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On the Existence of Solutions of the Darboux Problem

for the Hyperbolic Partial Differential Equations
in Banach Spaces.

BOGDAN RZEPECKI (*)

SUMMARY - We are interested in the existence of solutions of the Darboux

problem for the hyperbolic equation = f(x, y, z, Zaey) on the quarter-
plane x &#x3E; 0, y &#x3E; 0. Here f is a function with values in a Banach space
satisfying some regularity Ambrosetti type condition expressed in terms
of the measure of noncompactness a and a Lipschitz condition in the
last variable.

1. Let J = [o, oo) and Q = J x J. Let (E, 11.11) ) be a Banach

space and let f be an E-valued function defined on S~ = Q x ~E &#x3E;C E.

We are interested in the existence of solutions of the Darboux problem
for the hyperbolic partial differential equation with implicit derivative

via a fixed point theorem of Sadovskii [12].
Let cr, T be functions from J to .E such that a(0) _ c(0) . By (PD)

we shall denote the problem of finding a solution (in the classical sense)
of equation (+) satisfying the initial conditions

(*) Indirizzo dell’A. : Institute of Mathematics, A. Mickiewicz University,
Matejki 48/49, 60-769 Poznan, Poland.
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We deal with (PD) using a method developed by Ambrosetti [2]
and Goebel and Rzymowski [7] concerning Cauchy problem for ordi-
nary differential equations with the independent variable in a compact
interval of J.

2. Denote by the set of all nonnegative real sequences and 0
the zero sequence. For ~ = = (qn) e we write $  ~ if ~ ~ ~
and for n = 1, 2, ....

Let be a closed convex subset of a Hausdorff locally convex
topological vector space. Let 0’ be a function which maps each non-

empty subset Z of x0 to a sequence E Soo such that (1) O({z} u
~J Z) - Ø(Z) for z E (2) W(66 Z) = O(Z) (here co Z is the closed
convex hull of Z), and (3) if O(Z) = 0 then Z is compact.

For such 0 we have the following theorem of Sadovskii (cf. [12],
Theorem 3.4.3):

If T is a continuous mapping of x0 into itself and Ø( T[Z])  
for arbitrary nonempty subset Z of x0 with O(Z) &#x3E; 0, then T has a
fixed point in lllo:

3. Let a denote the Kuratowski’s measure of noncompactness
in E (see e.g. [6], [8]). Moreover if Z is a set of functions on Q

and

fro x, y E J.
The Lemma below is an adaptation of the corresponding result

of Goebel and Rzymowski ([3], [7]).
LEMMA. If W is a bounded equicontinuous subset of usual Banach

space of continuous E-valued functions defined on a compact subset
~ _ [0, a] x [0, a] of Q, then

for ( x, y ) in P.
Our result reads as follows.
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THEOREM. Let a, and r’ be continuous on J. Let f be uni-
formly continuous on bounded subsets of Q and

Suppose that for each bounded subset P of Q there exist nonnegative
constants k(P) and L(P) C 2 such that

and

for all (x, y) v, vi, V2 in E and for any nonempty bounded
subset U of L’. Assume in addition that the function (x, y, r, s) H
H G(x, y, r, s) is monotonic nondecrasing for each (x, y) E Q (m.e.

and o  si  s implies r2, s2) ) and the
scalar inequality

has a locally bounded solution go existing on Q.
Under the hypotheses, (PD) has at least one solution on Q.

PROOF. Without loss of generality we may assume that cr = 0

and t --- 0. Therefore, (PD) is equivalent to the functional-integral
equation

Denote by C(Q, .E) the space of all continuous functions from Q
to E ( C(Q, E) is a Fréchet space whose topology is introduced by
seminorms of uniform convergence on compact subsets of Q), and by
3C the set of all z E C(Q, E) with

Let P be a bounded subset of Q. From the uniform continuity



204

of f on bounded subsets of S2 follows the existence of a function

~p : ( o, oo) - (o, oo) such that

for any z e 3C, (x, y) E P and (x’, y’), (x", y") E P with ,x’-  3p(6)
and ly’-  

Consider the set of possessing the following property:
for each bounded subset P of Q, E &#x3E; 0 and Ix’ - x"I  y" 
 (here (x’, y’ ), (x", x") E P) there holds y’ ) - z(x", y") II 
 ( 1 - .L(P) )-1 ~. The set 3Co is a closed convex and almost equi-
continuous subset of C(Q, E) . To apply our fixed point theorem we
define a continuous mapping T of C(Q, .E) into itself by the formula

Let z E Then

for (x, y) E Q. Further, for E &#x3E; 0 and (x’, y’ ), (x", y") E P such that
we have
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i.e. Tz E Consequently, c Io .
Let n be a positive integer and let Z be a nonempty subset of 

Put Pn = [0, n] X [0, n], kn = and E. - Now we shall

show the basic inequality:

where 
To this end, fix (x, y) in By Lemma, we obtain

It is easy to verify (see [11], p. 476) that

Therefore

and our inequality is proved.
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for any nonempty subset Z of 3Co- Evidently, E By Ascoli
theorem and properties of « our function 0 satisfy conditions (1)-(3)
listed in Section 2. From inequality (*) it follows that Ø(T[Z]) 
 O(Z) whenever O(Z) &#x3E; 0, and all assumptions of Sadovskii’s fixed
point theorem are satisfied. Consequently, T has a fixed point in 3Co
which completes the proof.
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