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Partial Hölder Continuity of the Spatial Derivatives
of the Solutions to Nonlinear Parabolic Systems

with Quadratic Growth.

MARIO MARINO - ANTONINO MAUGERI (*)

SUNTO - Si considerano soluzioni u E L2( - T, 0, H2(D, RN) ) n Hi(- T, 0,
L2(D, RN) ) f1 CO,V(Q, RN), N &#x3E; 1, 0  y  1, del sistema non linear, in

forma di divergenza,

e si dimostra, nell’ipotesi che il sistema sia fortemente parabolico ad anda-
menti quadratici, la parziale hölderianità delle derivate spaziali Diu di u.

1. Introduction.

Let S2 be a bounded open subset of with n, ~ 2, whose boundary
a S2 is sufficiently smooth, for instance of class C3. Let T &#x3E; 0 and

Q = Q x (- T, 0). If x = (Xl’ X2, ... , xn ) is a point of Rn and t is a

real number, we set X = (x, t).
By a) we denote the subset of R~+1

(*) Indirizzo degli A.A.: Dipart. di Matematica, viale A. Doria, 6- 95125
Catania.

Lavoro eseguito con contributo finanziario del M.P.I, e nell’a~mbito del
G.N.A.F.A. del C.N.R.
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where X° = (xo, to), a &#x3E; 0 and or) is the (open) ball of Rn centered
at x° and with radius a.

If u is a function from Q to RN ( N is an integer &#x3E;1)~ we set
Du = (D~u ~ ... BDnu) where Di - Clearly Du E RnN. We shall
denote by p = the typical vector of R~N.

We consider in Q the second order non-linear system

where ai(X, u, p), i = 1, 2, ..., n, and BO(X, u, p) are vectors of RN

measurable in X and continuous in (u, p ) .
We suppose that system (1.1) is strongly parabolic, namely that

v ectors ai(X, 2c, p), i = 1, 2, ... , n, are differentiable with respect to p
and there exists a constant v &#x3E; 0 such that

for every system ~~ i~~ -1,..., ~z of vectors of RN and every 
E Q X RN X RnN.

If vectors ai and BI have « controlled growth (see [7], n. 1), by a
solution to system (1.1) we mean a vector u e L2(- T , 0, 
m L~~’ (- 1, 0, L2 (Q, RN) ) such that

In the case of ((natural)) growth (see n. 4), we shall say that
u : Q - RN is a solution to system (1.1) if U E L2(- T, 0, H2(Q, RN)) n

and u satisfies ( 1.3 ) , y

(1) ( ~’ ~ )~; are the scalar product and the norm in Rk, respectively.
We shall drop the subscript k whenever there is no fear of confusion.

(2) Throughout this paper, the Holder continuity is related to the para-
bolic metric
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In the work [7] S. Campanato has proved H61der continuity and
partial H61der continuity results for the solutions of system (1.1),
under the assumption that the vectors at Z and B° have controlled

growths.
The aim of this work is to study the partial H61der continuity

in Q of the spatial derivatives of the solutions to systems of type ( 1.1 )
with non controlled growth.

In the case of non linear elliptic systems, some partial H61der
continuity results for the gradient of the solutions are given in the
works [3], [8] and [4].

We start with the following remark. Let us suppose that the

system (1.1) has natural growth and that the vectors a i ( X, u, p ) ,
2 = 1, 2, ... , ~12, belong to Let u E L2(- T, 0, H2(Q,
RN) ) n Hi(- T, 0, Z2( S~, RN) ) n RN), 0  y  1, be a solution of
system ( 1.1 ) .

Fixed an integer s, in (1.3) let us assume

We obtain that u is solution of the system

Because

we can write (1.5) in the following way
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where

If now in (1.6) we add with respect to s and set U = Du, we ob-
tain that U belongs to .L2(- T, 0, linN) ) and verifies

i, j = 1, 2, ... , n, is the f ollowing matrix

whereas Fi, i == 1, 2, ... , n, are the vectors of R’zN whose components
are

Let us remark that system (1.9) is strongly parabolic too. Infact
for every system ~~t~~,-1,2,...,n~ 77 = (1Ji,11’Y}i,21... iq i, 11), RN, of vec-
tors of RnN we have: ·I:

The matrices are bounded and uniformly continuous in Qx
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X RN X RnN if such are the derivatives

Then the study of the partial H61der continuity in Q of the spatial
derivatives of the solutions u to the system (1.1) is reduced to the

study of the partial H61der continuity of the solution U = Du of

systems of type (1.9) with coefficients that depend on X, u, U.
We shall be concerned with this type of systems in Section 3;

in Section 4 we shall prove a partial H61der continuity result for the
spatial derivatives of the solutions to the system (1.1) in the case
of natural growth. Finally in the Section 2 we mention a few results
that will be used in the next sections.

2. Preliminary results.

See [5~, Lemma 2.1.
Now let ~°~ , i, j = 1, 2, ... , n, be constant nN X nN matrices, such

that

for some v &#x3E; 0 and any system ~~ Z~i =1, 2,..., n of vectors of RnN. Also
let = 1, 2 , ... , n, be functions in and let V e
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be a solution of the parabolic system

Then we have

LEMMA 2.2. Let (2.1) and (2.2) b e satisfied. Then, f or every -c E ( 0,1 ) ,

and

See [5 ~, Lemma 2.11.

LEMMA 2.3. Let (p, 1p be nonnegative functions de f ined in (0, (1].
Let M, B be nonnegative constants. Also let a &#x3E; 0 and A &#x3E; 1..Assume
that

tor every -r E ( 0, 1 ) and e E ( 0, Then there exist oonstants K and C,
depending onl y on A, a, E, such that

f or every E ( 0,1 ) and e E (0, a).

See [4], Chap. I, Lemma 1.11.
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LEMMA 2.4. Let functions 99 and Wl be non-negative in (0, d] and let OJ!
be nondecreasing; also, let function W2 be nonnegative and nondecreasing
in ( 0, -~-- 00). Let A, a be positive constants and let 0 ~ ~  a. 

that

every r E (0, 1) and J E (0, Also, that, tor some E E (0,
a - ~ ~, there is a 6~ E (0, d J s1tch that

Then , Vr E (0, 1 )

wher¡te B = (I + A)£X/c.

See [4], Chap. I, Lemma 
Finally, we need the following interpolation result.

THEOREM E L9(- 1’, 0, H2(Q, RN)) n Hl(- T, 0, 
Then

and

where c depends on ~~~, 8, y, [u]v,-Q.

The proof of this theorem is achieved by a standard technique, y
taking into account Theorem 3.111 of [2], Lemma I of the Appendix
to [9] and the results of [12] (see also Theorem 2.111 of [1 ] ~ .
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3. Local Zq regularity for systems of type (1.9).

We start by recalling the following Zq regularity result for linear
systems.

R~N ) ) be a solution in Q of the linear system

Here the nN X nN matrices i, j = 1, 2, ... , n, are defined and
bounded in Q and satisfy the strong ellipticity condition. Then there

exists yo E ( (n - 2 ) In, 1) such that, if

we have

(3.3)

and

for every and 

See [6], Section 4, Theorem 4.IV.
Now we are ready to prove, taking into account Theorem 3.1, the

following Z~ regularity result for non-linear systems:

THEOREM 3.2. Assume that u is in,

, and U = Du is a solution in Q

(1) Q(X°, means that .
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of system

Here the rtN &#x3E;C nN matrices i, j = 1, 2, ... , n, and the nN-vectors
.I’i(X, u, p), i = 1, 2, ... , n, are assumed to be as it follows: Aii are

defined and bounded in Q an,d satisfy the strong ellipticity condition;
I’i ( X, u, p) are measurable in X and continuous irc ( u, p) and have the
following growths

Then

(3.7)

and

for every i

n RN), 0  y  1, be such that U = Du is solution in Q of the
system (3.4), namely



228

From Theorem 2.1 of Section 2 it follows

therefore, for every integer j, 

Then, if f i verifies (3.6), taking into account (3.5), it results

On the other hand, by well-known results (see [13], [14]), we have

From (3.11 ), (3.12 ) and from Theorem 3.1 (applied to Q* ) we obtain:

and,

Now let us estimate the norms of the vectors Z~ ) , 2 =
-1~27 ..., 7 it, in the right side of inequality (3.14). In particular,
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taking into account (3.5), we need to estimate the integral

If j is an integer, l C j ~ ~2, we have:

On the other hand, (2.4) enables us to write

where c does not depend on (1 but only on
Moreover we easily have

Then from (3.15), (3.16) and (3.17) we obtain

from this, for a ~ 1, it f ollows that
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From (3.5) and (3 .18 ) we obtain the estimates of vectors Fi in

f 26) ~ RnN) . .

Estimate (3.8) easily follows from (3.14) and (3.19).
We need a different version of Theorem 3.2.

We set

f or every number q in the interval I
THEOREM 3.3. Under the assumptions o f Theorem 3.2 with

we have
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PROOF. Estimate (3.22) follows from (3.8) and from the inequality

It is self evident that Theorems 3.2 and 3.3 also hold for the
2c E L2( - T, 0, RN)) n Hi(- T, 0, L2(Q, RN)) r1 RN), 0  y 
 1, such that U = Du is a solution in Q of a system of the type (1.9)
with u, p), i, j = 1, 2, ... , n, bounded nNxnN matrices defined
in and such that

for every system {~},=i,2,...~ of vectors of RnN and every (X, u, p) E
E Q X RN X RnN.

4. Partial Holder continuity of the spatial derivatives of the solutions
to system (1.1).

be a solution of the non-linear system

where ~(~~jp)~==l,2,...~ and B°(x, u, p) are vectors of RN
measurable in X, continuous in ( u, p ) and verifying the following
conditions:

there exists a constant v &#x3E; 0 such that
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(4.4) the 9~’/~~~~==1~2~...~~7~~=~2~..~~ are uni-
formly QxRNxRnN;

and

it results

with

Set U = Du, then we have

tl.lso, taking into account what we pointed out in Section 1, U is
solution of the system

where Aii, i, j =1, 2, ... , n, is the matrix defined by (1.10)
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and ~1.7), and Fi, i = 1, 2, ..., n, is the vector of R~N given by

The assumptions on the vectors ai imply that the matrices Aij(X,
u, p ), = 1, 2 7 * * , n, are uniformly continuous and bounded in Q X
X RN X RnN, and satisfy the strong ellipticity condition (3.23). Con-

sequently there exists a bounded continuous function defined

for which is increasing, concave, such that = 0 and 

Y E Q, and 

where 6 (X, Y) is the parabolic distance:

The vectors == 17 2,...., n, are measurable in X, con-
tinuous in ( u, p ) and have the following growth

where

By Theorem 2.1 we have:

and
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From ( 4.12 ) , written for 8 = 4, it follows Vr E (0, 1 ) :

and hence

Let us recall that if
and the following inequality

where c depends on the distance of Q(X°, or) from the parabolic bound-
ary of Q (g) and on the L2(Q)-norm of to.

From (4.14) and Lemma 2.1, we deduce

where the constant c depends on the usual arguments.
Now we are ready to prove the following
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where q is an arbitrary number in the 

~ and are defined as in (3.20) and (3.21).

PROOF. Consider Q(X°, 20’)(ÇQ We set U = Du. Taking
into account the remark made at the beginning of this Section, we
have that 17 is solution of system (4.8) and belongs to the space

then, in Q(X°, a), U can be written in the form

where

is the solution of the problem

whereas
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is solution of the system

By well-known results (see [13]), the problem (4.17) admits an

unique solution; this solution belongs to the space 

.L2(B(x°, a), RnN)~ and the following estimate holds :

Moreover from (4.9), (3.22) , taking into

account the fact that oi is bounded and concave (’), it follows
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Now the following estimate holds for the term

on the other hand

hence we obtain

From (4.19), (4.20) and (4.21), taking into account the fact that
and ~n+2, we deduce
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From (4.22) and Lemma 2.1 it follows, Vr E (o, 1]:

If we use Lemma 2. 2, then we get the following estimate on 
Vr e (0,1) and 

and, denoting

from (4.11), it follows
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Hence, VO  and Vr E ( 0, 1 ) , we have

Now, Vr E (0, 1) and 0  ~ c a, the following estimate is true:

in fact, from (4.13) (written for i- = o), we deduce

hence, adding the term (ro)I to the first and the last side, the ine-
quality (4.26) follows.

From (4.25), (4.26), by virtue of Lemma 2.3, it follows that Vr E
e (0,1) and 

Since U == cu + W in (1), from (4.23) and (4.27) we get in a
standard way that Vr E (0, 1) and VA E (n, ~)
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whereas from (4.26) we have Vr E (0, 1)

Now let us show that also the term

to the right side of (4.28). Q(

is less or equal

is a solution of the system ( 4.1 ) , we have

and hence, by virtue of the growths (4.5) and (4.6),

and hence

From (4.13) (written for 1. = we get
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from (4.28), it follows afterwards

Then, from (4.31), (4.32) and (4.33), w-e obtain VT=(0,1) and 
E (~z, ~):

The estimates (4.28), (4.29), (4.34) hold trivially also for t E [1, 2 ) ;
then adding such inequalities we deduce (0, 2 ) , VÂE(n, ~) , VQ(X°,
2o) C Q, o  1

and the lemma follows.
Now we can easily achieve the partial H61der continuity in Q of

the derivatives Diu of the solutions to the system (4.1 ) making use
of the some technique used in Section 3 of [51.

Let

It is well-known that

and

hence
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We can give a more accurate estimate of the measure of Qo,
considering a suitable Hausdorff measure. From (3.10) and (3.13), via
H61der inequality, we get J) e Q :

for every

Moreover from (4.30), that holds for ~) with Q(X, a) Cc Q,
we deduce

after which, taking into account (4.35) and (4.36), it follows

Using Lemma 2.111 of [7] ] (see also [9], Lemma 2.11) we get
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and hence, because of (4.36) and (4.37),

From (4.35), (4.36), (4.37) and (4.38) it follows

consequently, by a well-known result (see [11])

where is the (n + 2 - q)-dimensional Hausdorff measure with
respect to the parabolic metric (4.10).

Now, taking into account Lemmas 4.1 and 2.4 and using the some
technique of [5] (Lemma 3.11), we can prove that and

V Â E (n, ~) it is possible to find 1 and r &#x3E; 0 with Q(X°, r + aa) cc Q
such that r) and Vr E (0, 1)

In particular, Qo is closed in Q.
Then from (4.39) and taking into account the definition of ø,

it follows that if XOE E Q (X °, r ) , r E (0, 1)

Finally from (4.15) we deduce
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The pre;ious inequality ensures that (see ~10 ] ~ :

Therefore we have proved the following

RN)) r1 0°,1’( Q, RN), 0  y  1, be a, solution of the system (4.1). Let

conditions (4.2)-(4.6) be fulfilled. Then there exists a set Qoc Q, closed
in Q, such that

and

REMARK 4.1. In the case of natural growth, the problem of the
local differentiability of the solutions u E L2 (- T, 0, RN)) n
n C°,%(Q, RN), 0  y  1, to the system (4.1) is open. In the case of
controlled growth, this problem is to consider solved.

REMARK 4.2. The assumptions of Theorem 4.1 on the matrices Aij
do not imply those required in Theorem 5.1I of [9]; hence our result
is not a particular case of the results obtained in [9].
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