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The Curve &, =(A* A%u, Au®, u*)c P, is Nnot Set-Theoretic
Complete Intersection of Two Quartic Surfaces.

P. C. CRAIGHERO - R. GATTAZZO (*)

Ri1assuNTO - In questa nota si dimostra che la quartica di Cremona (‘i:
= (A%, A3y, Au3, u*) c P}, ove k & un campo algebricamente chiuso di carat-
teristica p # 2, 3, non & sottoinsieme intersezione completa di due super-
ficie di ordine quattro.

Introduction.

In a previous paper [1]it has been proved that the Cremona quartic
curve G, = (A%, A3u, Au®, u*) c P}, where k is an algebraically closed
field of characteristic p = 2,3, is not set-theoretic complete inter-
section of any pair of surfaces of degrees 3 and 4. This result has been
generalized in [2], where it is proved that the same holds for any
rational non singular quartic curve of P.

The method used in [2] is not however applicable in order to prove
that G, is not set-theoretic complete intersection of two quartic sur-
faces, because it is based essentially on the fact that a cubic surface §
on which G, were s.t.c.i., should have at least one singular point on
G,, so that one can use the theory of monoid surfaces.

In order to prove our statement in this paper we have chosen
a different approach: first, stating a result on flexes of plane quartics
(see §2) and exploiting some formulas (see §1) by which one can
step down deeply, but gradually, into the analysis of the contact

(*) Indirizzo degli A.A.: Istituto di Matematica applicata, via Belzoni 7,
35100 Padova. Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.



178 P. C. Craighero - R. Gattazzo

of hyperosculating surfaces, we prove that if there exist § and S
such that -G = 4CG,, § and § must have a double point on each of
the two flexes of C,; then with the help of the above formulas and the
properties of the resultant we can conclude our proof.

§ 1. In what follows the field k will be algebraically closed and
of characteristic p s« 2, 3. By surface or curve we shall always mean
an algebraic reduced surface or curve. If V is an algebraic variety
of P}, we put Ve = V N A}, where A} is the affine space canonically
embedded in P} by the map

(yy,2) = (1,2,9,2) .

With ¥ we denote the projective closure in P? of the affine variety V
of A2, m4(P) will denote the tangent plane to a surface ¥ in its simple
point P.

REMARK 1. Let 5 and § surfaces in A and § NG = C, where C
is an irreducible curve and let P e C a point which is non singular
for 5 and §. If 5-8 = uC, with u > 1, § and § have the same tangent
plane in P.

REMARK 2. Let & and G surfaces in A and §N @ = C, where C
is an irreducible curve which is non singular for &; then for any P
belonging a suitable open Zariski-subset of C, if « is an arbitrary plane
through P transversal to C, « N § has a single reduced and irreducible
component through P, non singular in P, and we have:

(G, F NG =i(P, (xaN F)N (xNG)).

(the second multiplicity beeing calculated in the D.V.R. k[a N Fp).

SKETCH OF THE PROOF. If H e k[X, Y, Z] is such that its projec-
tion H in k[F ], is a uniformizing parameter, we have G = H*(C|D),
from which we get

(&) DG = H*C

with § = {¢ = 0}, and {C = 0}, {D = 0} surfaces not containing C.
Lifting (&) in k[X, Y, Z], we get, with a suitable 4 € k[X, Y, Z],

(&') DG = H*C + AF
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It is then clear that one can find on a open Zariski-subset of C for
every point P of which we can assume what follows:

1) P is a simple point of C;

2) no other component of F N J passes through P (where
X = {H = 0});

3) D(P)%# 0 and C(P)= 0.

As a consequence of 1), 2) P is a simple point for & and ¥ and
g (P) 7 nze(P), moreover both o« N F and « N X have a single irre-
ducible and reduced component through P non singular in P and they
are transversal in P to each other. Indicating with ¢ the image of
the polynomial @ of k[X, Y, Z) in k[«] (which can be identified with
a ring of polynomials in two variables) and with g the projection of ¢
into k[ N F)p one gets from (&'):

g = hrc + af

where =0, d, ¢ are units (by 3)) and % is a uniformizing parameter
in kfa N F) by the consequences of 1) and 2) mentioned above. This
means that the curve a N G (defined on « by ¢) has with « N F multi-
plicity of intersection yx in P.

PROPOSITION 1. Let F = {F =0} and § = {G = 0} be surfaces
of A:, C a curve non singular for F and let be F-G = uC; for every
point P € C non singular for F let be rp the multiplicity of G in P and
I'(P) the tangent cone in P to S. Then the following holds in a suitable
open Zariski-subset U of C:

u>rp =>ng(P)CT'(P).

ProOF. Let us take for U the open Zariski-subset of C in which
Remark 2 holds. Let o« be a plane through P transversal to C which
is not one of the (possibly 0 and at most r5) planes components of I'(P).

Then F, = F N« has a simple point in P and G» = G N « has
an rp-fold point in P. By Remark 2 i(P, Fx N Ga) = p > rp; then
the tangent wgx(P) N a in P to F» must be a component of the « tan-
gent cone » in P to S, = I'(P) N «. This happens for the generic plane
through P; hence mg(P) contains infinitely many straight lines of
I'(P), so mgs(P)cI'(P).
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COROLLARY 1. Let be F={F=0} and S = {G =0} swurfaces
of A2 and F NG = C with C simple curve for 5.

F=FP4FOLFO 4 ..., G=6"46P+ G + ...

)
the Taylor expansions of F and @ at the point P = (x,y, 2) (F" and G
are forms in X-x, Y-y, Z-z). Then in a suitable open Zariski-subset
of C the following implications hold:
a) {F-S=pC, p>2} = FP|GY;

b) {F-8 = uC,u>3} = F (G — 0o FY");

0) (TS = €, p>4} = FP|(@P — 0, FP — BOFY)
where in b) and in ¢) op € k is such that GP = pp F\7 (by a)) and in ¢) O’
is the linear form such that G9° — pF‘” q}‘”F"” (by b)).

Proor. If G 0, G defines the tangent plane at P to § and a)
is an immediate consequence of Remark 1 (applied in the 0.Z.-sub. U
of C where F? £ 0). As for b), for every point P in the 0.Z.-sub. U'(> U)
of C in which Prop. 1 holds for &, § and C let us put ¥, = {H, =
= G —pF =0} with g, s.t. G‘P’— 0 FY (by a)). Since in the
D.V.R. k[F]e we have G = H, Remark 2 and Prop. 1 hold for ¥, ¥,
and C in the same 0.Z.-sub. U’. The initial form of H, is G — g, FY
(by @)) which, if it is not zero, defines the tangent cone I in P to Xp,
whence b) applying Prop. 1.

In a similar way ¢) is deduced applying Prop. 1 to § and J, =
= {G — 0, F — OV F = 0} where g, is s.t. G = g,F (by a)) and
PP is 8.b. G — 0o FP = OO FD (by b)).

DEFINITION 1. Given a polynomial F e k[X,Y,Z] we define:
Dyx(F) = Fxx F; —2F 2, FxF; + Fys Fy
Dzy(F) = Fay F,—Fy; Fy Fy — Fy, Fx Fy + Fys Fx Fy
Dyy(F) = Fyy F; —2Fy; FyFy + Fz,Fy

-DYYY(F) = FYYYF; "-3FYYZFYF2 + 3FYZZF2F§ -
—9Fy, Fyy FiF, + 6F2,Fy F2: + 3Fyy Fppy Fy F2—
—83Fyy Fy, F2 + 3F2, F: — F,,, FEiF,

In the sequel, if C c Alis a curve, I(C) willbe the ideal of Cin k[ X, ¥, Z].
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PROPOSITION 2. Let us consider in A} the surfaces F = {F = 0}
and G = {G =0}, and let be F-S = uC, with C irreducible curve.
Moreover we assume that F, =0 and G, 50 mod. 1(C). If u>3, we
have the following equalitites of rational functions on C:

(1) DXX(F)/F; - DXX(G)/Ggy DXY(F)/Fg - DXY(G)/sz
Dyy(F)|F3 = Dyy(G)|G} .

If pu=4, besides the above equalities (1), we have also the following:
(2) DYYY(F)/Fg = DYYY(G)/G; .

Proor. Let us consider a point P = (x,¥,#2) in the o0.Z.-sub.
where Cor. 1 holds and furthermore F,s£0 and G, 0. For the
sake of semplicity let us suppose P = 0 = (0,0,0). Let be:

F=aX +-bY 1 cZ + dX? L eY? 1 fZ2 L gXY - hXZ 1
+1YZ + AX® - BY* + CZ* -+ DX*Y - EX®Z +
L FXY* | GXZ:+ HXYZ + MY*Z + NYZ* 1 ...

G=0aG,+ G, + G + ...

with G, homogeneous polynomials of k[X, Y, Z] of degree ¢. In the
first case, from Cor. 1, a) and b), we have
G, =o(@X + bY + ¢Z) (oc+#0, by G, 0 mod. I(C)),
G, = o(dX? + eXY? + fZ2 4 gXY + hXZ + 1Y Z)+
+ (@ X +bY 4 ¢'Z)(aX + bY + ¢Z) = (pd 4 a'a) X2 4
(0o 4 WD) Y+ (of + ¢€)Z* + (g 4+ a'b + b'a) XY +
4+ (oh +c'a+ a'e)XZ + (ol + b'e +¢'b)YZ .

The partial derivatives beeing calculated in O, we find:

sza, FY:b, Fz:c, Fxx:fzd, _I"YY::Z(',

Iy, = 2f, Iyy =9, Fyz=h, Iy, =1,



182 P. C. Craighero - R. Gattazzo

and

Gy =o0a, Gy=79b, G,=9¢, Gxx=2(pd-+ a'a),..

=

Then we have the following:

Drx(@)|6 = 2(0d 4 a’a)(ge)*—2(oh + ¢'a + a’c)-
“(ea)(00) + 2(of + ¢'¢)(0a)?/(0c)® =
= (2dc¢? — 2hac + 2fa?)[c® = Dxy(F)|F3 .
Since the above equality holds in an o.Z.-sub. of C we can assert that
the rational functions on C:
—DXX(G)/G; = Dxx(F)/Fg

are equal.

Same proof for the remaining two formulas (1).

As for (2), it can be deduced in a completly similar way applying,
besides a), b), also ¢) of Cor. 1.

COROLLARY 2. In the hypotheses of Prop. 2, if u>3, equalities (1)
become the following equalities mod I(C):
(1) FyxF,G;—2F3, P3Gy 4 Fyp By Gy =
- GXXI"; - QGXZFX Fz + Gzzpi
(12) nyFz Gz - szFYGz - FYZFXGZ + FZZFXGY =
== GXY-F§ —‘GXZFYFZ"‘ GyzFsz + GzzFxFy
(13) FYYFZGZ - 2FY2FY Gz + FZZFYGY =
= GYYFZ - 2GYZFYFZ + GzzF;z’ .
In order to deduce (1,), for example, we have, from the first of (1),
of Prop. 1:
FxxF;G;—‘)szpszgg + FzzF;G; ==
- GXXG:F2 - QGXZ GXGZ—Fg + GZZ G;‘Iﬂ; .

Taking into account that FyG; = Fz Gy mod I(C), by the condition
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of tangence of 5 and § along C, one gets

(Fz Gi)(Fxsz Gz - QFXZFX GZ + Fzz Fx Gx) =
= (Fz G;)(GXXFg - 2zeFsz + GZZF;)

whence (1) is deduced, simplifying by F,G; (0 mod I(C)).

REMARK 3. In the hypotheses I’y =0 mod I(C) one can prove
that (1,), assuming the tangence condition of  and § along C, is
equivalent to the fact that the generic plane Y=y :cuts F and G in
two curves having in P = (z, 9, 2) € C multiplicity of intersection
n=3.

Analogous meaning for (1,) and (1;) relatively to the pianes Z = 2
and X = z. If follows that, if -G = uC, with p>3, (1,), (1,) and
(1,) are generally indipendent.

REMARK 4. In the case FyGy+# 0 mod I(C), or FyGy 7= 0 mod I(C)
one can deduce in a completely similar way formulas analogous to (1)
(¢ =1,2,3) above. For example, if F;Gy 0 mod I(C), one gets
the

(14) FXXFYGY_Q—FXI’FXGY + FYYFXGX - ,
== GXXF§ - 2GXYFXFY + ny.l(,; .

COROLLARY 3. In the hypoteses of Prop. 2, if p>4, the equality 2)
becomes the following equality mod I(C):

(2) (FYYYF:—3FYYZFYFZ + 3F1’ZZF]27 + 6I’§ZFY'—
_"3FYYI(‘YZFZ) GZ - (3FYZFZZFY + FZZZFi) GY +
+ (_3FYYFYFZ + GFYZF;)GZZ + (3FYYF:'—
—6Fy, Fy ¥, —3F,, Fi) Gy; + 3F,;, Fy ¥y Gyy +
-+ F;:Gzzz ’SF:FZGYZZ -+ 3FYF12'GYYZ ’“F:GYYY =0.
SKETCH OF THE PROOF. Multiply 2) by F;G; (=0 mod I(C)) and
notice that F,G@y = F, G, mod I(C) makes it possible to divide both
members by F;G3. After suitable subtitution, following equation (1)

in the second member, one can simplify again by dividing by G;:
then one gets the relation (2).
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REMARK 5. Three more formulas can be obtained in the case
p>4in a similar manner. We omit them for the sake of brevity and
because only the above formula will be used in the sequel.

§ 2. ProrosITION 3. No flex point of a quartic curve @ of P2 can
be set-theoretic complete intersection with another quartic curve, possibly
reduced, of P2.

REMARK 6. Let be C a curve, I' a flex point of C, ¢ the tangent
in F to C. Itis easy to show that for every curve D s.t. i(F, CN D)>3
one has ¢(F,t N D)>3.

PRrOOF OF PROP. 3. We can choose an affine open set of P, identi-
fied with A2, s.t., if @ is the affine part of our quartic @, we have that
the flex ¥ is O = (0, 0), the tangent to Q in the flex 0 is {X = 0} and
that @-{X =0} =30 4 Y,. The equation of @ is then
X+eX2te, XY +e, X346, X2Y e, XY2—

— Y3 b g X4+, X3Y 4 g X2Y2 ¢, XY3=0.
Let us notice that, if there exists a quartic @Q'c A}, such that
(0, QN Q') =16 then every quartic (= Q) of the (affine) pencil
generated by Q and Q' satisfies the same condition. Let be Q" the
quartic of the pencil which is singular in O:
Q=dX*+ d, XY +d; X3+ d, X*Y + d; XY2+ dg Y3 +
+d, Xt dg X3Y + A, X2 Y2 4 do XY? 4+ d) Yt=0.
In order to find the conditions for which (0, @ N Q") >16 we shall
proceed as follows. Let us write the equation of @ in the form
Ys=XM, with M=14+e¢,X+¢,Y +e;X24¢, XY ¢, Y24
J g X2+ e, X2Y 4+ g XY2 -+ ¢, Y3
we have:
Yi=XM

ANQ'= | ¢, X2+ d, XY + d X3+ 4, X2Y + d X Y2+ d, X* +
4 @ X3Y + dg X2 Y2+ dyq X Y3} (dg+ dyy Y) XM =0
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Ys=XM Ys=XM
eNQ = +

X - 0 Ql - 0
where
Q=X 4 dy Y 4 X2+ A, XY + d, Y2+ d, X+ d X2 Y

+ Ao XY2 4 dyy Y2 4 (dg +dpy Y) M = 0.

Having put @, = {@,= 0), it must be (0, N @,)>13: by Remark 6
then we have dg = d, + dg¢, + dyy = d5 + dgCs + dyy¢, = 0.
As dy = 0, it must be dy, 7 0, or Q" would have {X =0} as its com-

ponent, but then Y,e@: absurd because @ N Q" = {0}. We can
suppose then d,; = 1 and the conditions above become:

1) de=0;
2) d,+1=0;
3) ds+¢,=0.

Iterating this process one finds the following conditions:

4) dy + dyo + ¢5 = 0y
5) dy+ ¢+ g + (dyo + €5)c, = 0
6) ds + €4+ (dio + €5) €5 + €20 = 0;
7)  dy+ cs + (dio + €5)(01 + ) + C509 = 0;
8) ds+ ¢34 (dio + €5)(€s + €565) -+ €104 4 3¢5 + €y05¢4 - €2 = 0
9) €+ (dio + €5)(Cs + C5¢5) + €40y + 0504 + iy + 40 = 0
10)  dy + (dio + €5)(C3 + €64 -+ €5) + €165+ 20404 - €465 €4 - 20562 = 0
11)  (duo + 5)(€z + €469 + €, €3) + € + €36y + €45 + eyc5eq +
+ €165 + 26,650y + 2050562 + 63 = 0;
12)  (dio + €5)(0s0s + €563) + €z¢4 + € + cuey +
+ 3eges ¢y + 205¢5 + €368 = 0;
13)  (dso + C€5)(Cs + €€y + €16; + €5) + €305 + 50509 +
+ 26,6565 + 20,6565 + 3ege: -+ 3e;¢f = 0.
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Let us rewrite 12) in the following form

Cgle; + (dyo + €5)(Cs + €5¢9) 4 €49 + €565
+ e3¢y + €361 + (€5 + €509)2 =0 .

Taking into account 9), it follows

(&) Cg + €50 =0 .
Then from 9) again we get

(&&) 0yt 0y €02 =0
and from (&), (&&) and 11), we get finally
(&&&) Cs + €369 + €105 + €3 =0.

By (&), (&&), (&&&) we can write the equation of @ in the following
form:

X+ X246, XY 4 ¢, X34+ ¢, X2Y + ¢, XY2— Y3 —
—(65¢y + €105 + €3) X4 — (cqy + Cye2) X3 Y —
—CsC X2Y2 ¢, XY3 = (1—¢yX)-
fes XY2 4 (cy6y + €)) X2 Y + (3 + €10y + €3) X3 —
— Y34 (e, +¢) X2+, XY + X]=0.

It follows that @ is reducible in a cubic ¢ and a straight line # not
passing through 0. Every projective quartic @'(s= @) must intersect 7,
and also @, in a point different from O: absurd. This completes the
proof.

REMARK 7. In particular cases a flex on a plane quartic & c P?
can be s.t.c.i. of @ with a cubic €. For example let € be a cubic, P a
flex of G, f the tangent to C at P and # an arbitrary straight line not
passing through P. Then every quartic @ of the form AC 7 - 4,
A€k, has a flex in P which obviously is s.t.c.i. of € and @. One can
also easily verify that the quartics of this kind are the only quartics
having a flex s.t.c.i. with a cubiec.
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§3. Let us consider the affine open set Al in which the Cremona
quartic curve G, has the parametric representation (t,%,¢%). In A2
the generic quartic surface F = {F = 0} containing C, is

F={F =A,2%+4 A, Z* 4+ A, Z + A, = 0}

where

Ay=a,Y + a; XY + ag Y2—a,X2Y + a;p XY2—aqa, X3
4y Y3 — (@ + ag) X2Y2— (ag + a) X3Y —
— (@11 F 1) XY3— (@, + a3) X — (@15 + a46) Y*

Ay=a,+a, X +a;Y +ag XY + ag X2+ 0, Y2 —a,, XYV2—
—(@ys + 1) X2 Y — (@5 + @1) X3+ a3 Y3

Ay =; + a1, X + 01, Y + a4 XY + ay, X2

A; = 15— ay5 X .

We shall denote the coefficients of the equation of another quartie
surface § = {& = 0} containing C, with b’s in place of a’s.

Let us notice that, since G, has infinitely many trisecants that
constitute an array of the only quadric {X,,X;;—XIX2 = 0} con-
taining G,, no irreducible quartic surface containing G, can have it
as double curve.

Our goal is to prove the following

PROPOSITION 4. There does mot exist any pair of quartic surfaces
5 and G such that

(* 56 =4C,

The result is reached in three steps, A), B), C):

A) if & and G satisfy (*) and are non singular in the two flexes
of é‘, O and Zy, they must be there tangent to the hyperoscurating plancs
of €., {Z = 0} and the plane at infinity;

B) if & and § satisfy (*) they must have double points in the
flexes of G4, O and Zy;

C) if ¥ and G contain G, and have doudble points in O and Z,
the molteplicity of intersection of 5 and G along G, cannot be 4.
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Proor of A). Given the symmetric roles of & and § in (¥), it is
Lnough to prove the statement for &. One can easily see that if a,, = 0,
Fo=F N{X,=0} is a plane quartic with a flex in Z,= G, N
N {X, —O} (*) implies that FNG=0C, hence FoN Sp=Ze:
this contradicts Prop. 3, § 2 apphed t0 F and its flex Z,. It follows
a3 = 0, which means that if ¥ is non singular in Z, it is there tangent
to the plane at infinity.

Since G, is a fixed curve in the linear isomorphism of P

7: (X, Xy, X, X)) = (X, X, Xy, X,)

which interchanges the two flexes of G, O and Z, one has:

~

58 =46, = v(F)-7(6) = 4C, .

Let be 7(§)* = {F' = 0} and denote with a; the coeﬁlclents of F':
one has a,, = a,; beeing, by the above argument a,s = 0, we have
a; = 0 too; this completes the proof of A).

The condition (*) implies, by Remark 1, that § and G have the
same tangent plane in their simple points along C,, so it must be:

FX FY FZ
rank =1 mod I(C)).
Gx Gy G,

For every point P = (i, t3,1*) € C, we have the equalities in the poly-
nomial ring k[?]:

Fx(P) + 31 Fy(P) + 48 Fyg(P) =0 ,

Gx(P) + 312Gy (P) + 413 G4(P) =0 .

By this the condition of tangence of & and G along C, is, more simply:
(0) F,(P)Gy(P)— Fy(P)G4(P)=0, (PeC,).

REMARK 8. We notice that (*) implies the existence of a pencil @
of quartic surfaces any pair of which satifies (*) again. In this pencil
surely we find a quartic singular in Z, and so we can suppose that in (*)
G is such a surface, that is b;; = 0.

(0) gives the following system of bilinear equations in the a,’s
and b.’s (beeing actually a3 = @, = byg = b;; = b, = 0):
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0= asug _ Nsaa
0 =% + "0%q + (°p + *p)%q —

0 = (*» —*»)*q — *v%q + *0°q + (*» + *p)%q —
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ProoF of B). We want to prove first that (*) implies that also &
is singular in Z, 4.e. that a,; = 0. Let us suppose then that a,;7~ 0
and remember that the characteristic of & is 5= 2,3. From a) of list 1)

we have [by, = 0], Which means Yoe §. As Yoo G, it follows Y ¢ F,

that is a5 + a;47# 0. From b) of list 1) it follows . Now
let us notice that the common tangent plane to § and § in the generie
point P = (1, t3,14) of C, cannot pass through O. Indeed this situation
would imply the following identity in k[t]:

Fx(P) + 12 Fy(P) + t°F4(P) = 0;
on the other hand we already have (see above):
Fy(P) + 312 Fy(P) + 482 Fy(P) =0,
by subtracting the previous equations, and simplifying by 2, we get:
2Fy(P) + 3tF,(P) = 0

the vanishing of the coefficient of degree 9 in t yields a,; = 0: con-
tradiction.

This situation has the following consequence. Let 7 be the linear
isomorphism considered above (see proof of A)) and let F'= (%),
G’ = ¢(§); v transforms the tangent plane n(P) to & and § in P in
the tangent plane z(z(P)) to 5" and §' in 7(P); as 7(0) = Z, and
7(Zx) = 0, the tangent plane n(7(P)) cannot pass (for generic P)
through Z,, because this would imply for m(P) to pass through O for
generic P, so we can say that, if §' = {F' = 0}, F, + 0 mod I(C,);
but then also G, % 0 mod I(G,), because, for generic P € G,, F' and §'
have common tangent plane in m(P). So we can apply to F' and G’
formula (1,), § 1. As § is singular in Z, and § is tangent to the plane
{X, =0} in Z, we have that §' is singular in O and F' is tangent
to 7({X, = 0})* = {Z = 0} in 0, 50 we have G5(0) = G4(0) = G4(0) =
= Fy(0) = Fy(0) = 0. Moreover the coefficient of ¥* in G' is by,
and from (1;) we get immediately 2aj;b,, = 0 from which we have

. Now ¢) of list 1) gives . From d) we get then

(By) (@15 + @16) b1z 4 (2815 + A1) b1y =0 .



The curve é4= (A%, B u, Aud, ut) c P2 is not set-theoretic ete. 191
k

Calculating both members of formulas (1,), ¢ =1, 2, 3,4 (see Cor. 2)
in the generic point (¢,13,1*) of C, yields identities of polynomials
in k[t]. For the sake of brevity we shall denote by H, ,(n) the difference
of the coefficients of t* in the two members of formulas (1,). Similarly
H,(n) will mean the coefficient of ¢» in the first member of formula (2)
(see Cor. 3). Of course for every i and » we have H, ,(n) =0 and
Hy(n) = 0.

At this point we distinguish two subcases according as F,G; # 0
or F,G; =0 mod I(C,).

First case: We can use formulas (1,) 4 = 1, 2,3, and (2), Cor. 2,
§1. We find

1
(Bs) 18 H, 1(23) = @15(@15+ 16) 012+ alshy,=0.
Subtracting B,), multiplied by a,; (% 0), from B;), we get

Ay5(@y5 = G1e) b1y =0

= |b14=0|:> Ibn:OI.

From e¢) of list 1) we get

(Bs) 2b, +bg=0.

Now we have:

S

(By) H1,1(22):(3a§s + 2815016— a35) b+ (3a%s + 4415016+ 16)bs=0.

Comparing (B;) and (B,) gives

— 3(@ys + Gye)2hy =0 :>|b,=0|:> lb8=0 |

Actually § is a monoid with a triple point in Z,. Using as above the
linear isomorphism 7, we apply formula (2) to F' = 7(F)* = {F' = 0}
and ¢ = 7(§)* = {@' =0} calculated in O = (0,0,0). As before
G4(0) = G4(0) = F,(0) = 0; moreover Gp,(0) = b, = 0 (as we have
just found). Formula (2), §1, calculated in O, gives then

——F?(O)G]',"(O) = — “?5[“‘ 6(bs 4 b10)] =0,
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so0 we have

(BS) bs + blo =0.

From f) of list 1) we obtain:

(Bs) (3015 + 2a16) b5 + (2615 + @16) byo = 0.

(Bs) and (B,) give (@154 @14)b;= 0 = ﬁ5= 0 |=> Iblo= 0 I

From g) of list 1) we get:

(By) (@15 + @16) by 4 (315 + 2a14) bg = 0 5

on the other hand we have also:

1
(Bs) 18 HI,I(QO) = (2035 + 30,,a,6 -+ a3s) by -+
+ (3035 + 315016 + afg)bs =0 .
and
1
(Bs) — 6H2(2]) = (20a3; + 32a%; ;4 + 13a,,a, + ad) by -+

+ (88a3; + 1264l a1 + 53ay5a3; + 6a3,) b =0 .

It is easy to see that (B;), (Bs), (B,), thought of as a linear system in

(bey D), has only the trivial solution. So it must be [bs= b, = 0].
From k) of list 1) we get ; whereas from i) of the same list
it follows:

(Bio) (4ay5 + 316) by 4 (3015 - 2046) b, = 0.
Now we have also:

1
(By1) 5H1,1(18) = (180':5 + 20a,5a,6 + 6“::) b, +

+ (1842, + 21ay5a,¢ + Tal) by = 0
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and

1 3 2 2 3
(B1s) E H,(19) = (— 36a55 — 3207, 014 + 4015055 + Baye) by +

+ (—16ad; + 17a;5a% -+ 6a3,)b, =0 .

As before, from (B,), (Bi1), (Bi,), we conclude that .

Hence G is the null polynomial: absurd.

Second case: Now we must have F, = G, =0 mod I(C,) or, if
it were e.g. G, 0 mod I(C,), it would be Fy =0 mod I(C,) and
from the identity

Fx(P) + *Fy(P) + t*Fx(P) =0, VP =(t,1,1)eC

it follows Fy — 0 mod I(C,) too, so F would be singular along C,.
From the same identity and from the analogous one relative to @,
F, = G, = 0 implies that Fy Gy 0 mod I(C,) or § or § would be
singular along C,. Taking into account F, =G, =0 mod I(C,),
we have:

b10:b9:b4:b2:07 b12=b14, bs:-Qbﬂ
2016 = —3015, Gz =0yp =0y =@a,=0a,=0,
1y = Gayy Qg = — 287, Gy = —2ay,.

Considering formula (1,), how applicable, we have by the above
equalities:

H, ,(25) = 16a3:b,, = | bip=0 |:> | byy=0 |

H, ,(24) = — 8a%,b, = |b, =0 | = [b8 =0 ]

H,,(23) = 24a%d, = [b =0];

with these results, we have furthermore

H, 4(22) = 24a%bs = [bg=0

H, ,(20) = 24a,,b, = |b3= 0-|

again G would be the null polynomial: absurd.
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So we can say that (*) implies a,; = 0, that is for § to have a
singular point in Z,. Given this, the conclusion of the proof of (B),
that is the fact that & and § have double points in O and Z, is ob-
tained from the following

REMARK 9. R,: From what has been proved up to this point we
can say that:

(*) 5§ =4C,

implies that every quartic of the pencil @ generated by F abd G has
a singular point in Z,,.

R,: By R, we can suppose § to ~bc the uniquely determined quartic
of @ which passes through Y, (¢ C,).

’_\-—/
R;: G cannot be a cone with vertex Z,, or else the cone {Y — X3 = 0}
would be its component.

R,: Every quartic surface which passes through ¢, and with a
triple point in Z,, contains the line Y, Z,. Hence from (*) it follows
that at most one of the surfaces § and § can have a triple point in
Z, and, should this happen, it must be G, which already contains
Y, (see R,). :

Ry: Yoo F = a14# 0 =F; %0 mod I(C,).

Rg: From R; it follows that the canonical projection of ¥ — X3
in the local ring k[F];c, is a uniformizing parameter.

R,: Let be Resy(F, @) e k[X, Y] the resultant, relative to Z, of
the polynomials F, G: one sees directly that deg(Res,(F,G))<12
if § and § both have a singular point on Z, whereas it is of degree
<12 if § has a triple point in Z.(see R,).

Ry: §-6 = 4G, = (Y — X4 Res,(F, G).
R,: From R, and R, § cannot have a triple point in Z,.

Ry,: From R;, i =1,...,7, we have that (*) implies for both &
and G to have a double point in Z. )

In order to conclude that (*) implies for both & and § to have
a double point also in O we use again in an obvious way the linear
isomorphism v that has been. considered in the previous proof of A)
and also here above during the proof of B).
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REMARK 10. In the sequel we can suppose 5 and § to be as in
Remark 9, R,. After what has been proved up to this moment [4)
and B)] we have the following situation for the coefficients of ¥ and G:

Gy = Gy = Gy = @y = 0 5= @y,
(@16 % 0 because Yo¢ F), and
bhis=big=by; =byy=bu=b,=5b,=0.

(bss = by, = 0 beeing consequence of b) and ¢) of list 1) and b, =0
because Y, €§G).

REMARK 11. The tangent cones to § and § in Z,, cannot have a
common component J: indeed a0 =3 =K N Al 9; if =
= {H =0} we have deg H < 3 and H|Res,(F, @), hence it follows
H(Y — X?)%Resz(F, G) which is absurd, beeing deg (Res,(F, ¢)) <12
(see above Remark 9, R,).

Proor or (). We distinguish two subcases according as it is
by; %0 or by; = 0.
First case: by, 0.

F can be taken as the quartic of the pencil @ (see Remark 9, R,
and R,) for which a,, = 0. Let us take b;; = a4 = 1. In this situation
So, splits into the line ¢t = {X = 0}, and in a cubic C, with a flex in Z,
and with tangent in it the line ¢. Moreover in the plane at infinity
we have t-Fo = 4Z,. From (*) and G, N {X, = 0} = Z,, it follows:

16Z0 = TG = Foo'(C3 + 1) = Feor Cy + Foorl =

— T Cy - 42 = Fo Cy = 1220,

Let us consider the pencil ¢ of plane quartics F. - At*: since also
t4-C; = 12Z,, every quartic Q of ¢ satisfies to

) Q- Cy = 12Z,,.

Let be Pye Gy, Py Zy, and let be Q, = Fo— A* the quartic of ¢
passing through P,. By this and ('), C; must be component of Q,,
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whence if follows:
(") Foo=1C5 4 Lo1*,
where 7 is a line through Z, because F1is singular in Z,. In the affine
open subset (Z = 0) of the plane at infinity (where X, Y, Z are projec-
tive coordinates) we have:
FO = XY — (a5 + G10) X2 — (@12 + 014) X2 Y — @, X V2 — V¢ —

— @ X' — a0 XY?— (s + @) X*Y — (a; + ag) X2Y2=0,
C@ = X — (b + byo) X2 — (by, + bpa) XY — b, X*— ¥V°—

_(be + bs)X2Y— (b, + bs)XYZ =0.

In (") then we have r = {Y = 0} and A, = — a3, whence the following
equalities:

(Cy) a5+ @, =0, (C3) b5 4 byy = @15 + Gy, (C3) by + by = ays,
(Ca) bs = ag -+ ay, (C5) bs -+ by = a; + as, (Cg) by 4 bg = @y, .
Taking into account the (C;) here above and ¢) f), g), h) of list 1) we

find first:

bio= @13— by,  bio= G154 a1+ G114y,

by= g+ @13815+ (@124 @14)b1yy  bg= @11} A13byy,
(&) by = —@aub1y, bsg= @G7— @101;— (@1 + C14) 1y,

b; = — anbyy,

by = @;— A1G13— @11015 4 Cra013— (207 4 Gg— A13015) by,

Now @454 0 = F,G@; 0 mod I(C,), so we can use formulas (1,) and
(2) with the notations H, ;(n) and H,(n) introduced in the proof of B).
Taking into ‘account equalities (&) listed above, we find: '

H, ;(15) = —2(b1s 4 @15) (07 — 1,843) =0 .

It can be seen that a, — a,54,; = 0 would imply for the tangent cones

— ~ e
to ¥ and G in Z, to have the common component {X | a,;, =0}
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against what has been stated in Remark 11. So it must be b,y = —ay,
and the (&) become:

biyy= — a3, by, = 2a,,, bio= @yt @1y— A1y,
— _ 2 3
(&&) by= @g— @130, , by = @;,— @33, b= an,

b= @+ G130, by= @11015, by= G5+ G103+ Bgyz— X110,
From 1) of list 1) we get:
(Cy) 2by = Qgllyy — Gn@yy — Gy — @120y, + 204 + Ay
and by comparing (C,) with (C,) we get:
(C) Qg = Q5llyz — Qg Gyy — G1o(Ays + Ayy) ©
Given thig, we find: H,4(14) = 2(a;a,; — a,4,,), whence
(Cy) A5O3 — Ar 0y = 0 .
Hence (C;) becomes:
(Cho) Gy = — Qy,(Ay5 -+ ay,) .
Now from 1) and m) of list 1), in view of (C,) and (C,,), We obtain
(C11) a6y, = —2040y5 + 30,0y, + @,0y, + A3y, + 01,0138, ,
(Cra) 2G5 = — 37815013 — G581y Gy — By, 03,814 +

2 2
+ @ga3; + a501, + 2a; + @85 — 05,03,

Given this, we find

H, 4(13) = 2(asay; + a’:z 13— Qg Gy — 207 Gyp)

and

H,4(12) = —2(a; — alz“fs Ars + A Q1305 — aua"iz —

— Qg 1y By — 3A7 Gya O3 + G B |- 3“3 + asa,,) -
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From these two last equations it follows
(C1s) Aglyy == — Ay Oyy + A Gy, + 20,0y,

(Cia) as; = “12“:3 Gy — Qr Qy3 04 + alla’iz + 05 @350, +

+ 307015013 — A, 05 — 3“-21 — A543 -
Summing both members of (C,,) and (C,,) and taking into account (Cy;),
we obtain:

(Cys) 3a; = — (G — @y150y5)" .
Now we turn to formula (2) of Cor. 3: we find

2 2 2 2
H,(17) = 12(—5a5 + @3, @13 — 2015073014 — 281185, —
— 203013013 — 207 Q13014 — 87 Q13045 +

+ 4agsal; + 3a; + 2a,a5 + 2a50,,)
whence

2 2 2 2
(Cie) By = A3, 07, — 2015075014 — 201187, — 205615015 —

2 2
— 207013014 — 87 15 0y3 + 48505, -+ 30; + 20,05 + 2050y, -

Summing both members of (C,,), multiplied by —2, and (Cy), we
get in view of (C,), (Cy;):

(Cu) Gy = — (@7 — Gy 015)% .
Comparing (C,;) with (Cy;), we find (a; = 0) and
A7 = GQy130,3:

again by Remark 11 this is inconsistent with (*) because the affine
tangent cones to § and § in Z, would have the common component

—_————
(X +ap—0}.
This concludes the proof of (C) in the case by; % 0.

Second case: by, = 0.

We assume again a,; = 1. From b), ¢), d), ¢) and f) of list 1) we
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have
b13=b11:0) bu:—‘blz’
by = — 2b; 4 @13b1yy  big = —2b5 + G11by, .

Given these equalities, we find moreover

H,4(18) = —2(b; — @y3by5) H,4(17) = —2(bs — @11 by,) -

Hence

(Cie) ‘ b, = 1304,

(Cie) bs = @31y, -

Now from by = — 2b; + ay3b,, and by = —2b; + a1, b, We get
(Cs0) by = — ay3by,,

(Cay) by = —anby, .

From g) of list 1) we find on one hand
by = (Ayy + G2y — @13815) byo — 2043
on the other hand we get, in view of (C,4) and (Cy,)
H,5(16) = (— 86,5017 + 8a34 + 8ay,) by, — 6bg — 16D, .
From the last equalities one derives
(Cq2) be = (@1s + @14 — G13047) bys
(C,s) by = (— @yp— Q14 + Q13047) by, .
Now, from k) and ¢) of list 1), we find

(Cqq) by = (26; + a5 — @110y7 — 01,0453 + a'i @19) bys

(Cg5)  2b3 = (265 + @19 — B11 Q15— B3 G17 — Byylyg + U130y 047 - “13“?7) by .
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Finally, taking into acconut all the previous results, we find
H, 5(15) = 2(@; — 615015 + @35 G17) by = 0:

beeing b,, # 0, or else G would be the null polynomial, from the last
equality it follows

Qg = Qg g3 — 0:30'17 .
Now the tangent cones to % and G in Z,, have the affine equations:
(X + a13) (@0 X + Y 4 @15 —a1301;) = 0 and byy(X + a;5) =0

and again applying Remark 11, we reach the conclusion of the proof
of (C).

REFERENCES

[1] P. C. CrAIGHERO, Una osservazione sulla curva di Oremona di P C:
(Aud, A3, 2%, u%), Rend. Sem. Mat. Univ. Padova, 65 (1981), pp. 177-190.

{2] E. StaGNARO, Sulle curve razionali non singolari di ordine 4 di P, Rend.
Acc. Naz. Scienze dei XL (memorie di matematica), 104, VII, 6 (1983),
pp. 51-88.

Manoscritto pervenuto in redazione il 17 giugno 1985.



