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The Curve $$C4=(03BB4, 03BB03BC3, 03BB03BC3, 03BC4)~Pk3, is Nnot Set-Theoretic

Complete Intersection of Two Quartic Surfaces.

P. C. CRAIGHERO - R. GATTAZZO (*)

RIASSUNTO - In questa nota si dimostra che la quartica di Cremona 64 =
= (A4, A3,U, Âp.3, ,u4) c P,3, ove k 6 un campo algebricamente chiuso di carat-
teristica p # 2, 3, non 6 sottoinsieme intersezione completa di due super-
ficaie di ordine quattro.

Introduction.

In a previous paper [1] it has been proved that the Cremona quartic
curve C4 = C pk, where k is an algebraically closed
field of characteristic p # 2, 3, is not set-theoretic complete inter-
section of any pair of surfaces of degrees 3 and 4. This result has been
generalized in [2], where it is proved that the same holds for any
rational non singular quartic curve of P§.

The method used in [2] is not however applicable in order to prove
that 64 is not set-theoretic complete intersection of two quartic sur-
faces, because it is based essentially on the fact that a cubic surface 9
on which e4 were s.t.c.i., should have at least one singular point on
~4, y so that one can use the theory of monoid surfaces.

In order to prove our statement in this paper we have chosen
a different approach: first, stating a result on flexes of plane quartics
( see § 2 ) and exploiting some formulas (see §1) by which one can
step down deeply, but gradually, into the analysis of the contact

(*) Indirizzo degli A.A.: Istituto di Matematica applicata, via Belzoni 7,
35100 Padova. Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.
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of hyperosculating surfaces, we prove that if there exist Y and ~
such that F.G = 4ë4, !i and g must have a double point on each of
the two flexes of è4; then with the help of the above formulas and the
properties of the resultant we can conclude our proof.

§ 1. In what follows the field k will be algebraically closed and
of characteristic p # 2, 3. By surface or curve we shall always mean
an algebraic reduced surface or curve. If V is an algebraic variety
of P,’ , we put V‘~ _ V r1 Ak, where Ak is the affine space canonically
embedded in Pk by the map

With 9 we denote the projective closure in Pg of the affine variety V
of A:. ag(P) will denote the tangent plane to a surface F in its simple
point P.

REMARK 1. Let F and 9 surfaces in n S _ C, where C
is an irreducible curve and let PEe a point which is non singular
for Y and 9. fle, with 03BC &#x3E; 1, F and g have the same tangent
plane in P.

REMARK 2. Let F and g surfaces in A£ and _ C, where
is an irreducible curve which is non singular for 5-’~; then for any P
belonging a suitable open Zariski-subset of C, if oc is an arbitrary plane
through P transversal to C, a has a single reduced and irreducible
component through P, non singular in P, and we have:

(the second multiplicity beeing calculated in the b.y’.R. r’1 

SKETCH OF THE PROOF. If H c k[X, Y, Z] is such that its projec-
tion H in is a uniformizing parameter, we have G = 
from which we get

with g = {G = 01, and {C = 01, {D = 01 surfaces not containing C.
Lifting (&#x26;) in Y, Z], we get, with a suitable A E k[X, Y, Z],
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It is then clear that one can find on a open Zariski-subset of C for

every point P of which we can assume what follows:

1) P is a simple point of C;

2) no other component passes through P (where
H = {H = 0});

As a consequence of 1), 2) P is a simple point for Y and and
moreover both a n Y and a r1 JC have a single irre-

ducible and reduced component through P non singular in P and they
are transversal in P to each other. Indicating with q the image of
the polynomial Q of k[X, Y, Z] in (which can be identified with
a ring of polynomials in two variables) and with 4 the projection of q
into k[a n one gets from (&#x26;’):

where - 0, d, ë are units (by 3) ) and h is a uniformizing parameter
in k[a n by the consequences of 1 ) and 2 ) mentioned above. This
means that the curve a (defined on a by g) has with oc n Y multi-
plicity of intersection fl in P.

PROPOSITION 1. Let [f = ~.Z’ = 01 and 19 == {G = 01 be surfaces
of ~k, ~ a curve non singular for Y and let be pC; for every
point PEe non singular for Y let be rp the multiplicity of 9 in P and
-V(P) the tangent cone in P to 19. Then the following holds in a suitable
open Zariski-subset U of C:

PROOF. Let us take for II the open Zariski-subset of C in which
Remark 2 holds. Let oc be a plane through P transversal to C which
is not one of the (possibly 0 and at most rp) planes components of h(P).

Then Ya = a has a simple point in P and t%« = 9 n a has
an r,-fold point in P. By Remark 2 i(P, Y« n t%«) = p &#x3E; rp; then
the tangent r’1 a in P to Y« must be a component of the «tan-
gent cone » in P to 9,, = r(p) r’1 a. This happens for the generic plane
through P; hence contains infinitely many straight lines of

T’(P), so c 
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COROLLARY 5= (l’= 0) surfaces
o f A~ and ,~ n g == C with e simple curve 

)

the Taylor expansions o f and G at the point P = (x, y, z) (F") and Gip
are f orms in X-x, Y-y, Z-z). Then in a suitable open Zariski-subset

of C the f oltowing implications hold:

where in b) and in c) ,op E k is such that
is the linear form such that 1

PROOF. If 0, Gi’ defines the tangent plane at P to 6 and a)
is an immediate consequence of Remark 1 (applied in the o.Z.-sub. U
of C where ~ 0). As for b), for every point P in the o.Z.-sub. U)
of C in which Prop. 1 holds for ,~ , ~ and C let us put Jep = (Hp =
- G - ~p~’ = 0~ with ~p s.t. G~’ _ (by a)). Since in the

D.V.R. we have G = Hp Remark 2 and Prop. 1 hold for Y, ~p
and C in the same o.Z.-sub. U’. The initial form of Hp is G‘~p’ - 
(by a)) which, if it is not zero, defines the tangent cone r2 in P to JCp,
whence b) applying Prop. 1.

In a similar way c) is deduced applying Prop. 1 to Y and R) =

DEFINITION 1. Given a polynomial ..F E k[X, Y, Z] we define:

In the sequel, if C c A3k is a curve, I(C) will be the ideal of C in k[X, Y, Z].
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PROPOSITION 2. Let us consider in ~k the (F = 01
,and 9 = {G = 01, and let be ,~ ~ ~ _ with C irreducible curve.

Moreover we assume that Fz =I=- 0 and 0 mod. I(C). If ,u ~ 3, we
tjae following equalitites of rational f unctions on C:

I f besides the equalities (1), have also the 

PROOF. Let us consider a point P = (a, y, z) in the o.Z.-sub.
where Cor. 1 holds and furthermore and Gz =F 0. For the

sake of semplicity let us suppose P = 0 = (o, 0, 0). Let be:

with Gi homogeneous polynomials of ~r, Z] of degree i. In the

first case, from Cor. 1, a) and b), we have

The partial derivatives beeing calculated in 0, use find :
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and

Then we have the following:

Since the above equality holds in an o.Z.-sub. of C we can assert that
the rational functions on C:

are equal.
Same proof for the remaining two formulas (1).
As for (2), it can be deduced in a completly similar way applying,

besides a), b), also c) of Cor. 1.

COROLLARY 2. In the hypotheses of Prop. 2, if ~u ~ 3, equalities (1)
become the following equalities mod I ( C) :

In order to deduce ( 11), for example, we have, from the first of (1),
of Prop. 1:

Taking into account that Fx Gz = mod I(C), by the condition
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of tangence of Y and g along C, one gets

whence (1) is deduced, simplifying by (~ 0 mod I(C)).

REMARK 3. In the hypotheses F, ~ 0 mod I(C) one can prove
that (1,), assuming the tangence condition of I and g along C, is

equivalent to the fact that the generic plane Y = y ‘cuts Y and g in
two curves having in P = (x, y, z) e C multiplicity of intersection

~uc~3.
Analogous meaning for ( 12 ) and relatively to the pianes Z = z

If follows that, if with p &#x3E; 3, (11), (la) and

(1,) are generally indipendent.

REMARK 4. In the case 0 mod I(C), or 0 mod I(C)
one can deduce in a completely similar way formulas analogous to 
(i = 1, 2, 3) above. For example, if 0 mod I (~), one gets
the

COROLLARY 3. In the hypoteses of 2, z f 4, the equality 2)
becomes the following equality mod I(C):

SKETCH OF THE PROOF. Multiply 2) by (~ 0 mod ~( ~) ) and
notice that = mod I(C) makes it possible to divide both
members by Af ter suitable subtitution, following equation (13)
in the second members, 7 one can simplify again by dividing by G~ :
then one gets the relation (2).
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REMARK 5. Three more formulas can be obtained in the case

#&#x3E;4 in a similar manner. We omit them for the sake of brevity and
because only the above formula will be used in the sequel.

~ 2. PROPOSITION 3. No point o f ac quartic eurve t2 o f P~ can
be set-theoretic complete intersection with another quartic curve, possibly
reduced, of P~.

REMARK 6. Let be C a curve, F a flex point of C, t the tangent
in F to C. It is easy to show that for every curve ~ s.t. C m D) &#x3E;3
one has i(F, t n Ð»3.

PROOF oF PROP. 3. We can choose an affine open set of identi-

fied with Ak, s.t., if t2 is the affine part of our quartic 3, we have that
the flex F is 0 = (0, 0 ), the tangent to B2 in the flex 0 is {X = 0) and
that ~2 ~ ~~0~ = 30 + The equation of a is then

Let us notice that, if there exists a quartic 42’c A’, such that

i(0, l2 r1 ~’) = 16 then every quartic ( # é1) of the (affine) pencil
generated by l2 and t2’ satisfies the same condition. Let be é1" the

quartic of the pencil which is singular in 0:

In order to find the conditions for d’) &#x3E; 16 shall

proceed as follows. Let us write the equation of Q in the form

we have:
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Having put = ~Q~O ), it must be i(O, ~2 r’1 al»13: by Remark 6
then we 
As d6 = 0, it must be 0, or d’ would have as its com-

ponent, but then absurd because d n d" = ~01. We can
suppose then dll = 1 and the conditions above become:

Iterating this process one finds the following conditions:
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Let us rewrite 12) in the following form

Taking into account 9), it follows

Then from 9) again we get

and from (&#x26;), (&#x26;&#x26;) and 11 ), we get finally

By ( &#x26; ) , ( &#x26;&#x26; ) , (&#x26;&#x26;&#x26;) we can write the equation of él in the following
form :

It follows that S is reducible in a cubic d and a straight line i not
passing through 0. Every projective quartic d’(0 3) must intersect i,
and also Ca, in a point different from 0: absurd. This completes the
proof.

REMARK 7. In particular cases a flex on a plane quartic S c P§
can be s.t.c.i. of ä with a cubic ~. For example let d be a cubic, P a
flex of d, t the tangent to C at P and i an arbitrary straight line not
passing through P. Then every quartic ~2 of the form Ae i + t4,
1 E ~;, has a flex in P which obviously is s.t.c.i. of d and t2. One can
also easily verify that the quartics of this kind are the only quartics
having a flex s.t.c.i. with a cubic.
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§ 3. Let us consider the affine open set Ak in which the Cremona
quartic curve e4 has the parametric representation (t, t3, t4). In A2 k
the generic quartic surface Y _ ~F = 01 containing C4 is

where

We shall denote the coefficients of the equation of another quartic
surface 9 = IG = 0} containing 64 with b’s in place of a’s.

Let us notice that, since e4 has infinitely many trisecants that
constitute an array of the only quadric con-

taining ~4’ y no irreducible quartic surface containing ë4 can have it
as double curve.

Our goal is to prove the following

PROPOSITION 4. There does not exist any pair of quartic surfaces
~ and 9 such that

The result is reached in three steps, A), B), C) :

A) if ~ and 9 satis f y (*) and are non singular in the two flexes
of C4, 0 and Z~, they must be there tangent to the hyperoscurating plancs
of ~4’ IZ = 0} and the plane at in f inity ;

B) if ,~ and 0 satisfy (*) they must have double points in the
flexes of C4, 0 and Z.;

C) if 9 and 9 contain C4 and have double points in 0 and Z~,
the molteplicity of intersection o f ~ and 9 along C4 cannot be 4.
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PROOF of A). Given the symmetric roles of 9 and 9 in (*), it is
enough to prove the statement for 9. One can easily see that if ~ 0,

n (Xo = 0} is a plane quartic with a flex in C4 ()
r1 {Xo = 01. (*) implies that f ë4, hence 9,,. r’1 19.,, = 
this contradicts Prop. 3y § 2)y applied to and its flex It follows

a18 = 0, which means that, if .~ is non singular in it is there tangent
to the plane at infinity.

Since 0, is a fixed curve in the linear isomorphism of P~ :

which interchanges the two flexes of 64 0 and one has:

Let be t(F)a = {F’ ==0} and denote with a’i the coefficients of F’:
one has = al ; beeing, by the above argument, = 0, we have
acl = 0 too; this completes the proof of A).

The condition (*) implies, by Remark 1, that Y and g have the
same tangent plane in their simple points along ~4, so it must be:

For every point P = (t, t3, t4) E C4 we have the equalities in the poly-
nomial ring k[t] :

By this the condition of tangence of F and g along C4 is, more simply:

REMARK 8. We notice that (*) implies the existence of a pencil 0
of quartic surfaces any pair of which satifies (*) again. In this pencil
surely we find a quartic singular in and so we can suppose that in (*)
19 is such a surface, that is bl, = 0.

(o) gives the following system of bilinear equations in the ai’s
and ba’s (beeing actually a18 = acl = bl8 = b15 = bl = 0) :
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PROOF of B ) . We want to prove first that (*) implies that also fi
is singular in i.e. that alb = 0. Let us suppose then that al5 =1= 0
and remember that the characteristic is ~ 2, 3. From a ) of list 1)
we have 1 b18 = 0 , which means Y 00 E~. As G4 it follows 5’,
that is a15 + al8 0 0. From b) of list 1) it follows b13 = 0 . Now
let us notice that the common tangent plane to Y and 9 in the generic
point P = (t, t4) of C4 cannot pass through 0. Indeed this situation
would imply the following identity Í1l k[t] :

on the other hand we already have (see above):

by subtracting the previous equations, and simplifying by t2, we get:

the vanishing of the coefficient of degree 9 in t yields == 0: con-

tradiction.
This situation has the following consequence. Let T be the linear

isomorphism considered above (see proof of A ) ) and let 5"= 
0’ = T transforms the tangent plane 11,(P) to fi and in P in
the tangent plane to fi’ and 15’ in 7:(P); as r(0) and

= 0, the tangent plane n(T(P)) cannot pass (for generic P)
through Z,,,,, because this would imply for 11,(P) to pass through 0 for
generic P, so we can say that, if Y’ = ~F’ - 01, .F’~ ~ 0 mod I(e4);
but then also 0 mod I(e4), because, for generic 5~" and 9’
have common tangent plane in x(P). So we can apply to Y’ and 9’
formula (13), 91. As g is singular in is tangent to the plane
{Xo = 01 in we have that 9’ is singular in 0 and T’ is tangent
to = 0) )a = {Z = 0} in 0, so we have Gg(0) = G§( 0) = G§(0 ) =
= ..Fg(0 ) = F)(0) = 0. Moreover the coefficient of Y2 in G’ is bl’l
and from (13) we get immediately 2a215b17 = 0 from which we have

= 0 . Now c) of list 1) gives From d) we get then
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Calculating both members of formulas (1,), i = 1, 2, 3, 4 (see Cor. 2)
in the generic point (t, t3, t4) of C4 yields identities of polynomials
in k[t]. For the sake of brevity we shall denote by the difference

of the coefficients of tn in the two members of formulas ( 1 a) . Similarly
H2(n) will mean the coefficient of tn in the first member of formula (2)
(see Cor. 3). Of course for every i and n we have = 0 and

= 0.

At this point we distinguish two subcases according as 0

or = 0 mod I(~4).

First cacse : We can use formulas = 1, 2, 3, and (2), Cor. 2,
§1. We find

Subtracting B1), multiplied by a15 (o 0), from we get

From e ) of list 1) we get

Now we have:

Comparing (B,) and (B4) gives

Actually 9 is a monoid with a triple point in Using as above the
linear isomorphism z, we apply formula (2) to ~ == _ -= 0}
and 9’ - 7:(g)" _ ~G’ = 01 calculated in 0 = (o, 0, 0). As before

G)(0 ) = G§(0) = F)(0 ) = 0; moreover G§z(0 ) = b12 = 0 (as we have
just found). Formula (2)/ §1, calculated in 0, gives then
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so we have

From f ) of list 1) we obtain:

From g) of list 1) we get:

on the other hand we have also:

and

It is easy to see that (B7), (Bs), (B,), thought of as a linear system in
(bs, b9), has only the trivial solution. So it must = b. = 0 .
From h) of list 1) we get ; whereas from i) of the same list
it follows:

Now we have also:
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and

As before, from (B,,), (Bl2), y we conclude = 0 .
Hence G is the null polynomial: absurd. 

I

Second Now we must have Fz = Gz = 0 mod I(C4) or, if

it wcre e.g. Gz # 0 mod I(C,), it would be Fy = 0 mod I(~4) and
from the identity

it follows Fx = 0 mod I(~4) too, so Y would be singular along C4.
From the same identity and from the analogous one relative to G,
Fz = Gz = 0 implies that 0 mod I(C4) or 5;- or 6 would be
singular along ~4 . Taking into account .FZ = Gz = 0 mod I(C) ,
we have:

Considering f ormula (14), now applicable, we have by the above
equalities:

with these results, we have furthermore

again G would be the null polynomial: absurd.
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So we can say that (*) implies a15 = 0, that is for f to have a
singular point in Given this, the conclusion of the proof of (b),
that is the fact that F and 0 have double points in 0 and Zoo, is ob-
tained from the following

REMARK 9. R1: From what has been proved up to this point we
can say that:

implies that every quartic of the pencil 0 generated by fi abd 9 has
a singular point in 

JXg: By 1~1 we can suppose 9 to be the uniquely determined quartic
of 0 which passes through C4).

Ra: 9 cannot be a cone with vertex Z~, or else the cone
would be its component.

R4: Every quartic surface which passes through ~4 and with a
triple point in Z~, contains the line Y 00 Zoo. Hence from (*) it follows
that at most one of the surfaces © and g can have a triple point in
Z~ and, should this happen, y it must be 0, which already contains

(see R2). ,

.Rg : From Rõ it follows that the canonical projection of 
in the local ring is a uniformizing parameter.

R7: Let be Resz{F, G) E k[X, Y] the resultant, relative to Z, of
the polynomials .F, G : one sees directly that deg ( ResZ(.F’, G) ) 12
if F and g both have a singular point on Zoo, whereas it is of degree
 12 if 0 has a triple point in Zoo(see 

From R’1 and cannot have a triple point in Zoo.

Rio: From == 1, ... , 7 , we have that (*) implies for both
and g to have a double point in 

’

In order to conclude that (*) implies for botll fF and f to have
a double point also in 0 we use again in an obvious way the linear
isomorphism z that has been considered in the previous proof of A)
and also here above during the proof of B).
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REMARK 10. In the sequel we can suppose T and 9 to be as in
Remark 9, R2. After what has been proved up to this moment [A)
and B)] we have the following situation for the coefficients of .F and G :

(a1~ ~ 0 because and

(b13 = b11 = 0 beeing consequence of b) and c) of list 1) and bI6 = 0
because 0) -

REMARK 11. The tangent cones to 5 and g in cannot have a
common component jl: indeed 0 ~ 36 == :ië r) ,~k ~ if 

= (H = 0) we have deg H  3 and G), hence it follows

G) which is absurd, beeing deg (Resz(F, G)) .~1~
(see above Remark 9, ~7).

PROOF OF C). We distinguish two subcases according as it is

bs~ ~ 0 or b17 = 0.

First bl7 -=I=- 0.

Y can be taken as the quartic of the pencil cpa (see Remark 9, R1
and R2) for which al7 _ 0. Let us take bl7 = 1. In this situation

splits into the line t == {X = and in a cubic C3 with a flex in Z~
and with tangent in it the line t. Moreover in the plane at infinity
we have From (*) and e4 n ~.Xo = 0} = Z~ it follows : -,

Let us consider the pencil of plane quartics :F 00 + Ât4: since also
~~ ~ C3 = 12Zoo, every quartic a of cp satisfies to

Let be Po E ~3, Z~, and let be to = :1’00- the quartic of T
passing through Po . By this and (’ ), C, must be component of tlo,
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whence if follows:

where r is a line through because is singular in Z~. In the affine
open subset (Z ~ 0) of the plane at infinity (where X, Y, Z are projec-
tive coordinates) we have:

In (") then we have r == (Y = o} and Âo = - a3, whence the following
equalities:

Taking into account the (Ca) here above and c) f), g), h) of list 1) we
find first:

Now mod I(C4), so we can use formulas (13) and
(2) with the notations and H2 ( n ) introduced in the proof of .b ) .
Taking into account equalities (&#x26;) listed above, we find : 

’

It can be seen that a7 - a12a13 = 0 would imply for the tangent cones

and g in Zoo to have the common component
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against what has been stated in Remark 1l . So it must be b14 = - al3.
and the (&#x26;) become:

From z ) of list 1) we get:

and by comparing ( C7) with { C4) we get:

Given this, we find: Hlt3(14) = 2(aSa13 -- a7 all), whence

Hence becomes:

Now from 1) and an) of list 1 ), in view of ( C9) and ( Cio) , we obtain

Given this, we find

and
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From these two last equations it follows

Summing both members of and ( C14) and taking into account ( C13),
we obtain:

Now we turn to formula (2) of Cor. 3: we find

whence

Summing both members of multiplied by - 2, and
get in view of ( C9 ) , ( C13 ) :

Comparing with ( Cl?), we find (a3 = 0) and

again by Remark 11 this is inconsistent with (*) because the affine
tangent cones to © and g in Zoo would have the common component

This concludes the proof of (C) in the case bl7 =I=- 0.

Second cacse : = 0.

We assume again al6 = 1. From b), c), d), e) and f) of list 1) we
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have

Given these equalities, we find moreover

Hence

Now from b8 = - 2b7 + and

From g) of list 1 ) we find on one hand

on the other hand we get, in view of ( C18~ and ( C~9~

From the last equalities one deprives

Now, from h) and i) of list 1), we find
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Finally, taking into acconut all the previous results, we find

beeing b1~ ~ 0, or else G would be the null polynomial, from the last
equality it follows

Now the tangent cones to fi and g in have the affine equations:

and again applying Remark 11, we reach the conclusion of the proof
of ( C).
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