there is a y1 E such that r ( y -
- = 0 ; it is enough now to take yo = y - y, .

: We assume that E is -pure and prove that ~E is pure
exact. If x E .F’C i.e. ann x e Y, then there is a y E A with qy = x
and ann y = ann x so that y E FA. This shows that .E is F-exact.
It is also pure exact: if ry = b E FB, y E .F’’A, by 5;--purity there exists
yi e A such that qyl := qy i.e. y - FB and ann ann q y. Since

rqy == 0 we have 0 thus giving r(y - = ry = b.
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