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Complex Interpolation for 2V Banach Spaces.

GIOVANNI DORE - DAVIDE GUIDETTI - ALBERTO VENNI (¥)

SunTO - Si definiscono spazi d’interpolazione tra 2V spazi di Banach, con il
metodo complesso. Gli spazi sono definiti a partire da spazi di funzioni
olomorfe sulla polistriscia di C¥ che siano integrali di Poisson di oppor-
tuni dati al bordo. Vengono dimostrati un teorema di densitd e alcune
proprietd che collegano questo metodo con il metodo di Calderén. Infine
viene data una caratterizzazione degli spazi duali.

1. Imtroduction.

The aim of this paper is to give an extension involving 2¥ Banach
spaces and N parameters of the complex method of interpolation for
Banach spaces introduced by A.P. Calderén in [3].

In the subsequent years other generalizations were given by several
authors: we recall Favini [9], who employs N +1 spaces and N param-
eters developing a definition of Lions [17]. 8. G. Krein and L. I. Niko-
lova [18] [14] [15] constructed interpolation spaces for finite or infinite
families depending on a complex parameter. In this connection we
quote also the papers [4] [5] [6] in which they describe a general theory
of complex interpolation for infinite families of Banach spaces with
one complex parameter varying on a simply or multiply connected
domain.

(*) Indirizzo degli AA.: Dipartimento di Matematica, Piazza di Porta
S. Donato 5, 40127 Bologna, Italia.
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The method involving 2% spaces and N parameters goes back to
the papers of Fernandez who deals with the real case in [10] [11] [12],
with the complex case in [13], and with their connection in [2]. In the
two last papers they sketeh a theory following a pattern very similar
to the pattern of Calder6n, but the crucial inequality 4.4. (2) of [2]
is wrong, as we prove in our counterexample 5.5. It is just the lack
of that inequality, without which part of Calderdén’s theory cannot
be developed, which led us to give a new definition of the interpolation
spaces, starting from holomorphic functions on the polystrip S¥ that
are not supposed to be continuous at the boundary but are Poisson
integrals of functions belonging to suitably weighted L° spaces.

The paper is arranged in the following way. In § 2 we obtain some
inequalities about Poisson kernels and somec technical results about
Poisson integrals. In § 3 we define the interpolation spaces for a com-
patible family (4,) as the spaces of values in the points of 10, 1[¥
assumed by holomorphic functions on (]0, 1[ + ¢R)¥ which can be
expressed as Poisson integrals of functions of type Ly(R", 4;), where
¢ is a weight function equivalent to the Poisson kernel. In §4 we
prove the density of a certain class of « good functions » in the function
spaces introduced in the previous section. This result is repeatedly
employed in § 5 to show the density of (] 4; in the interpolation spaces

7
and other propertier. In particular we study the connection between
our method of interpolation and Calderén’s; we show that our inter-
polation spaces are embedded in iterated interpolation spaces of Cal-
derén. A counterexample shows also that in general this inclusion is
proper. In §6 we prove some results of duality.

2. Poisson kernels and Poisson integrals.

In this section we give some definitions, deduce some estimates
about Poisson kernels for the strip and study some properties of
Poisson integrals. We establish the following notations which we keep
from now on.

I=10,1, J=1{0,1}, 8=1I-+iR={2eC; Rezel},

N is a positive integer, and when o € R (a = 0)  is the N-tuple (a, ..., @).
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For 2z = (2, ..., 2v) € C¥ we set
Rez = (Rez, ..., Rezy), Imz= (Imz,...,Imzy).

sin wa
2(cosh s — cosma)’

V(a,s)e IXR  Pya,s)=

Pi(a,s) = P,(1—a,s)= 2(00@5:%%@ .
These are the Poisson kernels for the strip 8. V(a, s) € I¥ XRY Vje JV
P,(a,s) = ﬁ P; (ax, s;). Moreover q € [1, o] (unless a more restrictive
condition i 1s reqmred) and ¢’ is its conjugate exponent (i.e. 1 lqg+1]q' =1).
The weight function p: R¥— R* is defined by o(s) = n (cosh 7rs;)—1.
Remark that J o(8)ds = 1. When X is a Banach space a.nd q < oo,
Ly(RY, X) is the Banach space of strongly measurable functions
f:R¥ — X such that |f].g= (Rng(s) I(s) l]'}ds)1/°< + co. For nota-

tional convenience we shall also write L; when ¢ is allowed to reach
oco: however in the case ¢ = oo it is understood that this symbol
denotes simply the space L® (without weight).

We observe that from the well-known identity

cosh (8 + 1) + cosh (s —t) = 2 cosh s cosh?

it follows that
cosh (s—1)

2.1
(2.1) cosh s

<2cosht

and later we shall refer to this inequality even without explieit mention.
‘We have also

. cosh(9~t)
2.2 1 —— —1]|=0.
(2.2) ,‘_’,’; sf:;? ~ coshs
In fact
cosh (s —t) — cosh s et .
cosh s e+ e (e )+e8+e‘ (et =1) )<

<let—1| -+ Jet—1].
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ProPOSITION 2.1. The following statements hold:

(2.3) VYael fPo(a, sYds=1—a,
R
o
(2.4) VoeR*, je{0,1} lim fP.,(a, s)ds = 1—j
a—>j *s
(2.5) VéeR+ lim sup Py(a,s)=0

a—>0 |8|>=0
(2.6) 0<a<} = Pya,s)<}sinma

(2.7)  if 0<M<|s|, then Va€el, jed

sinza cosha M P;(a,s) sinza coshmw M
coshnM + |cosma| ~P;(},s) coshaM — |cosmal

(2.8) Vs, o0€R,a€l, jed
2cosh s sinza

Pa,s —o) <= |cos 7a|

Py}, 0) .

PROOF. (2.3), (2.4), (2.5), (2.6) arc trivial. (2.7) Obviously

sinza coshzs sinza cosh s sinzwa cosh s
coshzs + |cosma| ~coshms — (— 1)’ cosma ~coshms — |cosmal

and the middle term is exactly P;(a, s)/P;(},s). Now it is sufficient
to observe that the left term is an increasing function of |s| and the
right one is a decreasing funection of |s|.

(2.8) follows from (2.7) (with M = 0) and (2.1).

Remark that from (2.3) it follows that > [P,(a,s)ds = 1.

jeJ¥ RN
In the remaining part of this section, X is a fixed Banach space.
Remark that if 1<g<r< oo, then Ly(RY, X)C LI(R¥, X) (with |lf||Lg<
<|flz Vfe LyR¥, X)).

ProPoOSITION 2.2. Let fe LyRY, X). Then VjedJ¥, acI¥,scRY,
f P;(a, s — o) f(6) do exists and defines a continuous function of a + is € 8¥
RN



Complex interpolation for 2¥ Banach spaces 5

which is harmonic in every couple of variables (ay, s;). Moreover

Vjed¥, VaelI¥ sup o(s) l]fP,-(a,S —0)f(o)do|x < + oo.
seR¥ RY

Proor. By the estimate (2.8) we have

Y sinma, (o)
P,(a,s — o) <h11 1— |cosmas| o(s)

This ensures the existence of the integral, gives the required growth
estimate, and allows us to employ the dominated convergence theorem
to prove continuity. Moreover we can check that the function (a, 8,) —
= L P;(a, 8 — 0) f(0) do has the mean value property by changing the

K

order of integration and exploiting the same property of P;.
LEMMA 2.3. Let f: S — X be a continuous function, harmonic on 8.
Suppose that e €10, 1[, C > 0 such that Va + is€ S
If(a -+ is)|x < C exp (x|s|(1— ¢)) .

Then sup [f(2)]x = sup [{(&)]x -
£eds

2€8

Proor. Suppose that f is real-valued. In this case we prove that
Vze S f(z)<sup f(£). Since — f has the same properties as f, this will
éeds

prove the statcment when X = R.
Let 0 < 0 < ¢ and put

g(a + is) = cosh (7s(1— 9)) cos (n(} — a)(1— 9)).
Then ¢ is harmonie, and its g.l.b. on S is positive. Ve R*
Ilim fla 4+ is)— ng(a + i) = — oo  uniformly for a € [0, 1]
8|—>+ oo

(since 1—d >1—¢). B
Therefore, if we fix 2 = a + 4s €8 and M is large enough, by the
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maximum principle on [0, 1] 4 i[— M, M],

fla + is) — ng(a + is) <max sup (f — 7g)(j + ) <max sup f(j + ) .

§=0,10t|<M i=0,1 teR
Letting n — 0+, we obtain f(a + 4s) <sup f(&).
£edsS

Now we suppose that f is complex-valued. Obviously Re f, Im f fulfil
the assumptions of the theorem. Therefore

VzelS |f(z)] = sup (l Ref(z) + p Imf(z)) <

< sup (A Ref(§)+ pImf(§)) = sup [F(&)]

[A+iu|=1; Ecd8
Finally, if f has values in the Banach space X, then

VzeS |f(2)|lx= sup |p(f(2))|<  sup l"’("‘f’”:i‘é? 1£(8) ] x -

peX*, lloll<1 peX*, [loll<1; éeds
LEMMA 2.4. Let f: RY¥ - X be a continuous function such that
N
Je€10,1], ¢ > 0 such that |f(s)]x<C exp (3(1—3) S lsk|). Let H be
k=1
a compact subset of RY. Then, uniformly for se H,

lim |P,(a,s — o)f(s)da = 6, .f(s)

a—k

RN

where j, k € JY and 0, ; is Kronecker’'s symbol. Moreover if f is uniformly
continuous on RY and ¢ = 1 (i.e. f is bounded), then the convergence is
uniform on RY.

PrOOF. Suppose k= j. Then
[Pita,s— o) (@) | do <
RN

N
H fexp 1—¢) Ish—o'l)Pf,.a'M o)do<

O’exp( ~e)z|sh|)ﬁ J.exp( 1— ¢)|o|) P;,(aa, 0)do

h=1
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s0 that it is enough to show that each integral in the last side of the
inequality is bounded for a, € I and converges to 0 when a, — k, # ji.
But this is shown by the inequality

fexp (w(X— &)[t]) Pj,(@n, t)dt <
R

1. exp (7(1— ¢)[t]) B
Qsmnahf coshod — 1 dt + exp (n(1 — &) P,,_(a,,,) .

Suppose now k = j. Then

|| [Piaofs—a@s—fw|< [ P olie—o -]+

RV\[— 8,01V

+ [ Pua,0) Ifs — o)~ f()] do + 1—fPa6d6)llf -

[—8,01¥

When a — j the last term converges to 0, uniformly on every set on
which f is bounded. Having fixed ¢ € Rt, we can take 6 € R+ such that
the second summand is <¢ Vse H (or Vs e RY if f is uniformly con-
tinuous on R¥). The first summand is dominated by

¢ f P,(a, 0) exp (n(1— Z |ah|)do' exp (n(l — ) Z ]shl)
RM\([— 8,01V

+ ()] f P;(a, ¢)do .

RM\[-8, 1Y

Here the second term converges uniformly to 0. Therefore the proof
will be complete if we show that when a — j

fP (a, o exp( (1—¢) g ah|)da
and
fP,»(a, o) exp (n(l — e)h§|ah|) do

[—6,01V

have the same finite limit. For this we can suppose N = 1 and show
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that

lim fP,(a o) exp (n(l—¢)|o])do =1,

a—>j

+ oo

lim fP, a, ¢) exp (7(1— ¢&)|o|)do = 0.

a—j

The first equality follows from the fact that for a —j Ps(a, -) is an
approximate identity; the second one is shown by an easy computation.

PROPOSITION 2.5 (see [3] p. 116). Let f: S¥ — X be a continuous
function, harmonic on S in every couple of variables (an, $1). Suppose

. N
that 3¢ €10, 1], C > 0 such that Vze SY |f(2)| < C exp (n(l —¢&) > |Im z,.l).
Then r=1

Va +ise8¥ fla+is)= fP,.(a, s —a)f(j + to)do .
ieJN RV

PrOOF. We begin by supposing that N = 1. By lemma 2.4 and
proposition 2.2, the function

atisefatin-—3 [Pia,s—o)(j+io)a
=0R

is harmonic on § and has a continuous extension to S, which vanishes
on 08. We can get our result through lemma 2.3 if we prove that

”2 fP;(a,S—G)f(y—l—w)da“<O exp (n(1— ¢)s]) .
In fact we have

oxp (w(e — 1)}s]) > fP, (a8 — ) |(j + o) | do<

i=0

<C i fP,-(a, s — 0) exp (n(1l— ¢)|s — o|) do .
i=og
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This depends only on a, continuously on [0, 1] by lemma 2.4, so that
it is bounded.

Suppose now that f is a function of N -+ 1 variables which satisfies
our assumptions. If we fix the last variable, we obtain a function of
N variables satisfying the same assumptions, so that we can proceed
by induction.

The aim of our next result is to show that if f; € Ly(R¥, X) Vje J¥
and

ied

> JP,»(a, s — 0)f;(0)do =0 Va -+ ise Sy,
RN

then VjedJ¥ f; = 0. However, since it is possible that

§ > J'P,-(a, s— o) f(o) do
RN

does not belong to Ly(R¥, X), we work in a suitable larger space.

ProPOSITION 2.6. Let fe L,(RY, X), jedJ¥. Then the function
s »—»Rij(a, s — o) f(o) do belongs to L,:(R¥, X), and when a—ke J¥ it

converges 1o 0;f in the norm of Ly(R¥, X).

PrOOF. [0%(s)|[P;(a, s — o) f(0) do| ds < (see (2.8))
RN RN

N 1 -
ov SR | f o(s)ds f P,(}, o) (o) | do < +oo.
RN

h=11— |cosma,
RN

Since f p%(s)ds < + oo, from lemma 2.4 it follows that we have the
RN

asserted convergence whenever f is uniformly continuous and bounded.
Since such functions are dense in Ly(R¥, X), it suffices to show that
30 > 0 such that

f@”(S)
.

l J.P,(a,s—a)f(a)do”ds<0’|[f|[4 Vfe L}(R¥, X) and Vael~,
RN
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In fact

f@z(s) fP;(a, s — 0)f(o)do| ds <f|lf(6) I Q(U)f %}S—)) P,(a,s — o) dsdo,
RY

R¥ RY R¥

so that it remains to show that

N

sup H (coshnakf(cosh )2 P; (@, t — a,,)dt) < 4 oo.
ael¥,0eRY k=1 2

But

coshno | (coshnt)-2P(a,t — o)dt =
R
cosh awf(cosh (w2 — a)))'sz(a, t)dt <
R

f ~_coshat sinza it
~J cosh(n(t — 0)) coshnt — (— 1) cosma

and direct computation of the last integral concludes the proof.

3. Definition of the interpolation spaces.

In this section we introduce the complex interpolation spaces for
compatible families of complex Banach spaces. Henceforth every
vector space we consider is complex.

A finite family 4 = (4,);ex of Banach spaces is said to be com-
patible if there is a Hausdorff vector topological space & such that
Vje K A;<> 4 (by «<>» we denote algebraic inclusion with continuous

embedding; if X and Y are normed spaces, X & Y means that the

embedding norm does not exceed M). When A is a compatible family

A(A) is the Banach space () 4; with norm |@] ) = max |4, and
JE.

i€k
2(A) is the linear hull of |J 4; with the norm ||z = inf { > ®i]ays
jEK jeEK
w,€A;, D= w} (this too is a Banach space). Evidently

1 €K

A(A) > 4; > Z(A) — 4.
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A normed space X is said to be intermediate for the family 4 if
A(A) > X <> Z(A). When A = (4,);cx and B = (B;);cx are compatible
families, L(A, B) is defined as the vector space of the linear mappings
T: 2(A) - X(B) such that T'|,,e€L(4,, B;) Vje K (as usual, when X
and Y are normed spaces, £(X, Y) is the space of continuous linear
mappings from X to ¥). If X and Y are intermediate spaces for
A, B respectively, we say that X, Y are interpolation spaces with
respect to A, B when for every T € L(4, B) T|x € £(X, Y).

From now on we consider compatible families 4, B etc. of Banach
spaces whose index set is J¥ (J = {0,1}). Since for a compatible
family A and 1<g<oo LYRY, 4,) L1>L;(]RN, 2Z(A4)), on the space
]_[NLQ"(RN , 4;) we can define a linear map &, whose range is contained in
j€J"
the space of continuous funections ¢: 8% — X(4) (see prop. 2.2), by
putting

I(f)a + is) = 3, [Pa,5— 0)f,(0)do
jeJN J
R
where f = (f;);esv, a € IY, s R".
From prop. 2.6 it follows at once that is one-to- one, and we

call 5,(4) the image under § of [] LRY, 4;). On JT L{(R¥, 4,) the
functional jes¥ jedN

(Fi)iea~ (jeZJN”finig(R",A;))llq

(with the usual modification if ¢ = o) is obviously a Banach norm.
If V= (fi)iesv €[] LARY, 4,), VaeI¥ we put
ieJ¥
1/a
Il = (3, [Bila, ) [0 15dt)" (1< < oo)
jeJN RY
and if

g=00 |Ifll@: ) = max Ifile=@y, a9,  then |||l a
JE,

is a norm on [] Ly(RY, 4;). Remark that || [l(; ) does not depend on
jeJV
a (but we keep this notation for convenience) and that when 1<q < oo

N 1/q
Wl = 270 (3 1llgme,a0)
E)
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VaeI¥ we call ||*||(;q also the norm induced by & on F,(4)
(N HMea: )= Mflla: ) -

PRrROPOSITION 3.1. For each fized q € [1, co], all the norms || - |l;q
(@ € I¥) on F(A) are equivalent, uniformly for a in compact subsets of IV.
Moreover for 1<q<r<oco F,(A)C Fo4) and Vie F.(4)

I”ﬂ"(a; o< I"f”l(a; r) .

Proor. The first statement is an obvious consequence of the ine-
quality (2.7) with M= 0. The second one follows from Holder ine-
quality and from

3 fP,(a, s)ds = 1.
jeJN RY

PROPOSITION 3.2. Vge F,(A4) and VaeI¥ |g(a)|s<lgl@aa- If
K is a compact subset of 8%, ICx > 0 such that Vge F,(4) sup |9()| s <
2€K

Orllgll3: o) -
PrROOF. Let g = 9(f)e 5,(4). Then

]]g(a)”z(,,) = llﬂ‘(f)(a)ll£<4)<.§t’ fPi(ay 8) "ff(s) ”A1d8 = mg"l(a;l)<mgm(a:a) .
eI o

If ze K, we have

l962) |zt < 3, [Pu(Re, Tmé — o) If0)Ldo <
R¥
¥ 2cosh (7 Imz,) >
<(by (2.8)) Ifgxh];[l T Joos (n Re )| 2 P;(}, 0) |1:(0)]4,d0 <
RN

< Ckllgll@: 1< CkllgllE: o -

DEFINITION 3.3. F,(A) is the space of the fumctions f: S¥— X(A)
holomorphic and belonging to F,(A). By the second part of prop. 3.2,
convergence in Fo(A) implies uniform comvergence on compact subsets
of 8%, with respect to the norm of X(A), so that F,(A) is a closed subspace
of 5.(A) and hence a Banach space.
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When X is a Banach space, we write 5,X) and F,(X) to mean
FAA) and F,(A) where A = (4,);esv and A4; = X Vje J*.
Now we define interpolation spaces A, ).

DEFINITION 3.4. VaelI¥, ge[l1, 0] Ay, = {f(a); f€ F(A)}.
Since the operator fi— f(a) is continuous from F,(4) to X(4) by
prop. 3.2, we can deflne a Banach norm on A, by putting ||#|;q =

= inf {||flla: 05 1€ Fol4), = o}.

THEOREM 3.5. A, 8 an iniermediate space for the family A.
More precisely, A(A) L1>A(a;q)f—l>2(A).

Proor. Let xe 4(4) and f: 88— 2(4), f() =2 VzeS8Y. It is

obvious that fe F,(4), so that ze€ Ay, and |2)@o<|fllwea =
= (when ¢ << o0)

(2 [Pita, 5) I2l5,ds) " < lzlaco (3 [Pila, 9)ds)"™ = Jalacs -
7 RY 7 R¥

The proof is even simpler when ¢ = oo, since [|flll; ey = [%]aca)-
Let @€ A(,,q). Then obviously x € 2(4) and the estimates on the
norms follow at once from the first part of prop. 3.2.

THEOREM 3.6. If A and B are compatible families of Banach spaces,
then Ay, and B, are interpolation spaces with respect to A and B.
More precisely, VTEL(Ay B) ”T”ﬁ(A<a:q>,B(a:q>)<I?£‘} "T“ﬁ(A/,Bl)‘

Proor. Let x€ Ay, and g = (f) € F,(4) with g(a) = #. Then
Tg e §,B), so that Tw € B,;, and

1Zo w0 <N Tgllwa = (3 [Pilas o) 1716 18,ds) <
J RN

<(3 11800 [Pi(a ) 1) ) <o 1T, Wl
R¥ !

(and similarly when ¢ = oo). As fis arbitrary, we obtain the inequality.
REMARKS

3.7. When X is a Banach space and 4, = X VjeJ¥, we have
A(A) = X = X(A) with equal norms. Therefore from th. 3.5 it follows
that in this case A, = X with equal norms.
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1
3.8. From prop. 3.1 we have A, > A, Whenever 1 <qg<r< oo.

39. If 1<qg< oo and VjedV A; is reflexive, then L,(RY, 4,)
is reflexive ([19] th. 5.7), so that F(4), Fo(4) and A, o are reflexive,
since products, closed subspaces and quotients of reflexive spaces are
reflexive.

4. A density theorem.

Let A be a compatible family of Banach spaces. We consider the
holomorphic functions f: C¥— A(4) such that nll 1(2) 1l ac) = 0,
Z|—> 00

_li
28V, |
and we call Fy(A) the space of the restrictions to S¥ of these functions.
Remark that by prop. 2.5 Fo(4) C F,(4) Vqe[l, oo].
The main result of this section is the following one.

THEOREM 4.1. If 1<q<< oo, then Fo(A) is dense in F,(A).

We shall prove this theorem through a number of lemmas con-
cerning the functions

(4.1) 19(2) = (n]o/m)¥ f exp (" S (ee—ar— ism)f(a + is)ds
k=1
RN
(where fe §,(4), 2eC¥, aeI¥ and neN),

N
w2 o= o fesp(n S - g — i) e
RN
(where jeJ¥, f; € LyRY, 4;), zeC¥ and neN).

LEMMA 4.2. The above integrals (4.1) and (4.2) exist in the spaces
J(A) and A; respectively. The function [P, as defined by formula (4.2)
18 holomorphic on C¥ in the norm of A;.

ProOF. Let f= T((fi)jesv) € Fo(4). As

f exp (n Re S (o o — z'sm) 1#(a -+ i8) | sy ds <
RN -

J

< 0fexp (—— n? % (Imz;, — sk)z) > fP,(a, s — o) ||fi(o)|4,dods <
k=1

RN
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<(by (2.8)) C’,fexp (~ ne % (Ime, — sk)2)-
K=1
RN

”fo(o') ”Al

R¥ H cosh 7o,

H coshytskdsz do < + oo,

the integral (4.1) exists in X(A). Proving the existence of (4.2) in A4;

is even simpler, as
f Nl-lfj(S)”M ds
g~ [] cosh s,
k=1

and

N N
sup exp (—— n? Yy (Tmz, — sk)z) [ ] coshzs,
seRVN k=1 k=1

are both finite. Let K be a compact subset of C¥. Then for ze K
and s eRY,

N
H coshzs, <

N
exp (n” > (#e—gx — is‘k)z)
E=1

N
< Cg exp( n2 Z (Imz, — sk)2) H cosh7s;, <
< Ox exp (- nls|> 4 Cxn? Z |sk|) [T coshzs, < Cx .
k=1 k=1

Therefore, by the dominated convergence theorem, f¥ is continuous
from C¥ to 4;. Moreover, if y is a closed, piecewise differentiable curve
in C, when we compute

ff(yi)(z) dz, = (”/\/E)Nf feXp (”2 lzv: (% — Jr — isk)z)fj(s) dsdz, ,
=1
¥ Y RY

we can change the order of integration, so that it vanishes. This proves
the lemma.

Lemua 4.3. Let § = () e Fi(4). Then VzeC¥ VjeJ¥

imfP(z) = fP() (in Z(4)).

a—>j
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Proor. Without loss of generality we may consider only the case

j = 0. When we substitute in (4.1) f(a + 4s) with its expression by

means of the Poisson integral, we can change the order of integration,

so that

_ N

2@ = iy S, [1io) fexp (123, (0= s — isat) Pta, 5 — s
jeJ RY Ry k=1

We prove that in this sum every summand converges to 0, except

the one with j = 0 which converges to f'(2), as « — 0. By the domi-
nated convergence theorem it is enough to prove that

C(n, w)
cosh o

(4.3) <

jexp (n*(w — a — i8)?) Py(a, s — o) ds
R

and that

(4.4) fexp (n*(w — a — is)?) P,(a, s — 0)ds —=z> 6,0 XD (n*(w —i0)?).
R

In fact the left side of (4.3) is dominated by

( f + [ ) exp (n2((Row — a): — (Imw — s — 0)7)) Py(a, 5)ds

—1 |s|>1
The first integral is

< sup exp (n’((Rew —a)— (Imw —s — 0')2))<

|s]<1

' C"(n, w)

<C'(n, w) exp (nz(— (Imw — 0)2 4+ 2[Imw — o|))<m ,

while the second one is < (see (2.7))
sin za coshz ox (n2((Rew —a)— (Imw —s 0.)2)) 1 ds
cosh 7 — |cosma| P 2 coshs <
R
< (see (2.1))
1 Ci(n, w)

Cy(n, w)fexp (—n*(Imw — 7)?) coshmrdr
R

cosh 7o ~ coshno *
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For j = 1, (4.4) follows at once from (2.6). Finally

—
&

]fexp (n2(w — a — i8)%) Py(a, s — o) ds — exp (n*(w — 170')‘3)'
R
gf]exp (n*(w — a — is)?) — exp (n*(w — is)?)| Po(a, s — o)ds +
R

+ } fexp (n*(w — 15)%) Py(a, s — o) ds — exp (n(w — i0)?)
R
Here the second summand converges to 0 by lemma 2.4. The first
one is dominated by

(1— a) sup lexp (n*(w — a — is)?) — exp (n*(w — is)?)| —=5>
seR

a—>0

LEMMA 4.4. For fized fe F,(4), 2€C¥ fDz2) does mot depend
on acl”¥.

PrOOF. We prove that for fixed @ = (a,, ..., ay) € I¥-1, f@(2) does
not depend on a,. For this it is enough to show that

jexp (n*(2, — ay — 1t,)?) f(a + t)dt,
R

does not depend on a, (the existence of this integral is guaranteed
by prop. 2.2). Being holomorphic the function

£>exp (n*(e,— &) f(§, @+ i) (E = (tay ooy t)
it suffices to prove that as |M| — + oo

fexp (n*(ey— o — iM)?) f(a + iM, @+ if)dox >0 Va',a'el.

a’

But this follows from prop. 2.2.
Thus we have proved the following proposition:

PROPOSITION 4.5. f®(2) € A(A) and the function f* is holomorphic
in the norm of A(A).
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Lemma 4.4 allows us to write henceforth f, instead of f* or f¥.
Moreover, by lemmas 4.3 and 4.4

fala + is) = f(a + is) = (njy/m)* [exp (— n*ls — t1?)f(a + it)at
RN
and
fali + i8) = (/) [exp (— nfs — ) (00t

RN

LeMMa 4.6. If f= (f;)e F.(A), then YneN 3C,>0 such that

_ N
Vze8Y  [fu(2)]laca)< Ca]] cosh (x Imz,) .
£=1
PRrROOF

N
o)l = 161 O fexp (— 2 3 (me, — ) 19 ds <
RN

N N
<G, |f; |zyr¥, 4,) SUD €xp (—— n? Y (Imz, — sk)z) H cosh s, <
seRY k=1 =1

N
H cosh (7 Tmz,)

(recall that cosh <2 cosh (¢ — f) cosh ), and this proves the lemma.
LemMA 4.7. If f = (f;) € F(4) (1<g<oo), then f, € F,(A).

PRrOOF. As f, is holomorphie, it is enough to prove that the function
8 > fa(j + 18) = fn,:(s) belongs to Lj(RY, A;) and that f, = {l'((f,,,,-)).
The first statement is trivial when ¢ = oo and is easily proved when
q < oo by means of Minkowski integral inequality, through the ex-
pression of f, ;(8) given before lemma 4.6. For the second one we have

8((Fa)) @ + i) = (0fy/m) 3 f P(a,5— o) [exp (— n[£[:) fy(o — &) dE do =

RY
(nfv/m)" [exp (— ng]?) sz , 58— 0 — &)f,(0)dodf =
RN

(n)y/7)* [exp (—ntls — &) fla + i8)d = fala + is) .

RN
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PROPOSITION 4.8. Let 1<q< oco. If f= 9(f;) € F(A), then in
F(A) f.—>f as n— oo,

Proor
mfn - f”l(-%);a)<

<znnjy/ (3 foto)( [exp (=) 17— 0 po L) as) " <

i
RN RN

{by Minkowski integral inequality)
<2-(n /) f exp (— n?ltf?) (E_ f o(s) [f,(s — 1) — 1,(9) \lz,ds)”th :
RN

RN
But

1/q 1/q
(3 fet s — 01— tiolsas) " <(3 [ot0 1= 0iz,as)”" +
R RY

1/q Nla
+ (Z f o(s) 17:(#) uw) " < (by 2.1)) 2“«( Callige 1) Il -
RN

o(t)e

Therefore Vé € Rt

2~N/a(n/\/77)zvfexp (— nzmz) (z f@(s) [fi(s —¢)— f,(s)l\ﬁ,ds)l/adt<
S8 " R¥

—_ 2N/q
<A Wl [exp (= nel) (T + 1)t =0

DR

a8 it can be seen by putting v = nt and remembering that o(r/n) > o(7).
On the other hand

2-a(njy/m)® [ exp (—nelt?) (3 [ols) Ifits — 1) — 1.65) |4 ds) " dt <

lt1<e 'Ry
—N/ 1/ 1/ g 1
<2 sup (3 [ (s — 01,6 — ) — e(s)ef(5)[5,ds) ™ +
1t :‘RN

+ 27 sup (3 [lets) — ol — 0] Ifits — 1) |5 ds) ™
i RN

lt]<é
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Here the first summand is small when ¢ is small because pl'¢f; €
€ Ly(R¥, A;). The second one is dominated by

1/q

’

o(8) — o(s — 1)
o(s —1)

I“fl”(; o) Sup
seRY, 1| <6

and this also is small when § is small by (2.2).

We have thus proved that the space of the restrictions to 8¥ of
the functions f: C¥— A(4), holomorphic and satisfying the growth
condition of lemma 4.6 and belonging to F,(4) is dense in F,(4).
Therefore the following result completes the proof of th. 4.1.

LEMMA 4.9. Let f: C¥— A(A) be a holomorphic function such that

sup ( H cosh (7 Imzk)) 1£(2) |l 4y < + o0,

zesN \k=

and that flgv € F(4), with 1<q9 << co. VOeR* we set gs: C¥— A(4A),
N

gs(2) = exp (6}; z,zc) f(2). Then gs|gve Fo(A) and gs; 571 in F(4).
=1

Proor. It is obvious that g;e€ F,(4). In order to prove that
llgs — fll3;e) 3557 O it is enough to apply the dominated convergence
theorem.

5. Some properties of the spaces A;q).

We prove some consequences of th. 4.1.
THEOREM 5.1. VaelI¥ Vqe([l, oo, A(A) is dense in Ay, .
Proor. Trivial consequence of th. 4.1.

THEOREM 5.2. VjeJ¥ let A be the closure of A(A) in A;, with the
norm of A;, so that A° = (AJ);c;~ is a compatible family. Then Vq € [1, oof
F(A) = F(A°) and A, q = Als;q)y n both cases with equal norms.

Proor. Since A(4A) = A(A°) (with equal norms), we have that
Fo(A) = F,(A°) and that the restriction to Fo(A4) of the norm || [lw;q)
of 5,(4) coincides with the restriction of the homonymous norm of
F,(A°). Then our statements follow easily from th. 4.1.
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THEOREM 5.3. Suppose that Vk = (k,,...,ky) € J¥1 Ay <> A4,;.
Then Vb = (by, ..., by) €It and for 0 <a' <a"<1, 1<g< oo,

A(a',b:a) > A(a",b;a)'
PrROOF. Vfe Fo(4) we set

g;: C¥ — A(A), vf( zl,zz,...,zN).

Then it is obvious that g,€ F4(4). We prove that 3C > 0 such that
Vie Fo(4)

flgsllicar: v;ay< € IH]‘III(a',b-a)- In fact gl 0:0<

( fP ( ) l_[ P’vn biy sn) W(isu ky 4 dsy, oouy ky + dsy) "1’4.,,:;'
keJN-1

au N
= ds + fPl(a,”, sl)hl—[ P, (b, 1)

iq 1/q
I ds <
A

a

1 4 !
> fp, (Z* g;sl—ﬁ)f(l—l—w, Ty + 85, ..., ky + i8y)d0
R

ds +

1do,n

rr N
<Cl( > JP ( " )[] ,n(b,,,s,,)l!f(isl, ko 4 18y, ...)
RY I

-+ 2 J.Pl(a 31) —Pl (bky Sn)
keJN-1
RN

1 a a’ q 1/q
(Z fPI(T, ki 9) [F(I + 16, ky + isy, -~-)|‘A:,kd9) d«?)
<o
RN

IS

But
4\ a" a a
P, (a v sl)\ C' Py(a', s,) (because P > 1) and P, (E; y g ST 6) <

C" cosh (at % 81) Pa’,0)
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by (2.7) and (2.8) (the constants depending only on a', a”). Therefore

Moo < O3 [Posll, 01, ftin, s iy ) [0+
RN

N a/
+ > hU Py, (b, Sh)fPl(a”’ $;) cosh (nﬁ Sl)dsl'
- R

keJN-1
RN-1

(12 fP,(wy 0) /(1 + 6, ky - is,, ...)l,lf,,,kde)qu2 dsN)w.
R

Here

a a
fPl(a”, $;) cosh (n; sl) ds, < oo because pr <1
R

and by Hoélder inequality
: q
(IZO fP,(a’, 0) 11+ 10, ko + iss, "')HAz.kda) <
R

<E Pa,0) |f(1 + 0, ky + i85, ...)]%,,,d0 .
=0
R

This allows us to get the inequality.
Let ® € A, 4, and fe F(A4) such that f(a', b) = @. Lot (f,)en be
a sequence in Fy(A4) converging to f in the norm |||l s;¢: then

“fn(a”y b) — w”(a’,b;a) “==0.

The above inequality shows that (f.(a’,b)),en is a Cauchy sequence
in Ay, because g;(a’, b) = f.(a’, b), and as Ay 4q a0nd A 40
are both continuously embedded in X(4), it follows that ® € A 4:q)
and llf,.(a’, b) _x“(a”,b;fl)_n::;) 0. Therefore I!lmn(a",b;q)< 0"|f|”(a’,b:a)? and

as f is arbitrary ”"‘vn(a",b;a)<Oliw“(a',b;a)'

REMARK 5.4. When N =1, our interpolation spaces 4, (@ €10, 1[,
1<g< o) coincide (with equal norms) with the space [4,, 4,], defined
by A.P. Calderdn in [3]. In fact it is obvious that Calderdén’s space
F (4o, 4,) is contained in our F,(4) and that Vfe F(4,, 41) Ifll@w:0<
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<ma,x sup 171G + 38) |4, = Ifl %4, 4,), and this implies that [A4,, Al],,

C—)A(a @ Conversely, let fe 54(4). Then fe 5(4,, 4,) and the ine-

quality ||f(a)| 4, 4,0.< Wfll(; 1) holds (see [3], p. 117). By an argument
similar to that of the proof of th. 5.3, we obtain the embedding

A S [4,, 4:]., wWhich proves our statement by remark 3.8.

When N >2 the situation is no more so clear, because of the lack
of the inequality (9.41iii) of [3] p. 117, as we see in the subsequent
counterexample. As a matter of fact the asserted proof of that ine-
quality, given in [2] pp. 199-200 is wrong, since the argument is based
on the false assertion that, given 2% bounded infinitely differentiable
real-valued functions g, (j €Jv), there exists a function f: S¥— C,
continuous on S¥ and holomorphic on 8%, such that VseRY VjeJ¥
Re f(j + is) = g,(s).

COUNTEREXAMPLE 5.5. We exhibit a compatible quadruple
A = (A;);x-0.1 and a sequence of functions f,: 82— X(4), continuous
and bounded on S2, holomorphic on 82, such that f,(j + is, k + it) € A,
and is bounded and continuous in the norm of 4;,, for which the norm
of f.(3,3}) in the interpolation space defined in [13] and dealed with
in [2] is equal to 1, while ||f.lls,5,1) 5==> 0. This proves that the
inequality 4.4(2) of [2] (corresponding to (9.4iii) of [3]) fails, and
also that the interpolation space of [13] relative to the point (1, 3)
is different from Ay y,,) (actually it is easily checked that it is smaller).

Let 1® have the usual meaning and let | be the Banach space of
complex-valued sequences (2,),«y such that laf, = sup || /m < -+ oo,

50 that I° <> 1. We set dgy — Ay, — 1%, Agy — Ay — 1. Then A(4) — I,
2(A) =1 (with equal norms). If [A, 1, 4] is the interpolation space
defined in [13], we have [® L>[A. 1,4]. On the other hand, let f:
Sz - X(A) =1 be a bounded continuous function, holomorphic on 82
and such that f(j + is, k + it) € A;;, and is bounded and continuous
(with respect to (s, ?)) in 4;,. Put g(z) = f(2,2) Vze€ S. As gis bounded
in the norm of I, we can represent it as the Poisson integral of its
boundary values, and these values are bounded and continuous in 1%,
50 that g(z)el® VzelS (see [3] p. 116). Therefore f(i,})el®, and
this proves that I* = [4; 1, }]. Moreover, from

113, Dl = [9(3) 1o <max sup [g(j + it) = <
i=0,1 teR

<max sup lV(j + ’1:8, A -}1‘ it)”A]k?
i k=0,1 (s,t)eR?
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it follows that Vo €1”| 2] <[] 4,4,5;. Therefore we have also equality
of norms.

Let a™ = ()iey (Kronecker’s symbol) and Ve >0 f,,: §:—1,
fn,e(w, 2) = exp (e(w — 2)?) ™. Obviously

[Fn.e(3, %)iiu;&,%l =1 and f,,.€ F,(4) with ifnells,3:0 =

=3 (4 coshzs coshzit)~1 exp (e((j —k)32— (s — t)z))dsdt]}a‘"’ laye=
J

=1 (1 + i—:)f(coshm coshzt)~! exp (— &(s — 1)2) dsdt .
R2

If we fix 7> 0, we can find £ > 0 such that the last integral is <7,
and if we take n > e* we obtain ||f, el n<n.

THEOREM 5.6. Let A = (4;);c;» be a compatible family of Banach
spaces and N >2. Put B = (A} o)ges-1, C = (Ap,)peqn1. VaeI¥1, bel,

1
qe [17 oo[, A(a,b;a) = [B(a;a)7 C(a;a)]b'

PRroor. We shall prove that Vf € Fo(4) [ (@, b) | 150, casarte < I fllca,v: 0>
and this will prove the theorem by an argument similar to that of
the proof of th. 5.3. In fact [f(a, b)|ipu.cemn< (by (9.4iii) of [3]
and Holder inequality)

(fpo b, 1) [f(a, it) |5, dt +f \(0, 1) [f(a, 1+ it) |2, ,,dt) <

<(2 fp ho 3 n Puan, ) 1 + i, + i dsat)
= I”ﬂ"(a,b:q) .

THEOREM 5.7. Let N>2 and A = (A;);c;v be a compatible family
of Banach spaces such that Vk € J¥-1 Ao = A, = B,. Then VY(a,b)e
EIN—I XI Vq € [1, 00[ A(a big) — B(a.q).

PrROOF. By theorem 5.6 A ;q & [Ba;ayy Baiaylo = Ba;qy- L€t
f€ F(B) and put g: 8¥— X(4) = X(B), 921y ooy 2n) = f(21) ey By-)-
It is an easy computation to check that g € F,(4) and that lllg]ll(a, big) =
= |Ifll(a; - This proves the converse embedding.
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We conclude this section by showing that, in general, the in-
clusion of th. 5.6 is not an equality. For this we need two preliminary
lemmas.

LeEMMA 5.8. Let Ay, A,, By, B, be Banach spuces such that (4,, A,)
i8 @ compatible family, A, < B, <> 4, + A,, and suppose that 30, € 10, 1{
such that [Ay, A,)o, = B,. Let T € £(B,, B,) and endow ker T|,, with the
norm of A,. Then V0€]0,0,] [ker T|,,, A,],Cker T.

Proor. Let fe F(ker T|,,, A,)C F(4,, 4,) (Calderén’s function
spaces, see [3]). Then f(it) € B,, (6, + i) € B, VteR. For 0 < 0 < 0,
f(0 - 4t) is the Poisson integral (in 4, -+ 4,) of its values for Rez = 0
and Rez = 0,. But this is also a Poisson integral of B,-valued, B,-
bounded and continuous functions, so that f(0 -+ it) € B,. Moreover
f is a By-continuous function which, for 0 < 0 < 0, coincides with its
Cauchy integral in the norm of 4, 4+ A, and hence in the norm of B,.
This proves that 7'f is holomorphic for 0 < Re z < 6, and continuous
for 0 <Rez<0, in the norm of B,. But T'(f(it)) = 0 VteR, so that
Tf(z) = 0 for each z such that 0 <Rez<0,. Since f is arbitrary, this
concludes the proof.

We recall that if », and v, are positive weight sequences, then
(B, B,]o = B,(0 << 0 < 1), where vg(n) = v5(n)*~°v,(n)° (see [1] th. 5.5.3).

LEMMA 5.9. Let v;: Z — Rt (j = 0,1) be non-decreasing sequences.
We suppose that inf v, > 0 = infv,. Let 4, = {l el D An = 0}, A=1T, .
nezZ

Then V0 €10, 1[ [4,, A4,], = I}, with equivalent norms.

PROOF. First of all from A, <> 1%, A, = I} it follows by inter-
polation [4,, A;], <> [1,, 1,1 = T,

VneZ set a™ = (Oin)kez- Then a® —amed,NA4,. We fix
n, meZ, n>m, and we put

f:8 = Ao + Ay, &) = v(n) " oy(n)°Ha® — am) .

It is obvious that the function 2> exp (d(z— 0)?)f(2) belongs to
F(4,, 4,) Vo € R, 50 that

a™ — a'™ = §(0) € [4,, 4,1,
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and

[a® — at™|,< max sup |f(j + it)|, (see[16] Ch. IV §1 p. 217) =
R

i=0,1 te

= max sup |/vo(n)j+it—0/vl(n)9—i—itl ”u(n) — am ”1'11 —
i=0,1 teR

= max v,(n)’~0v,(n)0~(v;(n) + v;(m)) <

i=0,1
<2 max vy(n) 0o (n)07v;(n) = 2v4(n) .
i=0,1
Thus in general [a” — a™|s<2vs(max {n, m}). Therefore, as

m,p ——oco [(a" —a™) — (a" — a®)|s<20s(max {m, p}) -0,

since lim wg(m) = 0 as it follows easily from the assumptions. This
m—>— oo

proves that Vn € Z (a — a™), . converges in [4,, A,], a8 m — — oo,
But |a™],, = v,(m) -——> 0, and as both 4, and [4,, 4,], are con-

tinuously embedded in A4, + A,, we have that a"™e[4,, 4,], and
la™]e = lim [a™ — a™]|s<2vs(n). Hence it follows easily that each

«finite » sequence A belongs to [4,, 4,], with [A]e<2]2[i2, and so
we get at once that I}, & [Ao, A1]p-

COUNTEREXAMPLE 5.10. We show an example of a compatible
quadruple (A4;;); =, = A where Ay ;,;) is strictly smaller than
[[Aom Am]é, [Ao:, Au]-}]é- We set Ay = 4, = {2' € ll(Z); E An = 0}
with the I'-norm, neZ

Ay = {/1: Z—>C; EZ2"IM < + oo},

Ay ={AZ—>C; T 27| < + oo}
nez

with the natural norms. By applying lemma 5.9 we see that [Ag, A10l;
is equal to I* with weight 272 and that [4y, 41,]; is equal to I* with
weight 2-7/2, g0 that the iterated interpolation space is equal to I*
(without weight). But 4(4) is contained in the proper closed subspace
of I* defined by the condition > 4, = 0, and by th. 5.1 Ay 3,17 I"

nez
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COUNTEREXAMPLE 5.11. We show an example of a compatible
quadruple A = (A4;i);,x=0, Where for some (¥, g) € I*

[[A(DO’ A10]07 ['AOI, All]o]g# [[A(NH AOI]Q? [AICH All]e]ﬂ .

We define v,,:Z —>C in the following way: vp(n) = max {1, 2"},

v1o(n) = max {1, 2-"}, vy(n) = min {1, 2"}, v,(n) = min {1,2"}. We

put 4,, =1, and 4, = {l el D= ()} (in every case with the
nez

natural norm). Then, by lemma 5.9, [Ag, Ao ], = Iy, (P = V55* 1)

and [4,,, 4,,], = I;,,, 80 that

[[Aoo, AOI]QV [Aso, Au]qu = lqlrog (Voo = @%Zo 77?@) .

Yoo

By th. 117.1/1 of [21] [4es, 4slo = {4; A€l,, 3 4 = 0}, and we
nez
know that [Ae;, A11]p = I . An application of lemma 5.8 shows that

Vo1 *

if p<0 and 0 + o<1 then Ae[[Ay, Al [Aorr Aulpl, = 2 A = 0.
nez

6. Duals

In this section we study the duals of our interpolation spaces.

‘When we are given a compatible family A4 = (4,);cs» of Banach
spaces, the assumption that 4(4) is dense in each 4; (which we suppose
satisfied throughout this section) ensures that the dual space A of
A; can be identified, in the usual way, with a subspace A; of A(4)*.
Thus A'= (4;);e;~ is another compatible family and we can put the
question whether the space (4, ,)’, identified with the dual of 4,
is an intermediate space for the family A’. When N=1, from the
fact that A(4)*= X(A4') and 2(4)'= A(4’) (see [1] th. 2.7.1) it follows
at once that (4,;,)’ is intermediate for A’, and moreover in that case
Calderdn [3] showed that it is an interpolation space. But as soon as
N>2 the equality X(4)' = A(A') fails (see [8] §4) and in fact the
following counterexample shows that (4(,,,) may also fail to be an
intermediate space for the family A4'.

COUNTEREXAMPLE 6.1. We set Ao = Ay = {A€l(Z); 3 4, = 0},
nez

Ay = 13 (Z), Ay, = 1} (Z), where vy(n) = min {1, 2"}, v,(n) = min {1, 2-"}.
Then A(A4) = Ay = 4, is dense in each A4, (see [5] appendix 1).
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+ oo -1
We set @: A4(4) -C, D(A) =Y A, =— > A,. Then @ can be con-
n=0

tinuously extended to each 4;;, and so @ € 4(4’). Now we fix (0, g) € I*
such that 6 4 ¢ >1, 0 < ¢ and we show that D¢ (A,,.4). To do
this, we put a™ = (Jy a)rez(n € Z), and we show that in A 4,4 a™ —
— a~" ——=0: since P(a™ — a-™) = 1 this will prove our assertion.

For n,m >0 we set ™™ = (a — a™) — (a"™ —at-™). We fix
n, m with 0 <n < m and we set

f: € — A(4), f(w,2) = v,(n)?*Fe" g™ — qim)

Then fe F,(4) and f(6, 0) = a™ —a™. Since [a™ —a™]|,, <2 for
(%)~ (1,1) and [a® —am|, <2 wo have that [Iflls,ei0<
<M, 0 00 <21 %9792 therefore [a™ — a™ |, q;q<2'*"1=0-9, By
employing the function g(w, 2) = vy(— n)*~*~0+¢(g-» — ai-m), we can
prove that [ac» —a=™|q ,,<2'*"°~9. Thus in general

“b(m,n)"w g.q)<21+min{n,m}(1——6—q_;) + 21+min{n,m)(6—g) .

But "b(m,m__ b(p’n)”(l),e;a) = “b(m'p)”(ﬁ,g:q) —0 as min {m’ p} - + oo.
Therefore as m — 4- oo b™m converges in A o4 Since in 2(4) =
= lnin(n,,0,; D™™ converges to a™ — a“™, we have proved that b
converges to a™ —a“" in Ay 44, 80 that [a™ —a“"|4 ,.9<
<21+n(1~0~g) + 2l+u(0——q).

In the sequel we have to consider dual spaces of spaces like
LYR¥, X), where X is a Banach space, o: R¥— Rt is a measurable
weight function and 1<q < co. We shall assume that for 1 < g << oo
(ZYR¥, X))* is isometrically isomorphic to LY (R¥, X*)((1/q) + (1/¢')=1)
and that (Lj(R¥, X))* is isometrically isomorphic to L®(R¥, X*), in
both cases with respect to the duality <f,¢) = f a(s)<f(s), g(8)> ds

RN
These assumptions are fulfilled when X* has the Radon-Nikodym
property, and in particular when X* is reflexive or separable (see [7]
cor. 5 p. 117 and §6 p. 118).

We shall also employ functions defined on the polydisk D¥
(D = {zeC; |2 <1}) (or on (9D)¥) which we obtain from functions
defined on 8% (or on (68)") by means of changes of variables given
by direct products of conformal mappings of S into D. More precisely,
let we S and w,: 8 — D be the map defined by

_ exp (inz) — exp (imw)
Pol@) = exp (imz) — exp (— inw)
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Then u, is a homeomorphism of S onto D\ {1, exp (27i Re w)} such
that p,(w) = 0 and its restriction to § is a biholomorphic diffeo-
morphism of § onto D.

When w = (wy, ..., wy) €Y, we define u,:S¥— D¥ by ()=

= (Uw,(21); .oy Py (2x)). Since p,,(08) = 0D\ {1, exp (Zm Re w,)}, we
obtain that the N-dimensional measure of (9D)¥\,((08)) is zero.

The functions g, (weS¥) act as changes of variables, giving rise
to one-to-one correspondances between functions defined on 8¥ and
functions defined on DY, and between (classes of) functions defined
a.e. on (08)¥ and (classes of) functions defined a.e. on (0D)¥. Moreover
these changes of variables « commute» with the Poisson integrals
(on (0D)¥ and on (28)¥), in the following sense.

Let 1<g< oo, p € L1((0D)¥, X) and ¢ = pou,. Let g be the Poisson
integral of v on D¥ (here the Poisson kernel for DY is the tensor product
of Poisson kernels for D) and f = gog,. Then ¢ € LI((28)¥, X) and f
is the Poisson integral of ¢

(i.e. € i =3 JP(E,n—s)q)(y zs)ds)

The computations are straightforward and we omit them. As a par-
ticular case (with & + in = w and [@(j + 4s)|? instead of ¢(j < 18))
we get

fl’ (Rew, Imw — s) |@(j + is)|¢ds =
jedN
— (2n) »Af”y;(exp (ity), ..., eXP (ity)) |2dt .

[0, 2a1%

Hence, if ¢ € L}((08)¥, X), then gog,' € L*((3D)¥, X), so that the cor-
respondance is onto.

It is well-known ([20] th. 2.1.4) that a necessary and sufficient
condition that g be holomorphic on D¥ is that the Fourier coefficients
¢, \@€Z¥) of y are zero whenever 3je {l,..., N} such that «; < 0.
Thas for a function ¢ € L{((08)¥, X) we are interested in looking for
the vanishing Fourier coefficients of its correspondlng function y on
(0D)¥. In connection with this, remark that if ,u, : 8¥— D¥ are direct
products of conformal mappings such that u(w) = (w) = 0 (where
w € 8¥), then, by well-known properties of the conformal mappings of
the disk, there are 4,,..., AyeC with |[A4] =1 such that v, = A, u,
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(k =1, ..., N); therefore after we have chosen the point w € 8¥ which
we map into 0, the fact that a fixed Fourier coefficient vanishes does
not depend on the product of conformal mappings we employ.

THEOREM 6.2. Let 1<q < oo, ¢' be its conjugate exponent, X be a
Banach space and VjeJ¥. let f]eL" (R¥, X). We put f(j + is) =
=1,(s) Vs€eRY,jed¥, and g = fouy* (where w € 8). Then the following
statements are equivalent:

(a) the Fourier coefficient of g

= (2n)—Nfexp (— i % oc,ct,c) g(exp (ity), ..., exp (ity))dt
k=1

[0,2a1¥

is zero whenever o+ 0 and max o,<0

1<kESN

(b) V‘P € F,(C), ¢ = :T(( i))’ if @(w) = 0 then

fP(Rew,Imw—s Jpi(s)fi(s)ds = 0.
jeJ¥

In particular, if X is the dual space of a Banach space Y,
then (a) and (b) are equivalent to

(¢) Vo = 3(¢,) € F(Y) such that p(w) = 0

fP (Rew, ITmw — $) < £,(s), p;(s) > ds = 0.

jeJy

ProOOF. We show that (b) => (a) and that (a) = (¢). Analogously
it can be shown that (a) = (b). Moreover it itz obvious that (¢) = ().

() = (a). Let x€Z¥, a0, Inkin >0, and let ¢ = F((g;)) € F,(C)
such that Vee DY 2* = pou;*(z). Then g(w) = 0, so that

0=> fP,(Rew, Imw — s)@;(s)f;(s)ds =

ieJy¥

N
= (2n)_Nfexp( 2 ) g(exp (ity), ..., exp (ity))dt = ¢_, .

0,221
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(a) = (¢). Let ¢ = ((p;)) € F(Y) with @(w) = 0 and let y = pou,’.
We also call y the function on (0D)¥ obtained by the change of variable
J, from the function j -+ s > @,(s) on (28)¥. Since

(27 [ (g(exD (it), ..., €xP (itx)), P(exp (it), .., exp (ity))> dt =

(0,273~

ﬁp (Rew, Tmw — s) {f,(s), p;(s)> ds

aeJN
we have to prove that the first integral vanishes. Set

y)m(eXP (ity), ..., €xDp (ity)) =
- 3 (ﬁ(1___|°i)ex (igat»b
- [ sfon<m \k=1 m -+ 1 P = (323 B R

where m e N and b, is the a-th Fourier coefficient of y. By means
of the Fourier coefficients (¢,).czv 0f ¢ we define analogously g¢,,. As v
is holomorphic on D¥ and y(0) = 0, we have that b, = 0 when « = 0
and whenever mkin o < 0. Therefore

Vm,neN (275)—Nf<gm7 Yoy dt =

0,271

— (2m) r ol )( _ ,J,l,zL).
(27) Iall,-n%wl@n AP % IJ ( m + 1 1 n-+1
fexp (z % (o + lk)tk)dt {Cy, b)) =

k=1
{0,273

_ Ay ol ( o] ) _
Ia,l,...,]aylz<min{fm,n}kljl(l m —+ 1) ! < * _a> 0.

We now remark that y,e L*((6D)¥, Y), as it is a finite sum of

functions in L*, and that ge L<((0D)Y, X) < L*((oD)¥, X), so that

m e 9 in L((0D)¥, X) ([22] Ch. XVII th. (1.23)). Therefore Vne N

@m)~ [ {g,y,>dt =0. But ge L((@D)¥, X), y,— y in Ls((dD)¥, Y)
10,21

(122] same theorem) and so (27)~~ [ (g, y)dt = 0.

[0,271V
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REMARK 6.3. Suppose that fe 5,(X) (1 <qg <oo). Then f is
holomorphic if and only if the equivalent properties of th. 6.2 hold
Vwe 8¥. In fact, if f is holomorphic, then condition (a) is fulfilled
as we have already remarked. Conversely, if the condition (b) is
satisfied Vw € 87, then it is easy to check that

Vg e F(€) glw)fw) =3 [Py(Rew, Imw —s)gy(s)f,(s) ds,
J RN

so that ¢f is harmonic in each complex variable 2z, = &, + in,. In
particular if we set ¢(2) = 2, we get

L of | . of
0 = :—2 A(fk,ﬂk) (zkf(z)) — —a—g’; /l/a—/,;l; ,

50 that it is proved that f is holomorphic.

DEFINITION 6.4. Let A = (A4;);ey~ be a compatible family of Banach
spaces, a € IV, 1<q << oo, and let q' be the conjugate exponent to q. We
call S(A)(q; ¢y the closed subspace of F ,.(A) whose elements are the functions
f with boundary values (f;);cq~ fulfilling the conditions (a)-(b) of th. 6.2
(where X = 2(A) and w = a). We endow S(A)(,q) with the nmorm
Il Measary of Fo(A4).

By prop. 3.2 f > f(a) is continuous on $§(4),,;,), s0 that we can
define a Banach space in the following way:

DEFINITION 6.5. A@ )= {f(a); f € S(A)wu:q))-

Voe 4@ || = int {|fllwer; 1€ Sy fla) =a}.

o

From remark 6.3 it follows at once that 5,(4) is a closed subspace
of S(A)@ey, 50 that A,y > 4@ (1< ¢' < 00).
THEOREM 6.6. A1) 4s an intermediate space for the family A,

and actually A(A) L1>A(“‘“')c1—>Z(A). Moreover, if A and B are com-
patible families of Banach spaces, then A7) and B+ ¥) are interpolation
spaces with respect to A and B.

ProorF. From the remark preceding the theorem and from prop. 3.2
and th. 3.5 it follows that A(A) <> Age)—> AGO S X(4). Tt is
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easily checked that whenever T e L(4, B) and fe$(A4)q,,), then
Tf € S(B)(,;¢): hence the theorem follows at once.

As above, when Y is a Banach space such that A(4) is a dense
subspace of Y (we recall that we have made this assumption for
Y = A;, and this is not restrictive by th. 5.2), we denote by Y’ the
vector subspace of A(A4)* which can be identified in the usual way
with the dual space Y* of Y.

THEOREM 6.7. If 1<q<< oo, then (A(,;,) ts a closed subspace of
A" yith the same norm.

Proor. Let ¢' € (A4(,,,) and let ¢* be its continuous extension to
A, - Then fr@*(f(a)) is a continuous linear functional on F,(A4)
and (if F,(4) has the norm || -||;,) it has the same norm as ¢'. By
the Ha,hn Banach theorem we get a continuous linear functional on
5 (4) and by a composition with 4 we get a continuous linear functional
g on []LiRY, A)) such that [q:] = |o'] (it HL“ R¥, A;) has the

jeJN
norm || fll¢s; ), S€C §3) and that

(1) = <P*( > fP,(a, S)fi(s)ds)
ieJNRN

whenever 3((7,)) € F,(A). In connection with ¢, there are p, € L (R, A;)
(j € J¥) such that

o((1) =2 f i, 8) <ys(s), 1,(s)> ds

jeJV

RN

(recall the assumptions that we have made above and the equivalence
between the weights ¢ and P,(a,-)) and |9l )= l¢'] (v = ﬂ‘((zpj))).
As the constant A(4)-valued functions belong to F,(4),

Vze A4d) <1p(a),m>f z P;(a, s) {p;(s), x> ds =
RN

ieJN¥

= ‘P*( 2 jl’,-(a, S)de) = ¢'(2),

80 that y(a) = ¢'. To show that y € G(A"),; ), since Z(4') = A(4)*,
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we can verify that y fulfils the condition (¢) of th. 6.2 with ¥ = A(4).
But if fe F,(4(4)) and f(a) = 0, then

fP (a,5) <pils)sT1(8)> ds = o (f(@) =

7EJ

Thus we have proved that ¢’ € A’ %) and that |¢' [ <9l q) =
- ”(p "(A(a o) It remains tO ShOW tha't V(p € (A(a ﬂ))l’ “(p, ”(A(a o)’ < ”(pl ﬁ(a;a )'
Let g€ S(A4'),;¢) such that g(a) = ¢’ and let fe F4(4). Then

jP,w ) <g,(8), fo(s)) ds =

jeJv

f]l’ (a,8) <gi(8),1,(s) — f(a)> ds + {g(a),f(a)) = {g(a), (a))

JEJ

(by condition (¢) of th. 6.2, with ¥ = A(A) and X = X(4') = A(4)*).
Hence | (@', f(a))] < [19llerarllllas r» 50 that [<¢', 1@)>1< ¢’ [ lfllas o
Vfe Fo(4). Let € A(A), fe F,(A) with f(a) = = and let (f,).en be a
sequence in Fo(4) such that ||f, — fll; ) 5= 0. Then

|<<PI, w>l = iim |<(p,y fn(a»l (beca’use (P, € (A(a:q)),) <

<lim ”(P’ li(“”")lf|fn|||(a-,a>: ”‘P, ll(““")lilflll(a;a), and thus "‘P' ”(A(a:q)) H‘P ||(" ),
n—> 00

REMARK 6.8. Along the lines of the proof of th. 6.7, it can be proved
that the dual space (4(,q) can be obtained as the space of vectors
h(a), where h runs over the space J(A')(,;,) Whose clements are the
functions he §,(A’) such that Vfe F,(A) with f(a) = 0,

ﬁp a,s) hy(s), f,(5)>ds = 0 .

jeJV

We note that the definition of JC(A')y,;, ) differs from the definition
of G(A4'); ) because in the latter only 'functlons feF,(A(A4)) are
employed (see 6.2(c) and the definition 6. 4) However for J¢(A'),;
we do not know any characterization in terms of Fourier coefficients
analogous to condition 6.2(a).
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