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Integral Functionals Determined by Their Minima.

GIANNI DAL MASO - LUCIANO MODICA (*)

Introduction.

In this paper we study the following problem in Calculus of Va-
riations : determine an integral functional

by the knowledge of the minima of the Dirichlet’s problems for F
with linear boundary values, y that is by knowing the numbers

for every p ERn and for every bounded open subset A of ~~.

Namely, we show that the integrand p) can be calculated by a
differentiation process of the set function A ~ m(p, A) along a family
(A)o of open subsets of Rn which shrinks nicely to x as ~O ~ 0+.

According to W. Rudin ([13], ch. 8), a family (Ag) is said to shrink to
x nicely as o - 0+ if for every ~O &#x3E; 0

(*) Indirizzo degli AA.: G. DAL MASO: Scuola Internazionale Superiore di
Studi Avanzati (S.I.S.S.A.), Miramare - Trieste (Italy); L. MODICA : Diparti-
mento di Matematica, Universita di Pisa (Italy).
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where c &#x3E; 0 is a suitable real constant independent of e and I - | denotes
the Lebesgue measure in l~n.

The main result we prove is the following.

THEOREM I. Suppose that the f unction f : Rn X R satis f ies the

f ollowing hypotheses :

(i) f (x, p) is measurable in x and convex in p ;

T hen, denoting

there exists a measurable subset NC ~~ with INI = 0 such that

for every p c R-BN and for every family of open subsets
of ~~ which shrinks to x nicely as e --~ 0+.

Some comments. (a) The superlinearity hypothesis (iii) can be

dropped if depends only on p for large Ipl I (see remark 1.3).
( b ) In the vector case (when u (x ) is a vector in and f is defined on
Rn XRnm) the same thesis (*) holds by assuming f quasi-convex but
by strenghtening (ii) to

with and a &#x3E; 1 (see theorem II). The proof in this case
relies on a recent approximation result for quasi-convex functions due
to P. Marcellini [10]. (c) The case of non-negative integrands f de-

pending not only on x and Du but also on u is more delicate. As
an example, we treat here the case of uniform continuity in u and

u, 0) = 0 for every x E R (see theorem III ) .
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An application of theorem I is a useful and meaningful charac-
terization of the T-convergence of a sequence of equicoercive func-
tionals : see theorem IV. This theorem is an important step for ap-
plying Ergodic Theory in nonlinear stochastic homogenization (see
G. Dal Maso - L. Modica [3]).

A particular case of theorem I was obtained by E. De Giorgi and
S. Spagnolo [5] when f is a quadratic form, i.e.

Their proof relies on Aloyers’ estimate of the summability exponent
for the gradients of the solutions to the Euler equation of the cor-
responding integral functional F. Recently, M. Giaquinta and
E. Giusti [9] have found an analogous estimate for the gradients of
the minima of integral functionals (even non-differentiable). Neverth-
less, we have preferred to employ an elementary and direct method
for proving theorem I.

One may also consider the problem of determining an integral
functional F by the knowledge of the values of other variational

problems for .F’, for instance by knowing the numbers

for every bounded open subset A of RI, 2 &#x3E; 0, 2o E L2 (A) or the num-
bers

for every bounded open subset A of R" and 99 E L2(A).
In both cases suitable reformulations of theorem I continue to

hold. The first case (1) has been studied in many papers about -V-

convergence (see, for example, E. De Giorgi - T. Franzoni [4], L. Car-
bone - C. Sbordone [1], G. Dal Maso - L. Modica [2]), the second
case (2) is related to Fenchel’s duality for convex functions (see, for
example, I. Ekeland - R. Teman [6], R. T. Rockafellar [12]).

We thank the referee for some useful advice.
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1. Proof of Theorem I.

Let us begin by a particular case of theorem I.

1.1. Proposition. Let -+R be a function such that f (x, p)
is measurable in x, convex in p, and bounded from below. If there exists
a real constant .R so that f (x, p) does not depend on x for Ip ~ R, then
the thesis (*) of theorem I holds.

PROOF. Let us fix x straightforward application of Jensen’s
inequality gives that

~so we easily obtain

If we define

it remains to prove that there exists a measurable subset N C Rn with
= 0 such that

for every x E Rn""N and (Ae) which shrinks to x nicely as e --~ 0+.
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Since f (x, p ) depends only on p for and is convex in p, we
have that

with M independent of x. On the other hand f is bounded from below,
so it follows that all the functions f (.x, p ) are Lipschitz continuous in p,
uniformly with respect to x ERn, on the ball lp c 1~. If we observe
that a~ (x, y, p ) = 0 for every p e R" such that we may infer
that

for a suitable real constant K.

Now, let us choose a countable dense subset D of R" and let us
construct, by Lebesgue’s diff erentiation theorem (see, for instance,
[13 ], th. 8.8) a measurable subset N of R" with = 0 such that

for every E p E D and which shrinks to x nicely as ~O --~ 0+.
For every e &#x3E; 0 there exists a finite number Pl, ... , Pm of elements

of D such that

so we have that

and we may conclude that

for every x E R’°%N and (Ag) which shrinks to x nicely -+ 0+.

By taking c -70+, proposition 1.1 is proved.
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The general case of theorem I will be obtained by the f ollowing
approximation lemma.

1.2 LEMMA. I f f satisfies the hypotheses of theorem I, then there
exists an increasing sequence (In) of functions such that f = sup and

each function fulfils the assumptions of proposition 1.1. h

PROOF. For every hEN we define

The sequence is the usual approximation from below of f by
Lipschitz continuous functions. In fact is Lipschitz continuous
in p (with Lipschitz constant h), for every and it is

easy to prove, by remarking p ) is convex (hence continuous)
in p, that sup ih = f . The same remark proves that

h

so f,(x, p) is measurable in x. Finally, a direct calculation shows that
p) is convex in p.

Then, we define for h E N and for (x, p) 

If is obvious that is measurable in x and convex in p . Since

the superlinearity hypothesis (iii) gives that there exist c E R and

Ell, &#x3E; 0 such that

This concludes the proof of lemma 1.2.
Now, let us prove theorem I.
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Proof of theorem I. First, we prove that there exists a measuraDle
set N’C Rn with == 0 such that

for every and which shrinks to x nicely as
. Let D be a countable dense subset of R". By Lebesgue’s
differentiation theorem (see, for instance, [13], th. 8.8), there exists
a measurable set N’C R" with = 0 such that (3) holds for every
x E ~8’~BN’, p E D and (A(» which shrinks to x nicely as e --7 0+. Since

p) is locally Lipschitz continuous in p uniformly with respect to x
(by convexity and (ii)), it is easy to see that (3) holds for every p 

Now, we have at once

for every x E Rn""N’, and (Au) which shrinks to x nicely as
~O --~ 0+.

For the converse inequality, let be the sequence given by
lemma 1.2, be the corresponding minima and Nh be the
measurable subsets of R" with = 0 given by proposition 1.1 for 

Define Since for every h E N, we have that

and, by taking the limit as h -7 + oo, we obtain

for every x E p e R" and which shrinks to x nicely as
e 2013~ 0+. Then, theorem I is proved by choosing N = N’ u Nil.
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1.3 REMARK. The coerciveness hypothesis (iii) in theorem I is

crucial for the approximation lemma 1.2. A particular non-coercive
case has been studied by N. Fusco and G. Moscariello [8], who consider
non-negative quadratic forms

and obtain the formula ( ~ ) with limsup instead of lim. However, if

f (x, p) does not depend on x for large Ipl, theorem 1 holds without any
coerciveness hypothesis, as proposition 1.1 shows.

Theorem I can be generalized as follows.

THEOREM II. Suppose that the f unction R satis f ies
the following hypothcscs :

(i) f(x, p) is measurable in x and quasi-convex in p (in the

[11 ] sense).
(ii) c c2(1 -~- d (xW ) E RnxRmn with 0  

ex &#x3E; 1 real constants.

Then the thesis (*) of theorem I holds ( u is ac m-vector function, p
is identified with a mxn matrix) .

PROOF. The proof of theorem I can be repeated only substituting
lemma 1.2 by theorem 1.2 of P . Marcellini [10 ] .

THEOREM III. Suppose that f : lEB.n X llg X -+ l~ satis f ics the following
hypotheses :

(i) f (x, s, p) is measurable in x, continuous in s, convex in p;

(ii) where rpl,
-+ ll~ are convex f unctions and

(iii) If (x, p) - f (X, s2 ~ 1~) ~ I  (1 + 81’ 1~)) w (181 - Bi X E R",
sl, where --~ R is a function such that

(iv) /(x7 87 0) == 0 s) e Rn x R.
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Then, letting be the space of the Lipschitz continuous 
tions on Rn and denoting

there exists a measurable subset N o f Rn with _ 0 such that

for every x E s E R, p E l~n and for every family o f open
subsets of Rn which shrinks to x nicely as e - 0+.

PROOF. Let us introduce the auxiliary function

and note that

for every x E R". Hypothesis (iv) assures that the functionals

decrease by truncating the function u, hence the class of competing
functions in the infima (4) and (5) can be restricted to the functions
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such that

where A’ = A u (« maximum principle »).
Let us fix x E R". Then, by (ii) and (iii), we have that

for every s E R, p and for every open set Ae C B (x, e).
Let D be a countable dense subset of R. By theorem I there exists

a measurable subset with = 0 such that

for every x E R" - N, s E D, p and for every family which

shrinks to x nicely as e - 0+. Since, by ( ii ) and ( iii ) , we have

it is easy to prove that (7) holds for every s E R, and the thesis follows
from (6).

1.4 REMARK. The same « freezing ~&#x3E; technique of the previous
proof could be extended also to the vector case. Indeed, the use of
the maximum principle can be avoided by taking profit of a result
by N. Fusco and J. Hutchinson ([7], lemma 4.1 ), but by assuming
more regularity on t. 

2. A characterization of T-convergence.

Let us fix 0  C1 c c2, 0153&#x3E; 1 and let ~ _ Cl, C2) be the set of
all functionals X Ao R denotes the family of the

bounded open subsets of given by

otherwise,
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where is any function such that is measurable

in x, convex in p and

Of course, W l a (A ) denotes the usual first order Sobolev space with
summability exponent a.

A notion of convergence for sequences of real-extended functions
defined on a topological space, the I’-convergence (see E. De Giorgi
- T. Franzoni [4]), is particularly useful when applied to the sequences
in Y. We refer to G. Dal Maso - L. Modica [2] for a systematic and
self-contained study of the T-convergence on Y.

The crucial property of T-convergence is a general theorem on
convergence of minima. In particular, we are interested here in the
following proposition (see [2], prop. 1.18).

PROPOSITION 2.1. Suppose that (Ph) is a sequence in F which T-

converges as h --7 + 00 to F. Then, for every A E A0 and

uo E W1,«(A), we have that

In this section, our aim is to prove a converse of the previous
proposition and so to obtain a characterization of T-convergence in Y
by the convergence of the minima of Dirichlet problems.

THEOnEM IV. Let (Fn) be a sequence in Y, let D be a dense subset
of Rn and let 93 be a family o f bounded open subset of Rn which contains,
for any x ac subfamily which shrinks to x nicely. Suppose that

where _ ~ ~ x, exists for every ~ E D and B E %.
Then, there exists a functional .Z’~ such that (Ph) T-converges

to .1~~ and

for every p E R, and A E 
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PROOF. By proposition 2.1 it is enough to prove that I’-con-

verges to a functional Foo E F. It is possible (see [2], prop. 1.21 and
cor. 1.22) to define a metric on Y in such a way that (Y, d) is a com-
pact metric space and the convergence of a sequence in (F, d) is equi-
valent to T-convergence. By taking profit of this result, it will suf-
fice to prove that, if (Fa(h») and (F,(h)) are two subsequences of (Fh)
which h converge respectively to and .F’’~ e F, then F ~ = F’~ . I
Indeed, by proposition 2.1 and by hypothesis

for every $ E D and B E hence theorem I yields that there exists
Nc Rn with = 0 such that

where 1’00 and f’~ denote respectively the integrand of F~ and I

Finally, f ~(x, p) and are convex, .hence continuous, in p so
for every x E Rn",N and and the thesis

follows.
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