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Construction of Finite p-Groups
with Prescribed Group of Noncentral Automorphisms.

PANAGIOTIS C. SOULES (*)

1. Introduction.

Using graphs, Heineken and Liebeck [3] have proved that there
exists for every finite group g and every odd prime p a p-group G
of nilpotency class 2 and exponent p2 such that Aut G/Autc G is iso-
morphic to K. This paper is centred around the following problem:
Given a finite group .K, find a p-group G such that .I~ is isomorphic
to Aut GjAut G and this quotient group operates regularly (instead
of semiregularly as in [3]) on the elements of a suitable basis of GjG’.
Other work in this direction was done by Zurek [6] who taken G such
that G~2 c G’ - Z(G) and (G’)- = 1, avoiding the exclusion of p = 2.
The graphs themselves are not altered, Lawton [4] has changed the
graphs using a general statement on graphs, and U. Webb [5] used
graphs that are no longer directed. There is no overlap in the arguments
of these papers with the present work. The aim of this work is to
find out, for which groups I~ the original method of graphs construc-
tion can be used to find a graph with points, making the operation
regular instead of semiregular. So one has to choose a set of generators
of .g, and the operation of right hand multiplication by a generator
is described by an arrow. Two problems arise:

(*) Indirizzo dell’A.: Department of Mathematics, University of Athens,
Athens, Greece.
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(1) Is there a generating set .~’ of K such that Aut K :

(II) Can the digraph D(K) be chosen such that

In this direction we prove Theorem 2.2.1 using Lemma 2.1.1. By
arguments of Lemma 2.1.1. it is found that the digraph is suitable
in the sense of (II) if D(K) does not contain closed paths of length 2, 3
or 4. This leads to the modification of problem (II) to

(II*) Can the digraph D(K) be chosen without closed paths
of length 2, 3 or 4 ~

We call a group K rigid for shortness if it is a group with simultaneous
affirmative answer for (I) and (II*).

Our first application is Lemma 3.1.1. Here we study groups gener-
ated by an element of order 5 and another element of higher order,
as a consequence we find that every alternating group ~.n for n &#x3E; 5
and every symmetric group Sn f or n &#x3E; 4 has a suitable graph. Here

also the question of distinguishing arrows as belonging to different
« families » comes into play such that one arrow of every family begins
at a given point.

Our second application is Lemma 4.1.1. Here we examine groups
generated by two elements of order 5, and we obtain that the digraph
constructed is suitable if there is no automorphism interchanging
the two generators.

There are, however, many well known simple groups without
any element of order 5, for instance all the projective special linear
groups (2, p) with p = 2, 3 mod 5. Here we use Lemma 5.1.1.

and we choose generators x, y of higher orders such that is of order 2

but xy2 is not.
From the preceeding it is now clear that noncyclic abelian groups

are never rigid groups because of the closed paths of length 4 represen-
ting x-1 y-1 xy = 1 in the generators x, y. For high ranks the methods
will not lead to substantial improvements compared with the graphs
used Heineken and Liebeck. The consideration of the problems (I), (II)
for this range of groups leads to structural insights about these groups
and may give hints as to how to find a suitable representation of the
group .g for other purposes.
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2. The digraph of a finite group K and its associated

p group 

Given a finite group .K construct the digraph D(K) relative
to a specified set of generators. The construction is identical to that
described in [3] excluding the auxiliary points and the only condition
is that every point belong to a closed path containing at least 5 points.
The points of D(.K) correspond to group elements of a non-cyclic
group K and are adjacent to n points and adjacent from at least n
different points. We will have to show that if the orders of generating
elements are different and greater than 5 We can distinguish the closed
paths on the digraph in many cases. An automorphism of the digraph
D(K) preserves closed paths and the Aut D(K) is isomorphic to K.
We call n-circuit a closed path consisting of n arrows without considering
the direction and n-cycle a closed path consisting of n arrows, uniformly
directed.

Our terminology for digraphs can be found in [2].
Let the points of D(K) be PI, P2, ... , Pn . Relative to this ordering

of points we define the associated p-group P(D(.K)) = P of nilpotency
class 2 to be generated by canonical generators x,, ..., Xn subject to
the conditions:

(ii) for every hEX, = n, given that Ph is adjacent to PAw,
Pha and to no other points, then the following defining rela-

tions holds in 

Evidently, given a permutation q on {I, 2, ... , n} the map 
2013~ = 1, ... , n) is an automorphism of D(K) if and only if the map
xh - extends to an automorphism of the corresponding p-group P.
We intend to establish the Theorem by proving these automorphisms
generate Aut P modulo Aut, P. The proof is based on the following
Lemma:

LEMMA 2.1.1. Let D(.g) be a connected digraph satisfying the
following two conditions:

(i) There is no closed path of length smaller than 5,
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(ii) each point of the graph is the beginning of at least two

arrows.

Consider an element t of the associated p-group P(D(K)) = P. If

there is an element u in P such that t’ = [t, u] # 1, then t = for

h in K, and c e Z(P) .

REMARK. Lemma 2.1.1 excludes cyclic groups K. For them,
however, the statement i6 true by Lemma of [3] if their order is at
least 5.

PROOF. By construction t does not belong to Z(P). So t may be
described as a product

such that (without loss of generality) 0. Accordingly

where

If we present each commutator [xg ~, yi] as product of commutators
[xi, and multiply all these expressions to obtain tl, we find that

(1) no commutator [xi, Xk] occurs in more than one expression,
making cancellation impossible,

(2) if xk] and [z* , occur then [xi, xjl does not occur
in tl,

(3) there are no quadruples such that all four

[Xh, xi], 7 [Xi, Xil 7 Cx, , 7 Xkl 7 [Xk, xh] occur in t9.

These three statements are in fact the direct consequences of the

condition that there are no paths of lenght 2, 3 or 4. By assumption
we have tl = [t, u] ~ 1, so u is not contained in Z(P) and there is a
representation

analogous to that of t. Since [t, U] == [t, for all k, we may assume
bl = U.
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Assume now that xr and xs occur in y1 (by condition (ii) there are
at least two such generators). Then xr and xs ako occur in u, that is,
br =i= 0 =f= bs.

Assume now that t is not of the form stated in the Lemma, then
c~m ~ 0 for some m different from 1. Either m is equal to r or to s,
and we obtain a contradiction to (2), or m is different from both of
them and we have a contradiction to (3). This proves the Lemma. CI

The above Lemma 2.1.1 holds for any number n of generators
of the finite group .K. The next Theorem depends on Lemma 2.1.1.

THEOREM 2.2.1. Let 0 be an automorphism of the associated

p-group P and t = x,t for .K then tO = where t E P g E .K
and c E Z(P).

PROOF. Let the elements xh, Xhu’-l of the group P. By Lemma 2.1.1
we have:

where d, g e K, m, n E Z+, E Z(P) and from

applying have:

then from

and

so from (1) and (2) we take:

and so either
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Since t was chosen arbitrarily among the generators xh, 
we see that an automorphism of the group P modulo Autc P is specified
by a permutation on the n numbers of the generating, set, where
n = IKI.

3. In this section the method used there is simplified for certain
classes of groups. For each group of these classes it is necessary to
obtain a certain presentation in order that the new method can be
used. This presentation is called, rigid. For each class of rigid groups
a general criterion is given which is satisfied by the groups of the
class.

LEMMA 3.1.1. Let G finite group generated by two elements x, y
and assume o(x) = 5 and o(y) &#x3E; 5. The graph constructed by G using
the generators x and y can be used for the construction of a corresponding
nilpotent group, if we have:

PROOF. we have to show two things:

(I) The graph has no circuits of length 4 or less.

(II) The arrows of the graph fall into two different classes.

For (I), we have to check the consequences of short circuits. For

length 2 and for length 3 there are no circuits by the given statements, y
i.e. xyx =1= 1.

For length 4: a) x3y = 1 yields [x, y] = 1 contradicting (i). The

arguments for x3y-1 = 1, xy3 = 1, and xy-3 = 1 are analogous.

b) x2 y2 = 1 yields [X, y2] = 1 contrary to (i). Same for x2 y-2 = 1.
xyxy = 1 and xy-lxy-1 = 1 contradict (ii) and (iii) respectively.

c) xyxy-1 = 1 means yxy-l = x-1 and so y2xy-2 = x contrary
to (i).

d) xyx-1 y = 1 leads to x2 yx-2 = y, contradiction since x is of
order 5.

This shows that there are no circuits of length 4 in the graph. We
will now show that the x-arrow is the only arrow occurring in 5-cycles
of the graph. For this we have to consider the relations which may
lead to a 5-cycle.
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xr, = 1 is true, so the narrow occurs in 5-cycles.

= 1 with l:i4 yields [s5-I, y] = 1 and so [x, y] = 1,
contradicting (i). There are two possibilities left:

We consider the consequences od the first equation. ime find

and so

contradicting (i). For the second equation w e proceed analogously.
No 5-cycle contains an y-arrow, so there are two classes of arrow s
in the graph, the x-arrow and the y-arrow. 0

This statement can be used to simplify the consideration of the
groups ~S" , An further.

EXAMPLE 3.2.1. Symetric groupb 8n, n &#x3E; 4. We treat the groups

differently for odd and for even n.

(i) Sft, n &#x3E; 5 odd. The group 8n is generated by two generators
a = (1, 2, 3, 4, 5), b = (1, 2) (3, 4, 5, ... , n). We construct the graph
D(Sn) by the elements a = (1, 2, 3, 4, 5,) and b = (1, 2) (3, 4, 5, ... , n)
where o(a) = 5 and o(b) = 2n - 4. The graph by Lemma 3.1.1. is

constructing since b 2, a) non abelian and the orders of (ab) and 
are no 2. For n = 5 we take b = (13) (245).

(ii) Sn, n even. The group Sn is generated by two generators
ac = (1, 2, 3, 4, 4) and b = (2, 3) (4, 5, 6, ..., n). We construct the graph
D(Sn) by the elements a = (1, 2, 3, 4, 5) and b = (2, 3) (4, 5, 6, ..., n)
where n is an even number, and the graph D(Sn) is constructing by
Lemma 3.1.1.

EXAMPLE 3.2.2. The alternating group An, n &#x3E; 5. Also, we treat
the groups differently for odd and for even n.

(i) An, n odd. The alternating group An is generated by a =

= (1, 2, 3, 4, 5) and b = (1, 2) (3, 4) (5, 6, 7, ..., n) and the graph
D(An) is constructing by Lemma 3.1.1. since the subgroup b2, a)
is non-abelian and the orders of (ab) and (ab-1) are no 2.
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(ii) even. The group An is generated by two elements
a = (1, 2, 3, 4, 5) and b == (1, 2) (3, 4, ..., n) and the graph is

constructing by Lemma 3.1.1.

LEMMA 4.1.1. Assume that G is finite and is generated by two
elements of order 5 e.g. x and y such that (xy)2 ~ 1 (~y-1)~ ~ 1 and G
is non-abelian. The graph constructed by x and y is suitable, if and
only if there is no automorphism of G interchanging x and y. 

°

PROOF. By the given statements there are no circuits of length 4
or smaller. Every m-arroxv. and every y-arrow is contained in exactly
one 5-cycle and all arrows belonging to a given 5-cycle are x-arrow
or all of them are y-arrow s.

Beginning at any point P of the graph, y we can construct tw o
classes of arrows in the following way:

(i) one of the arrows beginning in P is defined as belonging
to class A, the other to class B.

(ii) An arrow belonging to a 5-cycle in w hich one arrow is

member of class A is itself member of class A.

(iii) As in (ii) but for class B.

(iv) Two arrows beginning at the same point are always members
of different classes.

Since the graph is constructed by G, every arrow is eventually
defined as belonging to class A or B. Any automorphism of the graph
which is not defined by group multiplication can be changed by group
multiplication to an automorphism fixing some point P and hence
interchanging the two classes of arrows. But that means that every
relation y) = 1 is also true after that change i.e. F(y, x) == 1
if J E Aut G, c~(x) = y and -- x and then G possesses the auto-

morphism mentioned. The other direction is clear.

EXAMPLE 4.1.2. Let G be lhe group:

then the graph D(G) is to be constructed. The order of G is 5.24. Since b
has order 2, we should try to change the set of generators. We take
x = a and y = a2b. The order of y is 5, because y5 = (a2b)5 = (ab)5 = 1.
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In order to aply Lemma 4.1.1. we must have

But there is no automorphism of the group interchanging it and y
since:

and if the order of (a2b )3 a is 2 then b = 1 contradiction.

EXAMPLE 4.1.3. The group The group C, is generated
by two elements .x = (a, 1 ), and y = (1, (a, 1, 1, 1, 1 ) ). We can apply
Lemma 4.1.1. since ~a, (a, 1, 17 1~ 1 ) ) and xy-l- = (a, (a-1, 1~ 1,
1, 1 ) ) with orders ~ 2 .

, 
There is no automorphism of the group C5 ~ C, intercha,nging x

and y since the relation: [y, (1, (I, I, I, I, I ) ) but [x, 
- (1, (a, a-2, a, 1, 1)) =1= 1 hence the group C, C, is a rigid group
by Lemma 4.1.1.

LEMMA 5.1.1. If G is finite group generated by two elements x
and y such that o(x) &#x3E; 5, o(y) &#x3E; 6, 2, o(xy2) # 2, o(x2 y) = 2
and [x2, y2] ~ 1, then the graph constructed by x and y has as only
automorphisms those induced by G, and the graph can be used for
our group constructions.

PROOF. We have to show that the arrows describing the action
of x and y can be distinguished; we also have to show the regularity
conditions. Since [x2, y2] ~ 1, G is not commutative and not cyclic.
So, in particular, there are no circuits of length 2 or 3.

For length 4 we have to consider the relations: xyxy = 1, xyxy-I = 1,
xyx-1 y = 1, xyx-1 y-1 - 1. These relations and all other relations

e.g. x4 = 1, x-1 yx-1 y = 1 are also not valid. The first and the last

relation can not hold by hypothesis. The second relation yields x-1 =
- so y2xy-2 = x, [x, y2] = 1, which contracts [X2, y2] # 1.
The argument for the third relation is analogous. This shows that

the graph can be used for the group constructions. Now we check
the cycles of higher length. The cycles of length 5 would yield one of
the following relations:
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the other relations

are also not valid. The first two relations are impossible by assumption.
The third relation yields xy2x = y1 and xyx = y-2 so =

== (XyX)-l (Xy2X) - y2y-1 = y and [x, y] = 1, a contradiction. By
symmetry, the fourth relation is impossible, too. We have found

that there exists no cycle of length 5 in the graph. Since we have the
relation xxyxxy - 1 there are 6-cycles. By assumption, we may have
X6 = 1, but we know also y6 = 1. We want to show that the x-arrows
occur in more 6-cycles than the y-arrows. If (x2 y) 2 = 1 is the only
relation valid of this length, then the x arrows are contained in
two different 6-cycles and y-cycles only in one. Because:

Case 1: The y-arrows contained in more 6-cycles than the x-arrows.
Then, the cycles of length 6 would yield one of the following relations:

We find :

because G is not cyclic.
If x2y4 = 1, from (x2y)2 = 1 we have (y4y)2 = l, y6 = 1 which

contradicts the hypothesis.
The relation xyxy3 = 1 is impossible since (X2y)2 = (xyx) 2 = 1

implies y6 = 1, a contradiction.
The relation (xy2)2 = 1 is excluded by hypothesis.

Case 2: The y-arrows are contained in equal 6-cycles with x-arrows.
The cycles of length 6 would yield one of following relations:

contradicting the hypothesis.
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yields = 1 and y = x, contradiction.

but o(xyx) = 2 so o(yxy) - 2, a contradiction because 1

from (xy2)2 ~ 1 by hypothesis.
So, the possible 6-cycles are = = 1 and if further-

more x6 = 1, 7 the x-arrows are contained in three different 6-cycles,
while nothing is changed for the We conclude that the number

of 6-cycles containing a given x-arrom. is always greater than the
corresponding number for a given y-arrow, and this method of distinc-
tion proves the Lemma. 0

EXAMPLE 5.1.2. The groups PGL(2, p) and The projec-
tive linear group is the factor group:

and can be identified in a natural way with the group of projective
transformations

of projective line L of q -+- 1 points coordinatized by the elements
of GF(p) and the symbol oo.

The projective special linear group is the factor group: PSL(2, p) _
= and the element a lies in PSL(2,p) precisely
when ad - be = 1 in GF(p).

The elements of PGL(2, p) are of the form:

where G = GL(2, p) and the centre Z(G) consists of all matrices aI,
where ot is any mark of GF(p) different from 0, i.e. the centre is generated
by aI, where a is a primitive mark of the field.
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In general the groups q) have three properties that are
useful in discussing the Mathieu groups. The first property is q)
is a simple group except for the two following cases : n = 2, q = 2,
q = 3 [1]. The second property is q) and PSL(3, q) are doubly
transitive on sets of q + 1 and q2 + q -~- 1 points respectively [1].
The third property is stated in the following theorem:

THEOREM A: For the values q = 2, 3, 5, 7, 9 and 11, q)
has a subgroup of index q + 1, but PSL(2, q) also has subgroups
of minimal index 2, 3, 5, 7, 6 and 11 respectively [1].

Consider: ,

as representatives of 

The order of x is the (multiplicative) order of it in Z~. If 0,
the representative of y is a matrix of determinant 1 and trace 2, which
is different from the unit matrix. The order of y is p. We take u2 =1= 1
and t will be chosen dependent on ~. Now we have to show that:

PROPOSITION 5.1.3. The elements x and y, suitable chosen, will
generate PGL(2, p) and PSL(2, p) respectively.

PROOF. The element x is contained in the normalize of 

p-Sylow subgroups, namely those generated by:

It is known that an element # 1 is contained in at most two different

p-Sylow subgroups of p) it is therefore not contained in the

Normalizer of the subgroup generated by y,

Therefore ~~, y~ and n (x, y) contains all p + 1 p-Sylow
subgroups because contains the all conjugate class and the order of

is 1 2 p(p2 -1).
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The intersection is a subgroup of the group p) of index

Since PSL(2, p) is simple for p &#x3E; 6 and of order divisible by the
prime p, we find that because the

group has no proper subgroup of index p-1. But the inter-
section of (s, y) with the group p) would have such an index,
theref ore :

if and only if x is not contained in PSL(2, p) then x, y) = PGL(2, p).
Consequently if p &#x3E; 7 and is a generate of Z:, (x, y) = PGL(2, p),
and this basis is suitable by Lemma 5.1.1. If, on the other hand,
p &#x3E; 13 and u is the square of a generator of Z*, then 
and (~y~/~ ==JP~Z(2~) and this provides a suitable graph. So, we
check all the conditions of Lemma 5.1.1. Before checking all the
conditions of Lemma we have:

and a matrix, taken mod Z(PGL(2, p)) has order 2 if and only if its
trace is zero. So, U2 - 1 1. Now the conditions
of Lemma 5.1.1. lead to &#x3E; 5 and from this p &#x3E; 6 so,

and from [x~, y2] 0 1 we take 2t.

The only equality yields t = (1 + u2)((1 - u2) this is defined if
u2 ~ 1 and all the inequalites are satisfied.
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