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Direct Products of Linearly Compact Primary Rings.

P. N. ANH (*)

SUMMARY - Numakura [4], [5] gave criterions for compact rings to be direct
products of primary rings. In this note we extend these results to linearly
compact rings. As a consequence we get a characterization of those rings
which are direct products of division rings, of uni-serial rings (i.e. such
artinian rings in which the Pk (k = 1, 2, ... ) are all the one-sided ideals

where P denotes the unique maximal ideal) and of rings of complete
discrete valuations on division rings.

1. All rings considered will be associative rings with identity.
In what follows denotes always a ring and 3 is its Jacobson radical
(briefly: radical). A ring .R is said to be topologically artinian or topo-
logically noetherian if it is the inverse limit of artinian or noetherian
left .R-modules endowed with the inverse limit topology. A topological
ring .R is called linearly compact if open left ideals form a base for neigh-
bourhoods of zero and every finitely solvable system of congruences
x = xk(mod Lk) where the Lk are closed left ideals, is solvable. Remark
that every topologically artinian ring is linearly compact (see [2]
satz 4) and every compact ring is topologically artinian (see [4]
Lemma 5).

By a classical result of Artin every artinian primary ring is a matrix
ring over a local ring. In [3] Leptin proved that every topologically
artinian primary ring is a matrix ring (not necessarily of finite size)
over a local ring. These results can be considered as a generalization

(*) Indirizzo dell’A. : Mathematical Institute of the Hungarian Academy
of Sciences, Realtanoda u. 13-15, Budapest, H-1364, Hungary.
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of Artin-Wedderburn Theorem on simple artinian rings. Throughout
this note a primary ring is understood in a more general sense than
what is usual. We call a ring primary if the factor by its radical is
the endomorphism ring of a vector space over a division ring. Now
our purpose is to characterize direct products of linearly compact
rings of some kind.

Before turning to the main results we need some preparations.
For every subset .A. of a topological space we denote by A its

topological closure. Define for every ideal I of a topological ring the
following ideals ~

if 1 is a limit ordinal , y

if A is a limit ordinal , y

if I is a limit ordinal.

Then there is an ordinal 21 for which ~1 == 711, I = I, 1~ == 171 for all
~&#x3E;1’}. These I, 171 will be denoted by *1, I, 1* and 1.*1 = *1,
12 = 1, 1*.1 = 1* hold clearly. If *1 = 0(I* = 0 ) , then I is called
* *

l(r -) transf initety nilpotent. If I = 0, then I is said to be transfinitely
nilpotent. 

~

PROPOSITION 1 ([2] (3)). If the set of closed left ideals in a linearly
compact ring has the f inite intersection property, then

holds for every closed left ideal A.

PROPOSITION 2 ([2] Lemma). For any two (one-sided) ideals A
and B of a topological ring we have

AB=AB=AB=AB.

PROPOSITION 3 ([2] Satz 9). The radical of a topologically artinian
ring is r-transfinitely nilpotent.

PROPOSITION 4 ([2] (4)). If A and B are closed (left) ideals in a lin-
early compact ring, then A + B is closed.
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PROPOSITION 5 ([2] Satz 4). continuous isomorphism between
topologically artinian rings is a topological isomorphism.

PROPOSITION 6 ([3] Satz 1). Every linearly compact module over a
semisimple linearly compact ring is a direct product of simple modules.

PROPOSITION 7. Let .A and B be closed (left) ideals in a linearly
compact R. If A + B = .R holds, then we have A i + R tor every
ordinal ~ ~ 1.

PROOF. We prove the assertion by transfinite induction. By
the assumption we have .A1 + B1 = A + B = .~. Suppose that

then there are elements such that

By2b-b2 c Bi we have +
-~- Bç == R. This implies the existence of elements a* and
b* E B~ such that a* + b* = 1. This shows that (b*)2 = 1 - 2a* +
-f - (a* )2 = 1 - c with c = 2a* - (a*)2 E from which we obtain

+ BÇ+1 = R.
If we have now the equality Ai + Bç = R for every ordinal $  i~~

where Z is a limit ordinal, then for each IA  A it is true that

a,nd

that is, .Åç + B,~ = 1~ holds for every ~, ,u  Â.
Now we have by Proposition 1 for every fixed p  A

which implies

This completes the proof.

PROPOSITION 8..F’or any closed (left) ideals A and B satisf yiny
A + B = .R in a linearly compact ring = BA implies A B =
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PROOF.

implying

implying

2. A topological ring is called of finite type if the set of all iso-
morphism classes of simple submodules in all factors of any finitely
generated discrete R-module is finite. Consider now a topologically
artinian ring R. Let be the set of all maximal closed ideals
of .R where I is the index set and P~ for i =F j, i, j E I.

In case i # j by Proposition 4 the ideal Pi + P3 is closed in .,R
and hence we get Pi --E-- .R. Therefore we obtain (Pi ) ~ -~- (P;)ç = 1~
for every ordinal ~ by Proposition 7. Thus (Pi) * + (P,)* = 1~ holds.
Henceforth for any finite set f(PI) ... , (Pn) *~ we have by the Chinese
Remainder Theorem

PROPOSITION 9. Let .R be a topologically artinian ring of f inite type.

any i =1= j, i, j E I and any limit ordinals ~, ~, (Pi)* = o.
i

PROOF. First we obtain , f or any i =:/= j,
E I and any ordinals ~ and 21. We proced by double transfinite

induction. Suppose that for some ~ and some fixed 77, we have

(Pi)x(Pj)1J = (Pj)1J(Pi)x for every y  ~. Then we have by Proposition 2
and the associativity of the multiplication of ideals
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if now (Pi); = (Pi); holds for some fixed 1] and every;  Â

where A is a limit ordinal, then there exists a limit ordinal r such that
q = r + n for some natural number n, and hence we have again by
Proposition 2 and the associativity of the multiplication of ideals

Finally we let n vary and complete the proof in the same way.
Assume now indirectly that n (Pi)* 0 0. Then there is an element

i

c E R and an open left ideal L with c E n (Pi)* and c w L. Since .R is
i

of finite type, there are finitely many maximal closed ideals Pa, say
Pl, ... , Pn such that every simple submodule of each factor of .R/L
is annihilated by some one of them. Consider now the submodule
if of R/L consisting of those elements which are annihilated by

... (Pn) * . We claim M = In fact, if then there

exists an element m E such that (Rm + is simple, because
is artinian. Therefore (Rm + is annihilated by some P,,

say Pl. We obtain now

and consequently m E M, which is a contradiction. Thus M = 

holds. This implies that c ~ .R j.L = 0,
i

i.e. c E .L, a contradiction. Therefore n (Pi) * = 0 and the proof is

complete. i

As (Pi) * is a closed ideal of the topologically artinian ring .R, the
factor .Ri = R/(Pi) * is a topologically artinian ring, too. We denote
by JB the direct product of the Then R endowed wita the
product topology is a topologically artinian ring. R is topologically
isomorphic to R by the following proposition.

PROPOSITION 10. I f Ai (i E I ) are closed ideals in a topologically
artinian ring such that f1 Ai = 0 + Ai = 0 hold for all i 0 j;

E I, then .R is topologically isomorphic to the direct product 11 
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PROOF. Taking the mapping q: .R -* define by 
- (..., xi, ...) with xi = x + (Ai) E .R/Ai i for every i E I, we have a
homomorphism from R into 11 Further = 0 implies xa = 0
f or each i E I, i. e. hence x = 0. Thus y is an injective

homomorphism, and it is clear that y is continuous.
Finally, y let (...y~~...) be any element of Il RIA j, then Mi =

== is a coset of the ideal Ai i in .1~ where i is the
natural projection of R onto BlAi. Hence we can express as x, + .Ai,

Taking any finite number of say 7 we

have by the Chinese Remainder Theorem, hence

since .R is topopogically artinian. Choosing an element

it is obvious that y(x) = (..., xi, ...). This implies that y 
iEl

is a continuous isomorphism. Since R is topologically artinian, by
Proposition 5 99 is a homeomorphism. This completes the proof of the
assertion that .R is topologically isomorphic to n RIAI.

PROPOSITION 11. The rings Ri, i E I are primary rings.

PROOF. Let Pi = .Pi/(.Pi) * . Then which is then

endomorphisnl ring of a vector space over a division ring. Since the
radical of Ri is the intersection of all maximal closed ideals which are
exactly the images of maximal closed ideals uf .R by the natural homo-
morphisni R - .Ri, Pi is clearly the radical of Ri. This means that
the rings .Ri (i E I) are primary rings.

The above considerations yield the following

THEOREM 12. Let R be a topologically artinian The following
conditions are equivalent

1) R is a direct pi-oduct of topologically artinian primary rings
Ri, i E I.

2) Let E 11 be the set o f all maximal closed ideals in R then
the equalities PiPj = P i(P i)). == = 

hold for all i =1= j, i, j E I and limit ordinals fl, A and R is of finite type.

3) The equalities Pi Pi - I 
= (Pj)ÂPo I ==

hold for all i =1= j, i, j E I and limit ordinals p, A, and R
is of f inite type.

4) Any ideal K of R such that K = K2, is a unital ring.
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PROOF. 1 z--&#x3E; 2. This implication is trivial, since maximal closed
ideals in ..R are the products of a maximal closed ideal in one component
with the other components. For any discrete, finitely generated module,
let ... , rn) be a generator set of M. The annihilator annR xi of Xi
is an open left ideal of .I~, and hence it contains almost all There-

fore annR (x,, ... , contains almost all .Ri . This shows that almost

all I~i is contained in the annihilator annr 31 of ~1 and henceforth M
can be considered as a discrete module over a finite direct sum of

primary rings say Rl X ... X Since the set of isomorphism classes
of discrete simple factors of X Rn is clearly finite, .lYl is obviously
of finite type, i.e. I~ is of finite type.

2 ~ 3. This implication is also trivial, since A = B implies
A - B.

3 =&#x3E; 1. This implication is the consequence of the fact that R
and R are topologically isomorphic.

1 ~ 4. Let ggi denote the natural projection of .l~ onto .Ri for
each i E I. For gi = it follows by [6] Lemma 6.1 that K is
the direct product of the Ki, i E I. Since K = ~2, we have .Ki = I

and hence either gi = 0 or Ri, because Ri is a primary ring
and its radical is r-transfinitely nilpotent. This shows that .K is a
unital ring.

4 =&#x3E; 1. From the assumption it follows by Pi = Pi that Pi has
an identity ei . It is easy to see that is a primary ring.
To come to the end of the proof of the implication 4 =&#x3E; 1 we show

For this aim let x be an arbitrary element in n P;.
~/ 

* 

iEl 
*

Then we have x = xei for each i E I and xc- (~ Pi = J. Assume
te7

that x is an element of J,,. By J = 0 we can consider J,,IJZ+,
as a right RfJ-module. we have x( 1 - ei ) = 0 and
hence = 0 where d denotes the image of in This

implies that belongs to On the other hand the radical J is

r-transfinitely nilpotent so we have x = 0. Similarly, to proposition 7
it is routine to verify that Pi -[- P? == .R for every ordinal $ and i =1= j.

6 6
Therefore we have Pa + P3 = R for all i # j and thus by Proposi-
tion 10 I~ is topologically isomorphic to the product of the primary
rings .Ri and this completes the proof of Theorem 12.

If n Jn = 0 holds, y we have the following.
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COROLLARY 13. Let R be a topologically artinian ring satisf ying
n Jn = 0. The f ollowing assertions are equivalent

direct product of topologically artini an primary rings,

2) where the set of maximal closed
ideals of R.

3) Q3Qi where Qi == n P~.

4) Every ideal K of R with K == K2 is a unital ring.

5) 

First we prove the following.

PROPOSITION 14. Let R be a topologically artinian ring satisf ying
n Jn = 0. any open left ideal L there are (not necessaril y different)
maximal closed ideals P.,, ... , Pn with Pn ... L.

PROOF. Since .L is open, the left R-module is artinian. Be-

cause (L + In) holds, y there is a natural
n n

number t with Jt+k + L = Jt + L for every non-negative integer k.

Hence L contains Jt. The artinian module .R/(J + L) can be con-
sidered as a left .R/J-module, and then by Proposition 6 it is a iinite
direct sum of simple modules, i.e. it is noetherian. Consider the artinian
R-module (J+ L) j(J2 + L). By J[(J -~- L)/(J2 + L)] = 0 it can be

considered as an RfJ-module and hence by Proposition 6 it is a finite
direct sum of simple modules. Thus it is noetherian. Iterating this
process in t steps we get that (Jtm + .L) j(Jt + L) == (Jt-1 + .L)/L
is noetherian. Thus is noetherian., i.e., it has a composition series

where is simple. Let Pk be
the annihilator ideal of Mk/Mk+1 (k = 1, ..., n), then the Pk are (not
necessarily different) maximal closed ideals and (Pn ... Pl).R jL = 0,
thus Pn ... P, c L. This completes the proof of Proposition 14.

PROOF OF COROLLARY 13. By Theorem 12 we have 1 =&#x3E; 4 and
1 ~ 17 1 ~ 3. Next we show 2 ~ 5. Suppose that PiPi = P; Pi
holds for any i, j E I. If there were an element 0 ~ c E n Qi, then

iEl

we should have an open left ideal L with c 0 L. By Proposition 14
there are maximal closed ideals P1, ... , Pn with P1... PnkL. This
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shows by Propositions 7 and 8 that

which contradicts c 0 .L.
Similarly we can see that 3 ~ 5.
Finally, y suppose Let From Proposition i

iEI

we get immediately Qi + P~ _ ..R for j. This shows clearly
that Pi/Qi is the radical of By the rings .RZ

are primary rings. Consider the direct product 
By Proposition 10 we have .R. This completes the proof of Cor-
ollary 13.

PROPOSITION 15. If in a topologically artinian ring R the products
of any two maximal open le f t ideals commute, then so do those of any
two maximal closed ’icleals, and RIP is a division ring for each maximal
closed ideal P.

PROOF. Let .P be a maximal closed ideal. Since P contains the

radical, .R/P is a primitive ring, consequently it is the endomorphism
ring of a vector space over a division ring. To show that R/P is a
division ring, we assume indirectly that is the endomorphism
ring of a right vector space T~ over a division ring and the dimension
of V’ is at least 2. Hence there is a basis E 7} in V such that the
cardinal number of 7 is greater than 1. be any two distinct

index in I and we define the endomorphisms e and e; by setting

It is obvious that (.R/P) ei and ei are two maximal open left

ideals in For the endomorphism eij definde by

1ve obtain from which it follows that (RIP) ei -
= (RIP) ej. Similarly we can see that e;. (R/P) c2 = (RIP) e~ .
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Since (RIP) ci and (RIP) ei are two distinct maximal open left ideals,.
we have that their products do not commute. This contradicts to
the assumption. This implies that P is a maximal open left ideal in R
and hence the validity of the proposition is verified.

As an immediate consequence of Proposition 15 and Corollary 13
we have

COROLLARY 16. A topologically artinian ring satisfying (~ In = 0
is a direct product of local rings if and only if the products o f any two
maximal open left ideals commute.

In what follows, let .R be a topologically artinian local ring satis-
fying n pn = 0 where P denotes its maximal open ideal. We assume
that I~ satisfies the additional condition:

There exists no one-sided open ideal bettveev P and P2.

PROPOSITION 17. I f P2 is not open in P, then P = 0.

PROOF. For any open left ideal L in P the left ideal p2 + L is
open and it holds + L:) P2. Hence P2 + L = P. This show s

that P2 is everywhere dense in P, so P2 = P is true. By induction we
get Pn - P. Theref ore P = n p-n = 0.

PROPOSITION 18. ~==1~2~...} forms a fundamental system of
neighbourhoods of zero.

PROOF. Let L be any open left ideal in .R. Since E = E +
+ (n P.-) - n (L + Pn) and is an artinian module, there is
an integer n with pn k L. This means by [4] Lemma 6 that L is a
power of .P. (Note that in this case Pk is a union of translates of
Pt for every t ~ k). Suppose now Pn = 0 for some n, and let k be the
least integer with this property, i.e. Pk = 0, 0. we prove
that R is artinian in this case, or in other words, 0 is ipen. In fact,,
since allllon-zero open left ideals are powers of P containing Pk-1,
they cannot form a fundamental system of neighbourhoods of zero,
hence 0 must also be open.

PROPOSITION non-zero one-sided ideal (closed or not)
in R coincides with some R), n = 0, 1, 2, ....

PROOF. Let 0 ~ .R be any left ideal in R and 0 ~ c E L. The
.Rc is a closed left ideal in 1~. This implies Re = Rc + (n Pn) -
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- n (Rc + Pn). Since + Pn is Open, Rc + Pn = Pkn for each n.

By 0, 0 there exists an integer t with .Rc = Pt. There-

fore L is open and hence by the proof of Proposition 18 .L equals a
power of P. By the assumption it is easy to see that R is topologically
artinian from the right, too. By symmetry the assertion of Propo-
sition 19 is true.

THEOREM 20. Let .R be a topologically ai-tinian local ring satisfying
n F = 0 and suppose that there exists no one-sided ideal between P

and 1’’ where P denotes its maximal non-zero open ideal. Then R has
no zero-divisors i f and only if pn =F- 0 for each ~2.

PROOF. The necessity is obvious.

Conversely, by Proposition 19 there is an element a contained in P
but not in P2, and then P = Ra = oR and by induction Pn = anR =
= If x and y are non-zero elements in .R, then there are integers
k, I such that X E Pk+l, y E Thus it follows that we
can express x and y as :x = 2’a where 2c, v must be units in R.

Therefore xy = uakrai l = uv1ak+z where v, is a unit with the property
= ak r. This implies xy =F 0.

If a and b are any two non-zero elements of R, from the proof of
Theorem 20 and by Proposition 19 we have Ra = Pk, Rb = P’ for
some integers k, Z. Hence a, b have a common left multiple c = b,a =

= al b = o. By Ore’s well-known result one can now construct a

quotient division ring d of R whose elements are the quotients a-1 b.
’we define the following valuations v on .R: _ + oo; if 

is any element of R, then there is an integer it with a E Pn+’,
and let v(a) = n. It is routine to check that v defines a discrete
valuation on .R in the sense of [1] Chap. VI. In the classical way we
can extend v to 4 and it is easy to see that v is a discrete valuation
on d. We show that R is the ring of the va,luation v on 4. In fact,
let x = be any element of 4 which is not contained where

a, b E R. Then we can b = cl t for c E P - P2, and
u, t units in .~. Since and 

v-1, u E R, we have k  l. Hence x-1 = = zc-1 cl-k t E ..R. Since R
is complete, d is complete in the topology induced by v.

From the above we have

THEOREM 21. Let .R be a linearly compaet local ring satis f ying
n 7 = P denotes its maximal open ideal. The following con-
.ditions are equivalent.
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1) 0 for each n and there exi sts no one-sided ideal between.
P and P2.

2 ) .R is the ring o f a complete, discrete valuation on a division ring.

THEOREM 22. Let .R be a linearly compact ring with n In = 0-
R is a direct prod2cct of rings of complete, discrete val2cations on division
rings, of local uni-serial rings, and of division rings if and only if the
products of any two maximal open left ideals commute and there exists
no one-sided open ideal between P and P2 for each maximal open ideal
P of .R.

In what follows we shall investigate topologically noetheria,n

linearly compact rings. First we prove

THEOREM 23. A linearly compact ring R is topologically noetherian
in the equivalent Leptin-topology if and only if *J = 0, i.e. its radical
is l-transfinitely nilpotent.

PROOF. Assume that .R is topologically noetherian. For any open
left ideal .L of R we have J[(*J + L) /L] _ (*J + L) IL and hence by
Nakayama’s Lemma we have ( *J ~ L)IL = 0, consequently 
and therefore *J = 0. Conversely if *J = 0, then we prove by induc-
tion that R/ tiJ is topologically noetherian for every ordinal p from
which the statement follows clea~rly. For p = 1 the assertion is ob-
vious. If is topologically noetherian, then can be con-
sidered as R/J-module and hence it is obviously topologically noetherian
in the Leptin-topology. Therefore is such, too. If Â is a limit
ordinal and is topologically noetherian for all p  Â, there 
is the inverse limit of RIIJ is trivially topologically noetherian, too.
This completes the proof.

A topological ring .R is called of cofinite type if the set of all iso-
morphism classes of simple factors of all submodules in any finitely
generated discrete R-module is finite. Similarly to Proposition 9 we
can prove the next statement.

PROPOSITION 24. Let R be a topologically noetherian linearly com-
pact ring of cofinite type. If the set ~Pi : i c.11 of all maximal closed
ideals in R satisfies tPiPj === Pj Pi, I and (P,),a(Pi)e ==
= for any j, i, j E I and any limit ordinals E, A, thenr

* (Pi ) = o.
iEl
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PROOF. Similarly to Proposition 9 we obtain = 

for any i =1= j, i, j E I and any ordinals ~ and 27. Assume now indirectly
that Then there is an element c E .1~ and an open left

ideal L with c E n *(Pa) and c í L. Since .R is of cofinite type, there
i

are finitely many maximal closed ideals Pi , say Pi , ... , Pn such that
every simple factor of each submodule in RfL is annihilated by some
one of them. By Zorn’s Lemma there exists a minimal submodule if
of BIL such that is annihilated by *(Pl) ... *(Pn). We claim
~l’ = 0. In fact, if then M as a submodule of the noetherian
module BIL is finitely generated. Therefore M. Since 
can be considered as a module over .R/J, it is a finite direct sum of
simple R-modules by Proposition 6. Thus there is a submodule N
of such that is annihilated by some Pi, say Pi . Henceforth
we obtain now

which contradicts to the minimality of M. Thus = 0 holds. This

implies by c E c *(P1) ... *(Pn) that = 0, i.e. c E L, which
i

is impossible. Therefore n *(Pi) = 0 and we are done.
i

Consider now a topologically noetherian linearly compact ring .R
satisfying the condition of Proposition 24. In the case i ~ ~ by
Proposition 4 the ideal .Pi + Pi is closed in .I~ and hence w e get Pi +
-E- .R. Similarly to Proposition 7 we obtain ~(P~) + ~(P9) = R
for every ordinal ~. Thus *(PE) + *(P9) _ .R holds. Henceforth for

any finite set *(Pn)~ we have by the Chinese Remainder
Theorem

As *(Pi) is a closed ideal of R, the factor ring = is a topo-
logically noetherian linearly compact ring, too. Similarly to Prop-
osition 11, one can see that the rings .Ri are primary rings. As it was
done in Proposition 10, we can prove that R is isomorphic to the direct
product n Ri and this isomorphism is continuous, but in general, it
is not a topological isomorphism. Furthermore, the topology in ~ .I~i



58

induced by this continuous isomorphism is equivalent to the product
topology. Therefore this isomorphism is topological if we endow .R
with the equivalent Leptin-topology. Thus the proof of the following
theorem is similar to that of Theorem 12 and hence we omit it.

THEOREJB’I 24. Let R be a topologically noetherian linearly compact
1’ing endowed with the equivalent Leptin-topology. The following conditions
are equivalent.

1 ) R is a direct product of topologically noetherian linearly compact
primary ring .Ri .

2) .R is of cofinite type and if (P, : i E I} is the set of all maximal
closed ideals in .R, then the equalities = P? Pi , 

(P;)a~ (Pi),~ hold for all i =1= j, i, j E I and limit ordinals ,u, A.

3) R is of cof inite type and the equalities ,

j E I and limit ordinals p, A.

4) Any ideal K of R such that K = K2 is a unital ring.
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