RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

P. C. CRAIGHERO

R. GATTAZZO

The curve $\tilde{\mathcal{C}}_4=(\lambda^4,\lambda^3\mu,\lambda\mu^3,\mu^4)\subset \mathbb{P}^3_k$, is not settheoretic complete intersection of two quartic surfaces

Rendiconti del Seminario Matematico della Università di Padova, tome 76 (1986), p. 177-200

http://www.numdam.org/item?id=RSMUP_1986__76__177_0

© Rendiconti del Seminario Matematico della Università di Padova, 1986, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Curve $\mathfrak{C}_4 = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4) \subset P_k^3$, is Nnot Set-Theoretic Complete Intersection of Two Quartic Surfaces.

P. C. CRAIGHERO - R. GATTAZZO (*)

RIASSUNTO - In questa nota si dimostra che la quartica di Cremona $\tilde{C}_4 = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4) \subset \mathbf{P}_k^3$, ove k è un campo algebricamente chiuso di caratteristica $p \neq 2, 3$, non è sottoinsieme intersezione completa di due superficie di ordine quattro.

Introduction.

In a previous paper [1] it has been proved that the Cremona quartic curve $\tilde{\mathbb{C}}_4 = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4) \subset \mathbb{P}^3_k$, where k is an algebraically closed field of characteristic $p \neq 2, 3$, is not set-theoretic complete intersection of any pair of surfaces of degrees 3 and 4. This result has been generalized in [2], where it is proved that the same holds for any rational non singular quartic curve of \mathbb{P}^3_k .

The method used in [2] is not however applicable in order to prove that \tilde{C}_4 is not set-theoretic complete intersection of two quartic surfaces, because it is based essentially on the fact that a cubic surface $\tilde{\mathcal{F}}$ on which \tilde{C}_4 were s.t.c.i., should have at least one singular point on \tilde{C}_4 , so that one can use the theory of monoid surfaces.

In order to prove our statement in this paper we have chosen a different approach: first, stating a result on flexes of plane quartics (see § 2) and exploiting some formulas (see § 1) by which one can step down deeply, but gradually, into the analysis of the contact

(*) Indirizzo degli A.A.: Istituto di Matematica applicata, via Belzoni 7, 35100 Padova. Lavoro eseguito nell'ambito del G.N.S.A.G.A. del C.N.R.

of hyperosculating surfaces, we prove that if there exist \mathcal{F} and \mathfrak{S} such that $\mathcal{F} \cdot \mathfrak{S} = 4\tilde{C}_4$, \mathcal{F} and \mathfrak{S} must have a double point on each of the two flexes of \tilde{C}_4 ; then with the help of the above formulas and the properties of the resultant we can conclude our proof.

§ 1. In what follows the field k will be algebraically closed and of characteristic $p \neq 2, 3$. By surface or curve we shall always mean an algebraic reduced surface or curve. If V is an algebraic variety of \mathbf{P}_k^3 , we put $V^a = V \cap \mathbf{A}_k^3$, where \mathbf{A}_k^3 is the affine space canonically embedded in \mathbf{P}_k^3 by the map

$$(x, y, z) \rightarrow (1, x, y, z)$$
.

With \widehat{V} we denote the projective closure in \mathbf{P}_k^3 of the affine variety V of \mathbf{A}_k^3 . $\pi_{\mathcal{F}}(P)$ will denote the tangent plane to a surface \mathcal{F} in its simple point P.

REMARK 1. Let \mathcal{F} and \mathcal{G} surfaces in \mathbf{A}_k^3 and $\mathcal{F} \cap \mathcal{G} = \mathcal{C}$, where \mathcal{C} is an irreducible curve and let $P \in \mathcal{C}$ a point which is non singular for \mathcal{F} and \mathcal{G} . If $\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}$, with $\mu > 1$, \mathcal{F} and \mathcal{G} have the same tangent plane in P.

REMARK 2. Let \mathcal{F} and \mathcal{G} surfaces in A_k^3 and $\mathcal{F} \cap \mathcal{G} = \mathcal{C}$, where \mathcal{C} is an irreducible curve which is non singular for \mathcal{F} ; then for any P belonging a suitable open Zariski-subset of \mathcal{C} , if α is an arbitrary plane through P transversal to \mathcal{C} , $\alpha \cap \mathcal{F}$ has a single reduced and irreducible component through P, non singular in P, and we have:

$$i(\mathcal{C},\,\mathcal{F}\cap\mathcal{G})=i\big(P,\,(\alpha\cap\mathcal{F})\cap(\alpha\cap\mathcal{G})\big)\;.$$

(the second multiplicity beeing calculated in the D.V.R. $k[\alpha \cap \mathcal{F}]_{P}$).

Sketch of the proof. If $H \in k[X, Y, Z]$ is such that its projection \overline{H} in $k[\mathcal{F}]_P$ is a uniformizing parameter, we have $\overline{G} = \overline{H}^{\mu}(\overline{C}/\overline{D})$, from which we get

$$\bar{D}\bar{G}=\bar{H}^{\mu}\bar{C}$$

with $\mathfrak{G} = \{G = 0\}$, and $\{C = 0\}$, $\{D = 0\}$ surfaces not containing C. Lifting (&) in k[X, Y, Z], we get, with a suitable $A \in k[X, Y, Z]$,

$$DG = H^{\mu}C + AF$$

It is then clear that one can find on a open Zariski-subset of C for every point P of which we can assume what follows:

- 1) P is a simple point of C;
- 2) no other component of $\mathcal{F} \cap \mathcal{K}$ passes through P (where $\mathcal{K} = \{H = 0\}$);
- 3) $D(P) \neq 0$ and $C(P) \neq 0$.

As a consequence of 1), 2) P is a simple point for \mathcal{F} and \mathcal{K} and $\pi_{\mathcal{F}}(P) \neq \pi_{\mathcal{K}}(P)$, moreover both $\alpha \cap \mathcal{F}$ and $\alpha \cap \mathcal{K}$ have a single irreducible and reduced component through P non singular in P and they are transversal in P to each other. Indicating with q the image of the polynomial Q of k[X, Y, Z] in $k[\alpha]$ (which can be identified with a ring of polynomials in two variables) and with \overline{q} the projection of q into $k[\alpha \cap \mathcal{F}]_P$ one gets from (\mathcal{E}') :

$$ar dar g = ar h^\mu ar c + ar a ar f$$

where =0, \bar{d} , \bar{c} are units (by 3)) and \bar{h} is a uniformizing parameter in $k[\alpha \cap \mathcal{F}]_P$ by the consequences of 1) and 2) mentioned above. This means that the curve $\alpha \cap \mathcal{G}$ (defined on α by g) has with $\alpha \cap \mathcal{F}$ multiplicity of intersection μ in P.

PROPOSITION 1. Let $\mathcal{F} = \{F = 0\}$ and $\mathfrak{G} = \{G = 0\}$ be surfaces of \mathbf{A}_k^3 , \mathfrak{C} a curve non singular for \mathcal{F} and let be $\mathcal{F} \cdot \mathfrak{G} = \mu \mathfrak{C}$; for every point $P \in \mathfrak{C}$ non singular for \mathcal{F} let be r_P the multiplicity of \mathfrak{G} in P and $\Gamma(P)$ the tangent cone in P to \mathfrak{G} . Then the following holds in a suitable open Zariski-subset U of \mathfrak{C} :

$$\mu > r_P \Rightarrow \pi_{\mathfrak{F}}(P) \subseteq \Gamma(P)$$
.

PROOF. Let us take for U the open Zariski-subset of C in which Remark 2 holds. Let α be a plane through P transversal to C which is not one of the (possibly 0 and at most r_P) planes components of $\Gamma(P)$.

Then $\mathcal{F}_{\alpha} = \mathcal{F} \cap \alpha$ has a simple point in P and $\mathcal{G}_{\alpha} = \mathcal{G} \cap \alpha$ has an r_P -fold point in P. By Remark 2 $i(P, \mathcal{F}_{\alpha} \cap \mathcal{G}_{\alpha}) = \mu > r_P$; then the tangent $\pi_{\mathcal{F}}(P) \cap \alpha$ in P to \mathcal{F}_{α} must be a component of the «tangent cone» in P to $\mathcal{G}_{\alpha} = \Gamma(P) \cap \alpha$. This happens for the generic plane through P; hence $\pi_{\mathcal{F}}(P)$ contains infinitely many straight lines of $\Gamma(P)$, so $\pi_{\mathcal{F}}(P) \subset \Gamma(P)$.

COROLLARY 1. Let be $\mathcal{F} = \{F = 0\}$ and $\mathfrak{G} = \{G = 0\}$ surfaces of \mathbf{A}^3_k and $\mathcal{F} \cap \mathfrak{G} = \mathfrak{C}$ with \mathfrak{C} simple curve for \mathcal{F} .

$$F = F_1^{(P)} + F_2^{(P)} + F_3^{(P)} + \dots, \quad G = G_1^{(P)} + G_2^{(P)} + G_3^{(P)} + \dots$$

the Taylor expansions of F and G at the point P = (x, y, z) ($F_i^{(P)}$ and $G_i^{(P)}$ are forms in X-x, Y-y, Z-z). Then in a suitable open Zariski-subset of C the following implications hold:

- a) $\{\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}, \ \mu \geqslant 2\} \Rightarrow F_1^{(P)} | G_1^{(P)};$
- b) $\{\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}, \mu \geqslant 3\} \Rightarrow F_2^{(P)} | (G_1^{(P)} \rho_P F_2^{(P)});$
- c) $\{\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}, \ \mu \geqslant 4\} \Rightarrow F_1^{(P)} | (G_3^{(P)} \rho_P F_3^{(P)} \Phi_1^{(P)} F_2^{(P)}) |$

where in b) and in c) $\varrho_P \in k$ is such that $G_1^{(P)} = \varrho_P F_1^{(P)}(by \ a)$ and in c) $\Phi_1^{(P)}$ is the linear form such that $G_2^{(P)} - \varrho_P F_2^{(P)} = \Phi_1^{(P)} F_1^{(P)}(by \ b)$.

PROOF. If $G_1^{(P)} \neq 0$, $G_1^{(P)}$ defines the tangent plane at P to G and a) is an immediate consequence of Remark 1 (applied in the o.Z.-sub. U of G where $F_1^{(P)} \neq 0$). As for b), for every point P in the o.Z.-sub. $U'(\supset U)$ of G in which Prop. 1 holds for \mathcal{F} , G and G let us put $\mathcal{K}_P = \{H_P = G - \varrho_P F = 0\}$ with ϱ_P s.t. $G_1^{(P)} = \varrho_P F_1^{(P)}$ (by a)). Since in the D.V.R. $k[\mathcal{F}]_G$ we have $\bar{G} = \bar{H}_P$ Remark 2 and Prop. 1 hold for \mathcal{F} , \mathcal{K}_P and G in the same o.Z.-sub. $G_1^{(P)} = g_P F_1^{(P)}$ (by $G_2^{(P)} = g_P F_2^{(P)}$ (by $G_2^{$

In a similar way c) is deduced applying Prop. 1 to \mathcal{F} and $\mathcal{K}_P' = \{G - \varrho_P F - \Phi_1^{(P)} F = 0\}$ where ϱ_P is s.t. $G_1^{(P)} = \varrho_P F_1^{(P)}$ (by a)) and $\Phi_1^{(P)}$ is s.t. $G_2^{(P)} - \varrho_P F_2^{(P)} = \Phi_1^{(P)} F_1^{(P)}$ (by b)).

DEFINITION 1. Given a polynomial $F \in k[X, Y, Z]$ we define:

$$\begin{split} D_{\it XX}(F) &= F_{\it XX} F_z^2 - 2 F_{\it XZ} F_{\it X} F_z + F_{\it ZZ} F_x^2 \\ D_{\it XY}(F) &= F_{\it XY} F_z^2 - F_{\it XZ} F_{\it Y} F_z - F_{\it YZ} F_x F_z + F_{\it ZZ} F_x F_y \\ D_{\it YY}(F) &= F_{\it YY} F_z^2 - 2 F_{\it YZ} F_y F_z + F_{\it ZZ} F_y^2 \end{split}$$

$$\begin{split} D_{yyy}(F) &= F_{yyy} F_z^4 - 3 F_{yyz} F_y F_z^3 + 3 F_{yzz} F_z^2 F_z^2 - \\ &- 9 F_{yz} F_{zz} F_y^2 F_z + 6 F_{yz}^2 F_y F_z^2 + 3 F_{yy} F_{zz} F_y F_z^2 - \\ &- 3 F_{yy} F_{yz} F_z^3 + 3 F_{zz}^2 F_y^3 - F_{zzz} F_y^3 F_z \end{split}$$

In the sequel, if $C \subset A_k^3$ is a curve, I(C) will be the ideal of C in k[X, Y, Z].

PROPOSITION 2. Let us consider in A_k^3 the surfaces $\mathcal{F} = \{F = 0\}$ and $\mathcal{G} = \{G = 0\}$, and let be $\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}$, with \mathcal{C} irreducible curve. Moreover we assume that $F_z \neq 0$ and $G_z \neq 0$ mod. $I(\mathcal{C})$. If $\mu \geqslant 3$, we have the following equalitites of rational functions on \mathcal{C} :

(1)
$$D_{xx}(F)/F_z^3 = D_{xx}(G)/G_z^3$$
, $D_{xy}(F)/F_z^3 = D_{xy}(G)/G_z^3$, $D_{yy}(F)/F_z^3 = D_{yy}(G)/G_z^3$.

If $\mu \geqslant 1$, besides the above equalities (1), we have also the following:

(2)
$$D_{YYY}(F)/F_z^5 = D_{YYY}(G)/G_z^5$$
.

PROOF. Let us consider a point P=(x,y,z) in the o.Z.-sub. where Cor. 1 holds and furthermore $F_z \neq 0$ and $G_z \neq 0$. For the sake of semplicity let us suppose P=O=(0,0,0). Let be:

$$F = aX + bY + cZ + dX^2 + eY^2 + fZ^2 + gXY + hXZ + \\ + lYZ + AX^3 + BY^3 + CZ^3 + DX^2Y + EX^2Z + \\ + FXY^2 + GXZ^2 + HXYZ + MY^2Z + NYZ^2 + ...$$
 $G = G_1 + G_2 + G_3 + ...$

with G_i homogeneous polynomials of k[X, Y, Z] of degree i. In the first case, from Cor. 1, a) and b), we have

$$G_1 = \varrho(aX + bY + cZ) \quad (\varrho c \neq 0, \ \mathrm{by} \ G_z \neq 0 \ \mathrm{mod.} \ I(\mathrm{C})),$$

$$G_2 = \varrho(dX^2 + eY^2 + fZ^2 + gXY + hXZ + tYZ) + \\ + (a'X + b'Y + c'Z)(aX + bY + cZ) = (\varrho d + a'a)X^2 + \\ + (\varrho e + b'b)Y^2 + (\varrho f + c'c)Z^2 + (\varrho g + a'b + b'a)XY + \\ + (\varrho h + c'a + a'c)XZ + (\varrho l + b'c + c'b)YZ.$$

The partial derivatives beeing calculated in O, we find:

$$F_{x}=a, \quad F_{y}=b, \quad F_{z}=c, \quad F_{xx}=2d, \quad F_{yy}=2\epsilon,$$
 $F_{zz}=2f, \quad F_{xy}=g, \quad F_{xz}=h, \quad F_{yz}=l,$

and

$$G_x = \varrho a$$
, $G_y = \varrho b$, $G_z = \varrho c$, $G_{xx} = 2(\varrho d + a'a)$,...

Then we have the following:

$$\begin{split} D_{xx}(G)/G_{z}^{3} &= 2(\varrho d + a'a)(\varrho c)^{2} - 2(\varrho h + c'a + a'c) \cdot \\ &\cdot (\varrho a)(\varrho c) + 2(\varrho f + c'c)(\varrho a)^{2}/(\varrho c)^{3} = \\ &= (2dc^{2} - 2hac + 2fa^{2})/c^{3} = D_{xx}(F)/F_{z}^{3} \,. \end{split}$$

Since the above equality holds in an o.Z.-sub. of C we can assert that the rational functions on C:

$$D_{XX}(G)/G_Z^3 = D_{XX}(F)/F_Z^3$$

are equal.

Same proof for the remaining two formulas (1).

As for (2), it can be deduced in a completly similar way applying, besides a, b, also c of Cor. 1.

COROLLARY 2. In the hypotheses of Prop. 2, if $\mu \geqslant 3$, equalities (1) become the following equalities mod $I(\mathbb{C})$:

$$\begin{aligned} (1_1) \quad F_{XX}F_ZG_Z - 2F_{XZ}F_XG_Z + F_{ZZ}F_XG_X &= \\ &= G_{XX}F_Z^2 - 2G_{XZ}F_XF_Z + G_{ZZ}F_X^2 \end{aligned}$$

$$\begin{aligned} (1_2) \quad F_{XY}F_ZG_Z - F_{XZ}F_YG_Z - F_{YZ}F_XG_Z + F_{ZZ}F_XG_Y = \\ &= G_{XY}F_Z^2 - G_{XZ}F_YF_Z - G_{YZ}F_XF_Z + G_{ZZ}F_XF_Y \end{aligned}$$

$$\begin{split} (1_3) \quad F_{YY}F_zG_z - 2F_{YZ}F_YG_Z + F_{ZZ}F_YG_Y &= \\ &= G_{YY}F_z^2 - 2G_{YZ}F_YF_Z + G_{ZZ}F_Y^2 \,. \end{split}$$

In order to deduce (1₁), for example, we have, from the first of (1), of Prop. 1:

$$\begin{split} F_{\it xx} F_{\it z}^2 G_{\it z}^3 - 2 F_{\it xz} F_{\it x} F_{\it z} G_{\it z}^3 + F_{\it zz} F_{\it x}^2 G_{\it z}^3 = \\ &= G_{\it xx} G_{\it z}^2 F_{\it z}^3 - 2 G_{\it xz} G_{\it x} G_{\it z} F_{\it z}^3 + G_{\it zz} G_{\it x}^2 F_{\it z}^3 \,. \end{split}$$

Taking into account that $F_x G_z = F_z G_x \mod I(C)$, by the condition

of tangence of F and G along C, one gets

$$egin{align*} (F_z G_z^2) (F_{xx} F_z G_z - 2 F_{xz} F_x G_z + F_{zz} F_x G_x) = \ &= (F_z G_z^2) (G_{xx} F_z^2 - 2 G_{xz} F_x F_z + G_{zz} F_x^2) \end{split}$$

whence (1) is deduced, simplifying by $F_z G_z^2$ ($\neq 0 \mod I(C)$).

REMARK 3. In the hypotheses $F_x \neq 0 \mod I(\mathbb{C})$ one can prove that (1_1) , assuming the tangence condition of \mathcal{F} and \mathbb{G} along \mathbb{C} , is equivalent to the fact that the generic plane Y=y cuts \mathcal{F} and \mathbb{G} in two curves having in $P=(x,y,z)\in\mathbb{C}$ multiplicity of intersection $\mu\geqslant 3$.

Analogous meaning for (1_2) and (1_3) relatively to the pianes Z = z and X = x. If follows that, if $\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}$, with $\mu \geqslant 3$, (1_1) , (1_2) and (1_3) are generally indipendent.

REMARK 4. In the case $F_xG_x \neq 0 \mod I(\mathbb{C})$, or $F_xG_x \neq 0 \mod I(\mathbb{C})$ one can deduce in a completely similar way formulas analogous to (1_i) (i=1,2,3) above. For example, if $F_xG_x \neq 0 \mod I(\mathbb{C})$, one gets the

$$\begin{aligned} (1_4) \quad F_{XX}F_YG_Y - 2F_{XY}F_XG_Y + F_{YY}F_XG_X &= \\ &= G_{XX}F_Y^2 - 2G_{XY}F_XF_Y + G_{YY}F_Y^2 \,. \end{aligned}$$

COROLLARY 3. In the hypoteses of Prop. 2, if $\mu \geqslant 4$, the equality 2) becomes the following equality mod $I(\mathbb{C})$:

$$(2) \qquad (F_{YYY}F_{Z}^{2} - 3F_{YYZ}F_{Y}F_{Z} + 3F_{YZZ}F_{Y}^{2} + 6F_{YZ}^{2}F_{Y} - 3F_{YY}F_{YZ}F_{Z})G_{Z} - (3F_{YZ}F_{ZZ}F_{Y} + F_{ZZZ}F_{Y}^{2})G_{Y} + (-3F_{YY}F_{Y}F_{Z} + 6F_{YZ}F_{Y}^{2})G_{ZZ} + (3F_{YY}F_{Z}^{2} - 6F_{YZ}F_{Y}F_{Z} - 3F_{ZZ}F_{Y}^{2})G_{YZ} + 3F_{ZZ}F_{Y}F_{Z}G_{YY} + F_{Z}^{2}G_{ZZZ} - 3F_{Z}^{2}F_{Z}G_{YZZ} + 3F_{Y}F_{Z}G_{YYZ} - F_{Z}^{3}G_{YYY} = 0.$$

Sketch of the proof. Multiply 2) by $F_z^5 G_z^5 \ (\neq 0 \mod I(\mathbb{C}))$ and notice that $F_z G_Y = F_Y G_Z \mod I(\mathbb{C})$ makes it possible to divide both members by $F_z^2 G_z^3$. After suitable subtitution, following equation (1_3) in the second member, one can simplify again by dividing by G_z : then one gets the relation (2).

REMARK 5. Three more formulas can be obtained in the case $\mu \geqslant 4$ in a similar manner. We omit them for the sake of brevity and because only the above formula will be used in the sequel.

§ 2. Proposition 3. No flex point of a quartic curve \mathfrak{Q} of \mathbf{P}_k^2 can be set-theoretic complete intersection with another quartic curve, possibly reduced, of \mathbf{P}_k^2 .

REMARK 6. Let be C a curve, F a flex point of C, t the tangent in F to C. It is easy to show that for every curve \mathfrak{D} s.t. $i(F, \mathbb{C} \cap \mathfrak{D}) \geqslant 3$ one has $i(F, t \cap \mathfrak{D}) \geqslant 3$.

PROOF OF PROP. 3. We can choose an affine open set of P_k^2 , identified with A_k^2 , s.t., if $\mathfrak Q$ is the affine part of our quartic $\mathfrak Q$, we have that the flex F is O = (0,0), the tangent to $\mathfrak Q$ in the flex O is $\{X = 0\}$ and that $\mathfrak Q \cdot \{X = 0\} = 3O + Y_{\infty}$. The equation of $\mathfrak Q$ is then

$$\begin{split} X + c_1 X^2 + c_2 X Y + c_3 X^3 + c_4 X^2 \, Y + c_5 X Y^2 - \\ - \, Y^3 + c_6 X^4 + c_7 X^3 \, Y + c_8 X^2 \, Y^2 + c_9 X Y^3 = 0 \; . \end{split}$$

Let us notice that, if there exists a quartic $\mathfrak{Q}' \subset \mathbb{A}^2_k$, such that $i(O, \mathfrak{Q} \cap \mathfrak{Q}') = 16$ then every quartic $(\neq \mathfrak{Q})$ of the (affine) pencil generated by \mathfrak{Q} and \mathfrak{Q}' satisfies the same condition. Let be \mathfrak{Q}'' the quartic of the pencil which is singular in O:

$$egin{aligned} \mathfrak{Q}'' &= d_1 X^2 + d_2 X Y + d_3 X^3 + d_4 X^2 \, Y + d_5 \, X Y^2 + d_6 \, Y^3 \, + \\ &\quad + d_7 X^4 + d_9 \, X^3 \, Y + d_9 \, X^2 \, Y^2 + d_{10} \, X Y^3 + d_{11} \, Y^4 = 0 \; . \end{aligned}$$

In order to find the conditions for which $i(0, \mathfrak{Q} \cap \mathfrak{Q}'') \geqslant 16$ we shall proceed as follows. Let us write the equation of \mathfrak{Q} in the form

$$Y^3 = XM$$
, with $M = 1 + c_1 X + c_2 Y + c_3 X^2 + c_4 XY + c_5 Y^2 + c_4 X^3 + c_7 X^2 Y + c_8 XY^2 + c_9 Y^3$;

we have:

$$\mathfrak{Q} \cap \mathfrak{Q}'' = \left\{ \begin{array}{l} Y^3 = XM \\ d_1 X^2 + d_2 XY + d_3 X^3 + d_4 X^2 Y + d_5 XY^2 + d_7 X^4 + \\ + d_8 X^3 Y + d_9 X^2 Y^2 + d_{10} XY^3 + (d_6 + d_{11} Y) XM = 0 \end{array} \right.$$

$$\mathfrak{Q} \cap \mathfrak{Q}'' = \left\{ egin{array}{ll} Y^3 = XM \\ X = 0 \end{array}
ight. + \left\{ egin{array}{ll} Y^3 = XM \\ Q_1 = 0 \end{array}
ight.$$

where

$$Q_1 = d_1 X + d_2 Y + d_3 X^2 + d_4 X Y + d_5 Y^2 + d_7 X^3 + d_8 X^2 Y + d_9 X Y^2 + d_{10} Y^3 + (d_6 + d_{11} Y) M = 0$$
.

Having put $\tilde{\mathbb{Q}}_1 = \{\widetilde{Q_1=0}\}$, it must be $i(O, \tilde{\mathbb{Q}} \cap \tilde{\mathbb{Q}}_1) > 13$: by Remark 6 then we have $d_6 = d_2 + d_6c_2 + d_{11} = d_5 + d_6c_5 + d_{11}c_2 = 0$. As $d_6 = 0$, it must be $d_{11} \neq 0$, or $\tilde{\mathbb{Q}}''$ would have $\{\overline{X=0}\}$ as its component, but then $Y_{\infty} \in \tilde{\mathbb{Q}}$: absurd because $\tilde{\mathbb{Q}} \cap \tilde{\mathbb{Q}}'' = \{O\}$. We can suppose then $d_{11} = 1$ and the conditions above become:

- 1) $d_6 = 0$;
- 2) $d_2 + 1 = 0;$
- 3) $d_5 + c_2 = 0$.

Iterating this process one finds the following conditions:

- 4) $d_1 + d_{10} + c_5 = 0$;
- 5) $d_4 + c_1 + c_9 + (d_{10} + c_5)c_2 = 0$;
- 6) $d_9 + c_4 + (d_{10} + c_5) c_5 + c_2 c_9 = 0$;
- 7) $d_3 + c_8 + (d_{10} + c_5)(c_1 + c_9) + c_5 c_9 = 0$;
- 8) $d_8 + c_3 + (d_{10} + c_5)(c_4 + c_2 c_9) + c_1 c_9 + c_2 c_8 + c_2 c_5 c_9 + c_9^2 = 0$;
- 9) $c_7 + (d_{10} + c_5)(c_8 + c_5 c_9) + c_4 c_9 + c_5 c_8 + c_5^2 c_9 + c_9 c_9^2 = 0$;
- 10) $d_7 + (d_{10} + c_5)(c_3 + c_1c_9 + c_9^2) + c_1c_8 + 2c_8c_9 + c_1c_5c_9 + 2c_5c_9^2 = 0$;
- 11) $(d_{10} + c_5)(c_7 + c_4 c_9 + c_2 c_9^2) + c_6 + c_3 c_9 + c_4 c_8 + c_4 c_5 c_9 + c_1 c_9^2 + 2c_2 c_8 c_9 + 2c_2 c_5 c_9^2 + c_9^3 = 0;$
- 12) $(d_{10} + c_5)(c_8c_9 + c_5c_9^2) + c_7c_9 + c_8^2 + c_4c_9^2 + 3c_5c_8c_9 + 2c_5^2c_9^2 + c_9c_9^3 = 0;$
- 13) $(d_{10} + c_5)(c_6 + c_3c_9 + c_1c_9^2 + c_9^3) + c_3c_8 + c_3c_5c_9 + 2c_1c_8c_9 + 2c_1c_5c_9^2 + 3c_8c_9^2 + 3c_5c_9^3 = 0.$

Let us rewrite 12) in the following form

$$c_9[c_7 + (d_{10} + c_5)(c_8 + c_5c_9) + c_4c_9 + c_5c_8 +$$

 $+ c_5^2c_9 + c_3c_9^2] + (c_8 + c_5c_9)^2 = 0.$

Taking into account 9), it follows

$$(\&) c_8 + c_5 c_9 = 0.$$

Then from 9) again we get

$$(&\&) c_7 + c_4 c_9 + c_2 c_9^2 = 0$$

and from (&), (&&) and 11), we get finally

$$(\&\&\&) c_{\bf s} + c_{\bf s}c_{\bf p} + c_{\bf t}c_{\bf p}^2 + c_{\bf p}^3 = 0.$$

By (&), (&&), (&&&) we can write the equation of Q in the following form:

$$\begin{split} X + c_1 X^2 + c_2 XY + c_3 X^3 + c_4 X^2 Y + c_5 XY^2 - Y^3 - \\ - \left(c_3 c_9 + c_1 c_9^2 + c_9^3 \right) X^4 - \left(c_4 c_9 + c_2 c_9^2 \right) X^3 Y - \\ - c_5 c_9 X^2 Y^2 + c_9 XY^3 = \left(1 - c_9 X \right) \cdot \\ \cdot \left[c_5 XY^2 + \left(c_2 c_9 + c_4 \right) X^2 Y + \left(c_3 + c_1 c_9 + c_9^2 \right) X^3 - \\ - Y^3 + \left(c_1 + c_9 \right) X^2 + c_2 XY + X \right] = 0 \;. \end{split}$$

It follows that $\tilde{\mathbb{Q}}$ is reducible in a cubic $\tilde{\mathbb{C}}$ and a straight line $\tilde{\boldsymbol{r}}$ not passing through O. Every projective quartic $\tilde{\mathbb{Q}}'(\neq \tilde{\mathbb{Q}})$ must intersect $\tilde{\boldsymbol{r}}$, and also $\tilde{\mathbb{Q}}$, in a point different from O: absurd. This completes the proof.

REMARK 7. In particular cases a flex on a plane quartic $\tilde{\mathbb{Q}} \subset \mathbf{P}_k^2$ can be s.t.c.i. of $\tilde{\mathbb{Q}}$ with a cubic $\tilde{\mathbb{C}}$. For example let $\tilde{\mathbb{C}}$ be a cubic, P a flex of $\tilde{\mathbb{C}}$, \tilde{t} the tangent to $\tilde{\mathbb{C}}$ at P and \tilde{r} an arbitrary straight line not passing through P. Then every quartic $\tilde{\mathbb{Q}}$ of the form $\lambda \mathbb{C}$ $\tilde{r} + t^4$, $\lambda \in k$, has a flex in P which obviously is s.t.c.i. of $\tilde{\mathbb{C}}$ and $\tilde{\mathbb{Q}}$. One can also easily verify that the quartics of this kind are the only quartics having a flex s.t.c.i. with a cubic.

§ 3. Let us consider the affine open set A_k^3 in which the Cremona quartic curve \tilde{C}_4 has the parametric representation (t, t^3, t^4) . In A_k^2 the generic quartic surface $\mathcal{F} = \{F = 0\}$ containing C_4 is

$$\mathcal{F} = \{ F = A_3 Z^3 + A_2 Z^2 + A_1 Z + A_0 = 0 \}$$

where

$$\begin{split} A_0 &= a_1\,Y + a_3XY + a_6\,Y^2 - a_4X^2\,Y + a_{10}XY^2 - a_1X^3 + \\ &\quad + a_{14}\,Y^3 - (a_7 + a_8)\,X^2\,Y^2 - (a_6 + a_9)\,X^3\,Y - \\ &\quad - (a_{11} + a_{17})\,XY^3 - (a_2 + a_3)\,X^4 - (a_{15} + a_{16})\,Y^4 \\ A_1 &= a_2 + a_4X + a_5\,Y + a_8\,XY + a_9\,X^2 + a_{11}\,Y^2 - a_{13}\,XY^2 - \\ &\quad - (a_{12} + a_{14})\,X^2\,Y - (a_5 + a_{10})\,X^3 + a_{18}\,Y^3 \\ A_2 &= a_7 + a_{12}X + a_{13}\,Y + a_{16}\,XY + a_{17}\,X^2 \\ A_2 &= a_{15} - a_{18}X \,. \end{split}$$

We shall denote the coefficients of the equation of another quartic surface $\mathfrak{G} = \{G = 0\}$ containing \mathfrak{C}_4 with b's in place of a's.

Let us notice that, since $\tilde{\mathbb{C}}_4$ has infinitely many trisecants that constitute an array of the only quadric $\{X_0X_3-X_1X_2=0\}$ containing $\tilde{\mathbb{C}}_4$, no irreducible quartic surface containing $\tilde{\mathbb{C}}_4$ can have it as double curve.

Our goal is to prove the following

Proposition 4. There does not exist any pair of quartic surfaces $\widetilde{\mathcal{F}}$ and $\widetilde{\mathbf{G}}$ such that

$$\mathbf{\tilde{F}} \cdot \mathbf{\tilde{G}} = 4 \mathbf{\tilde{C}_4}$$

The result is reached in three steps, A), B), C):

- A) if $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ satisfy (*) and are non singular in the two flexes of $\widetilde{\mathcal{C}}_4$, O and Z_{∞} , they must be there tangent to the hyperoscurating planes of $\widetilde{\mathcal{C}}_4$, $\{Z=0\}$ and the plane at infinity;
- B) if $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ satisfy (*) they must have double points in the flexes of $\widetilde{\mathcal{C}}_4$, O and Z_{∞} ;
- C) if $\widetilde{\mathcal{F}}$ and $\widetilde{\mathbb{G}}$ contain $\widetilde{\mathbb{C}}_4$ and have double points in O and Z_{∞} , the molteplicity of intersection of $\widetilde{\mathcal{F}}$ and $\widetilde{\mathbb{G}}$ along $\widetilde{\mathbb{C}}_4$ cannot be 4.

PROOF of A). Given the symmetric roles of $\widetilde{\mathcal{F}}$ and $\widetilde{\mathfrak{G}}$ in (*), it is enough to prove the statement for $\widetilde{\mathcal{F}}$. One can easily see that if $a_{18} \neq 0$, $\mathcal{F}_{\infty} = \widetilde{\mathcal{F}} \cap \{X_0 = 0\}$ is a plane quartic with a flex in $Z_{\infty} = \widetilde{\mathcal{C}}_4 \cap \{X_0 = 0\}$. (*) implies that $\widetilde{\mathcal{F}} \cap \widetilde{\mathfrak{G}} = \widetilde{\mathcal{C}}_4$, hence $\mathcal{F}_{\infty} \cap \mathcal{G}_{\infty} = Z_{\infty}$: this contradicts Prop. 3, § 2), applied to \mathcal{F}_{∞} and its flex Z_{∞} . It follows $a_{18} = 0$, which means that, if $\widetilde{\mathcal{F}}$ is non singular in Z_{∞} , it is there tangent to the plane at infinity.

Since $\tilde{\mathbb{C}}_4$ is a fixed curve in the linear isomorphism of \mathbb{P}^3_k :

$$\tau: (X_0, X_1, X_2, X_3) \to (X_3, X_2, X_1, X_0)$$

which interchanges the two flexes of \tilde{C}_4 O and Z_{∞} , one has:

$$\widetilde{\mathcal{F}}\cdot\widetilde{\mathcal{G}}=4\widetilde{\mathcal{C}}_{4}\Rightarrow \tau(\widetilde{\mathcal{F}})\cdot \tau(\widetilde{\mathcal{G}})=4\widetilde{\mathcal{C}}_{4}$$
 .

Let be $\tau(\tilde{\mathcal{F}})^a = \{F' = 0\}$ and denote with a_i' the coefficients of F': one has $a_{18}' = a_1$; beeing, by the above argument, $a_{18}' = 0$, we have $a_1 = 0$ too; this completes the proof of A).

The condition (*) implies, by Remark 1, that \mathcal{F} and \mathcal{G} have the same tangent plane in their simple points along \mathcal{C}_4 , so it must be:

$$\operatorname{rank}\begin{pmatrix} F_{\scriptscriptstyle X} & F_{\scriptscriptstyle Y} & F_{\scriptscriptstyle Z} \\ \\ G_{\scriptscriptstyle X} & G_{\scriptscriptstyle Y} & G_{\scriptscriptstyle Z} \end{pmatrix} = 1 \quad \operatorname{mod} \ I(\operatorname{C}_4) \ .$$

For every point $P = (t, t^3, t^4) \in \mathbb{C}_4$ we have the equalities in the polynomial ring k[t]:

$$F_X(P) + 3t^2 F_Y(P) + 4t^3 F_Z(P) = 0 ,$$

 $G_X(P) + 3t^2 G_Y(P) + 4t^3 G_Z(P) = 0 .$

By this the condition of tangence of \mathcal{F} and \mathcal{G} along \mathcal{C}_4 is, more simply:

(o)
$$F_z(P)G_r(P) - F_r(P)G_z(P) = 0$$
, $(P \in C_4)$.

REMARK 8. We notice that (*) implies the existence of a pencil Φ of quartic surfaces any pair of which satisfies (*) again. In this pencil surely we find a quartic singular in Z_{∞} and so we can suppose that in (*) \tilde{g} is such a surface, that is $b_{15}=0$.

(o) gives the following system of bilinear equations in the a_i 's and b_i 's (beeing actually $a_{18} = a_1 = b_{18} = b_{15} = b_1 = 0$):

 $-b_{17}a_{15}-b_{16}a_{11}+b_{11}(a_{15}+a_{16})=0$

©

 $-b_{16}a_{13} + b_{13}(a_{15} + a_{16}) = 0$

 $-b_{16}a_{15}=0$

$$\begin{aligned} & d = b_{17}a_{13} - b_{16}(a_{12} + a_{14}) + b_{14}(2a_{15} + a_{16}) + b_{13}a_{17} + b_{12}(a_{15} + a_{16}) = 0 \\ & = b_{17}a_{11} - b_{16}(2a_{7} + a_{8}) + b_{14}a_{13} - b_{13}a_{14} + b_{11}a_{17} + b_{8}(a_{15} + a_{16}) + 2b_{7}(a_{15} + a_{16}) = 0 \\ & = b_{17}a_{11} - b_{16}(2a_{7} + a_{8}) + b_{14}a_{13} - b_{13}a_{14} + b_{11}a_{17} + b_{8}(a_{15} + a_{16}) + 2b_{7}(a_{15} + a_{16}) + b_{5}(3a_{15} + 2a_{16}) = 0 \\ & = b_{17}(a_{12} + a_{14}) - b_{16}(2a_{5} + a_{9}) + b_{14}a_{12} - b_{13}(a_{5} + a_{10}) - b_{12}a_{14} + b_{10}a_{13} + b_{9}(a_{15} + a_{16}) + b_{5}(a_{15} + a_{16}) = 0 \\ & = b_{17}(2a_{7} + a_{8}) - b_{16}(2a_{5} + a_{9}) + b_{14}a_{12} - b_{13}(a_{5} + a_{10}) - b_{12}a_{14} + b_{10}a_{13} + b_{9}(a_{15} + a_{16}) + b_{9}(a_{15} + a_{16}) + b_{10}a_{13} + b_{10}a_{13} + b_{10}a_{13} + b_{10}a_{13} + b_{10}a_{13} + b_{10}a_{13} + b_{10}a_{14} + b_{10}a_{$$

 $-b_{17}(3a_2+2a_3)+b_{14}a_4-b_{11}(a_2+a_3)+b_{10}a_5-b_8a_6-2b_7a_6+b_6(2a_7+a_8)-b_5a_{10}-b_4a_{14}+b_3(a_{11}+2a_{17})+\\$

 $+ b_2(a_{11} + 3a_{17}) = 0$

m

u

(o)

 $b_{14}(2a_2+a_3)-b_{12}(a_2+a_3)+b_{10}(a_6+a_9)-b_9(a_5+a_{10})-b_6a_{10}+b_5a_9+b_3(a_{12}-a_{14})+b_2(a_{12}-2a_{14})=0$

 $b_{10}a_4 - b_9a_6 - b_8(a_2 + a_3) - 2b_7(a_2 + a_3) + b_6a_9 + b_5a_4 - b_4(a_5 + a_{10}) + b_3(2a_7 + a_8) + b_2(2a_7 + a_8) =$

 $b_{10}(2a_2+a_3)+b_6a_4+b_5a_2-b_4a_6-b_3a_{10}-b_2(a_5+2a_{10})=0$ $-b_9(a_2+a_3)+b_6a_2+b_3a_9-b_2(a_6-a_9)=0$ $-b_4(a_2+a_3)+b_3a_4+b_2a_4=0$ $b_3a_2 - b_2a_3 = 0$ \vec{a} <u>r</u>

PROOF of B). We want to prove first that (*) implies that also $\widetilde{\mathcal{F}}$ is singular in Z_{∞} , i.e. that $a_{15}=0$. Let us suppose then that $a_{15}\neq 0$ and remember that the characteristic of k is $\neq 2, 3$. From a) of list 1) we have $b_{16}=0$, which means $b_{16}=0$. As $b_{16}=0$, which means $b_{16}=0$. Now let us notice that the common tangent plane to $b_{13}=0$. Now let us notice that the common tangent plane to $b_{13}=0$. Now let us notice that the common tangent plane to $b_{13}=0$. Indeed this situation would imply the following identity in $b_{13}=0$.

$$F_{r}(P) + t^{2}F_{r}(P) + t^{3}F_{z}(P) = 0;$$

on the other hand we already have (see above):

$$F_{x}(P) + 3t^{2}F_{y}(P) + 4t^{3}F_{z}(P) = 0$$

by subtracting the previous equations, and simplifying by t^2 , we get:

$$2F_{\mathbf{z}}(P) + 3tF_{\mathbf{z}}(P) = 0$$

the vanishing of the coefficient of degree 9 in t yields $a_{15} = 0$: contradiction.

This situation has the following consequence. Let τ be the linear isomorphism considered above (see proof of A) and let $\widetilde{\mathcal{F}}' = \tau(\widetilde{\mathcal{F}})$, $\widetilde{\mathcal{G}}' = \tau(\widetilde{\mathcal{G}})$; τ transforms the tangent plane $\pi(P)$ to $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ in P in the tangent plane $\pi(\tau(P))$ to $\widetilde{\mathcal{F}}'$ and $\widetilde{\mathcal{G}}'$ in $\tau(P)$; as $\tau(O) = Z_{\infty}$ and $\tau(Z_{\infty}) = O$, the tangent plane $\pi(\tau(P))$ cannot pass (for generic P) through Z_{∞} , because this would imply for $\pi(P)$ to pass through O for generic P, so we can say that, if $\mathcal{F}' = \{F' = 0\}$, $F'_z \neq 0 \mod I(C_4)$; but then also $G'_z \neq 0 \mod I(C_4)$, because, for generic $P \in C_4$, \mathcal{F}' and \mathcal{G}' have common tangent plane in $\pi(P)$. So we can apply to \mathcal{F}' and \mathcal{G}' formula (1_3) , § 1. As $\widetilde{\mathcal{G}}$ is singular in Z_{∞} and $\widetilde{\mathcal{F}}$ is tangent to the plane $\{X_0 = 0\}$ in Z_{∞} , we have that \mathcal{G}' is singular in O and \mathcal{F}' is tangent to $\tau(\{X_0 = 0\})^a = \{Z = 0\}$ in O, so we have $G'_x(O) = G'_x(O) = G'_z(O) = F'_x(O) = F'_x(O) = 0$. Moreover the coefficient of Y^2 in G' is b_{17} and from (1_3) we get immediately $2a_{15}^2b_{17} = 0$ from which we have $b_{17} = 0$. Now c of list 1) gives $b_{11} = 0$. From d) we get then

$$(B_1) \qquad (a_{15} + a_{16})b_{12} + (2a_{15} + a_{16})b_{14} = 0.$$

Calculating both members of formulas (1_i) , i=1,2,3,4 (see Cor. 2) in the generic point (t,t^3,t^4) of C_4 yields identities of polynomials in k[t]. For the sake of brevity we shall denote by $H_{1,i}(n)$ the difference of the coefficients of t^n in the two members of formulas (1_i) . Similarly $H_2(n)$ will mean the coefficient of t^n in the first member of formula (2) (see Cor. 3). Of course for every i and n we have $H_{1,i}(n)=0$ and $H_3(n)=0$.

At this point we distinguish two subcases according as $F_z G_z \neq 0$ or $F_z G_z = 0 \mod I(\mathbb{C}_4)$.

First case: We can use formulas (1_i) i = 1, 2, 3, and (2), Cor. 2, § 1. We find

$$(B_2) \qquad \frac{1}{18} H_{1,1}(23) = a_{15}(a_{15} + a_{16})b_{12} + a_{15}^2 b_{14} = 0.$$

Subtracting B_1), multiplied by $a_{15} (\neq 0)$, from B_2), we get

$$a_{15}(a_{15} + a_{16})b_{14} = 0$$
 $\Rightarrow b_{14} = 0 \Rightarrow b_{12} = 0$.

From e) of list 1) we get

$$(B_3) 2b_7 + b_8 = 0.$$

Now we have:

$$(B_4) \qquad \frac{1}{6}H_{1,1}(22) = (3a_{15}^2 + 2a_{15}a_{16} - a_{16}^2)b_7 + (3a_{15}^2 + 4a_{15}a_{16} + a_{16})b_8 = 0.$$

Comparing (B_3) and (B_4) gives

$$-3(a_{15}+a_{16})^2b_7=0\Rightarrow \boxed{b_7=0}\Rightarrow \boxed{b_8=0}.$$

Actually $\tilde{\mathbf{g}}$ is a monoid with a triple point in Z_{∞} . Using as above the linear isomorphism τ , we apply formula (2) to $\mathcal{F}' = \tau(\tilde{\mathcal{F}})^a = \{F' = 0\}$ and $\mathcal{G}' = \tau(\tilde{\mathcal{G}})^a = \{G' = 0\}$ calculated in O = (0, 0, 0). As before $G'_{\mathbf{r}}(O) = G'_{\mathbf{r}}(O) = F'_{\mathbf{r}}(O) = 0$; moreover $G'_{\mathbf{r}\mathbf{z}}(O) = b_{12} = 0$ (as we have just found). Formula (2), § 1, calculated in O, gives then

$$-F_{z}^{\prime 3}(O)G_{YYY}^{\prime}(O) = -a_{15}^{3}[-6(b_{5}+b_{10})] = 0,$$

so we have

$$(B_5) b_5 + b_{10} = 0.$$

From f) of list 1) we obtain:

$$(3a_{15} + 2a_{16})b_5 + (2a_{15} + a_{16})b_{10} = 0.$$

$$(B_5)$$
 and (B_6) give $(a_{15}+a_{16})b_5=0 \Rightarrow \boxed{b_5=0} \Rightarrow \boxed{b_{10}=0}$.

From g) of list 1) we get:

$$(B_7) (a_{15} + a_{16})b_9 + (3a_{15} + 2a_{16})b_6 = 0;$$

on the other hand we have also:

$$(B_8) \qquad \frac{1}{18} H_{1,1}(20) = (2a_{15}^2 + 3a_{15}a_{16} + a_{16}^2)b_9 + \\ + (3a_{15}^2 + 3a_{15}a_{16} + a_{16}^2)b_6 = 0.$$

and

$$(B_9) \qquad -\frac{1}{6}H_2(21) = (20a_{15}^3 + 32a_{15}^2a_{16} + 13a_{15}a_{16}^2 + a_{16}^3)b_9 + + (88a_{15}^3 + 126a_{15}^2a_{16} + 53a_{15}a_{16}^2 + 6a_{16}^3)b_6 = 0.$$

It is easy to see that (B_7) , (B_8) , (B_9) , thought of as a linear system in (b_6, b_9) , has only the trivial solution. So it must be $b_6 = b_9 = 0$. From b_9 of list 1) we get $b_4 = 0$; whereas from b_9 of the same list it follows:

$$(B_{10}) \qquad (4a_{15} + 3a_{16})b_2 + (3a_{15} + 2a_{16})b_3 = 0.$$

Now we have also:

$$(B_{11}) \quad \frac{1}{6}H_{1,1}(18) = (18a_{15}^2 + 20a_{15}a_{16} + 6a_{16}^2)b_2 + \\ + (18a_{15}^2 + 21a_{15}a_{16} + 7a_{16}^2)b_3 = 0$$

and

$$\begin{split} (B_{12}) & \quad \frac{1}{6}H_2(19) = (-36a_{15}^3 - 32a_{15}^2a_{16} + 4a_{15}a_{16}^2 + 5a_{16}^3)b_2 + \\ & \quad + (-16a_{15}^3 + 17a_{15}a_{16}^2 + 6a_{16}^3)b_3 = 0 \; . \end{split}$$

As before, from (B_{10}) , (B_{11}) , (B_{12}) , we conclude that $b_2 = b_3 = 0$. Hence G is the null polynomial: absurd.

Second case: Now we must have $F_z = G_z = 0 \mod I(\mathcal{C}_4)$ or, if it were e.g. $G_z \neq 0 \mod I(\mathcal{C}_4)$, it would be $F_Y = 0 \mod I(\mathcal{C}_4)$ and from the identity

$$F_x(P) + t^2 F_y(P) + t^3 F_z(P) = 0, \quad \forall P = (t, t^3, t^4) \in C_4$$

it follows $F_x=0 \mod I(\mathcal{C}_4)$ too, so \mathcal{F} would be singular along \mathcal{C}_4 . From the same identity and from the analogous one relative to G, $F_z=G_z=0$ implies that $F_YG_Y\neq 0 \mod I(\mathcal{C}_4)$ or \mathcal{F} or \mathcal{G} would be singular along \mathcal{C}_4 . Taking into account $F_z=G_z=0 \mod I(\mathcal{C}_4)$, we have:

$$egin{aligned} b_{10} &= b_9 = b_4 = b_2 = 0 \,, & b_{12} = b_{14}, & b_8 = -2b_7, \ & 2a_{16} = -3a_{15}, & a_{13} = a_{10} = a_9 = a_4 = a_2 = 0 \,, \ & a_{12} = a_{14}, & a_8 = -2a_7, & a_{11} = -2a_{17} \,. \end{aligned}$$

Considering formula (1_4) , now applicable, we have by the above equalities:

$$\begin{split} H_{1,4}(25) &= 16a_{15}^2b_{12} \;\Rightarrow \boxed{b_{12}\!=\!0} \;\Rightarrow \boxed{b_{14}\!=\!0} \\ H_{1,4}(24) &= -8a_{15}^2b_7 \Rightarrow \boxed{b_7=0} \;\Rightarrow \boxed{b_8=0} \\ H_{1,4}(23) &= 24a_{15}^2b_5 \;\Rightarrow \boxed{b_5=0} \;; \end{split}$$

with these results, we have furthermore

$$H_{1,4}(22) = 24a_{15}^2b_6 \Rightarrow \boxed{b_6 = 0}$$
 $H_{1,4}(20) = 24a_{15}b_3 \Rightarrow \boxed{b_3 = 0}$

again G would be the null polynomial: absurd.

So we can say that (*) implies $a_{15} = 0$, that is for $\widetilde{\mathcal{F}}$ to have a singular point in Z_{∞} . Given this, the conclusion of the proof of (B), that is the fact that $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ have double points in O and Z_{∞} , is obtained from the following

REMARK 9. R_1 : From what has been proved up to this point we can say that:

$$(*)$$
 $\widetilde{\mathcal{F}} \cdot \widetilde{\mathcal{G}} = 4 \widetilde{\mathcal{C}}_{\mathbf{4}}$

implies that every quartic of the pencil Φ generated by $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{F}}$ has a singular point in \mathbb{Z}_{∞} .

 R_2 : By R_1 we can suppose $\tilde{\mathfrak{g}}$ to be the uniquely determined quartic of Φ which passes through $Y_{\infty}(\notin \tilde{\mathbb{C}}_4)$.

 R_3 : 9 cannot be a cone with vertex Z_{∞} , or else the cone $\{Y-X^3=0\}$ would be its component.

 R_4 : Every quartic surface which passes through \tilde{C}_4 and with a triple point in Z_{∞} , contains the line $Y_{\infty}Z_{\infty}$. Hence from (*) it follows that at most one of the surfaces $\tilde{\mathcal{F}}$ and $\tilde{\mathfrak{G}}$ can have a triple point in Z_{∞} and, should this happen, it must be $\tilde{\mathfrak{G}}$, which already contains Y_{∞} (see R_3).

$$R_5$$
: $Y_{\infty} \notin \mathcal{F} \Rightarrow a_{16} \neq 0 \Rightarrow F_z \neq 0 \mod I(C_4)$.

 R_6 : From R_5 it follows that the canonical projection of $Y - X^3$ in the local ring $k[\mathcal{F}]_{I(C_1)}$ is a uniformizing parameter.

 R_7 : Let be $\operatorname{Res}_{\mathbf{z}}(F,G) \in k[X,Y]$ the resultant, relative to Z, of the polynomials F, G: one sees directly that $\operatorname{deg}\left(\operatorname{Res}_{\mathbf{z}}(F,G)\right) \leqslant 12$ if $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ both have a singular point on Z_{∞} , whereas it is of degree < 12 if $\widetilde{\mathcal{G}}$ has a triple point in $Z_{\infty}(\operatorname{see} R_2)$.

$$R_8$$
: $\widetilde{\mathcal{F}} \cdot \widetilde{\mathcal{G}} = 4\widetilde{\mathbb{C}}_4 \Rightarrow (Y - X^3)^4 | \operatorname{Res}_z(F, G)$.

 R_9 : From R_7 and R_8 § cannot have a triple point in Z_{∞} .

 R_{10} : From R_i , i=1,...,7, we have that (*) implies for both $\widetilde{\mathcal{F}}$ and $\widetilde{\mathfrak{S}}$ to have a double point in Z_{∞} .

In order to conclude that (*) implies for both $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{G}}$ to have a double point also in O we use again in an obvious way the linear isomorphism τ that has been considered in the previous proof of A) and also here above during the proof of B).

REMARK 10. In the sequel we can suppose $\widetilde{\mathcal{F}}$ and $\widetilde{\mathfrak{G}}$ to be as in Remark 9, R_2 . After what has been proved up to this moment [A] and [A] we have the following situation for the coefficients of [A] and [A]:

$$a_{18} = a_{15} = a_2 = a_1 = 0 \neq a_{16}$$

 $(a_{16} \neq 0 \text{ because } Y_{\infty} \notin \widetilde{\mathcal{F}}), \text{ and }$

$$b_{18} = b_{16} = b_{15} = b_{13} = b_{11} = b_2 = b_1 = 0$$
.

 $(b_{13} = b_{11} = 0 \text{ beeing consequence of } b) \text{ and } c) \text{ of list } 1) \text{ and } b_{16} = 0 \text{ because } Y_{\infty} \in \mathfrak{G}).$

REMARK 11. The tangent cones to $\widetilde{\mathcal{F}}$ and $\widetilde{\mathfrak{G}}$ in Z_{∞} cannot have a common component $\widetilde{\mathcal{H}}$: indeed $a_{16} \neq 0 \Rightarrow \mathcal{H} = \widetilde{\mathcal{H}} \cap \mathbf{A}_k^3 \neq \emptyset$; if $\mathcal{H} = \{H = 0\}$ we have $\deg H < 3$ and $H|\operatorname{Res}_z(F,G)$, hence it follows $H(Y - X^3)^4|\operatorname{Res}_z(F,G)$ which is absurd, beeing $\deg (\operatorname{Res}_z(F,G)) \leq 12$ (see above Remark 9, R_7).

PROOF OF C). We distinguish two subcases according as it is $b_{17} \neq 0$ or $b_{17} = 0$.

First case: $b_{17} \neq 0$.

 \mathcal{F} can be taken as the quartic of the pencil Φ^a (see Remark 9, R_1 and R_2) for which $a_{17}=0$. Let us take $b_{17}=a_{16}=1$. In this situation \mathfrak{G}_{∞} splits into the line $t=\{X=0\}_{\infty}$ and in a cubic \mathfrak{C}_3 with a flex in Z_{∞} and with tangent in it the line t. Moreover in the plane at infinity we have $t \cdot \mathcal{F}_{\infty} = 4Z_{\infty}$. From (*) and $\mathfrak{C}_4 \cap \{X_0=0\} = Z_{\infty}$ it follows:

$$\begin{split} 16Z_{\infty} &= \mathcal{F}_{\infty} \cdot \mathbb{G}_{\infty} = \mathcal{F}_{\infty} \cdot (\mathbb{C}_{3} + t) = \mathcal{F}_{\infty} \cdot \mathbb{C}_{3} + \mathcal{F}_{\infty} \cdot t = \\ &= \mathcal{F}_{\infty} \cdot \mathbb{C}_{3} + 4Z_{\infty} \Rightarrow \mathcal{F}_{\infty} \cdot \mathbb{C}_{3} = 12Z_{\infty} \,. \end{split}$$

Let us consider the pencil φ of plane quartics $\mathcal{F}_{\infty} + \lambda t^4$: since also $t^4 \cdot C_3 = 12 Z_{\infty}$, every quartic \mathfrak{Q} of φ satisfies to

$$\mathbf{Q} \cdot \mathbf{C}_3 = 12 \mathbf{Z}_{\infty}.$$

Let be $P_0 \in \mathcal{C}_3$, $P_0 \neq Z_{\infty}$, and let be $\mathcal{Q}_0 = \mathcal{F}_{\infty} - \lambda t^4$ the quartic of φ passing through P_0 . By this and ('), \mathcal{C}_3 must be component of \mathcal{Q}_0 ,

whence if follows:

$$\mathcal{F}_{\infty} = r \mathcal{C}_3 + \lambda_0 t^4 \,,$$

where r is a line through Z_{∞} because \mathcal{F}_{∞} is singular in Z_{∞} . In the affine open subset $(Z \neq 0)$ of the plane at infinity (where X, Y, Z are projective coordinates) we have:

$$egin{aligned} \mathcal{F}_{\infty}^{(a)} &= XY - (a_5 + a_{10}) \, X^3 - (a_{12} + a_{14}) \, X^2 \, Y - a_{13} \, XY^2 - Y^4 - \\ &- a_3 \, X^4 - a_{11} \, X \, Y^3 - (a_6 + a_9) \, X^3 \, Y - (a_7 + a_8) \, X^2 \, Y^2 = 0 \; , \\ \mathbf{C}_3^{(a)} &= X - (b_5 + b_{10}) \, X^2 - (b_{12} + b_{14}) \, X \, Y - b_3 \, X^3 - Y^3 - \\ &- (b_6 + b_6) \, X^2 \, Y - (b_7 + b_8) \, X \, Y^2 = 0 \; . \end{aligned}$$

In (") then we have $r=\{Y=0\}$ and $\lambda_0=-a_3$, whence the following equalities:

$$(C_1) \ a_5 + a_{10} = 0, \quad (C_2) \ b_5 + b_{10} = a_{12} + a_{14}, \quad (C_3) \ b_{12} + b_{14} = a_{13},$$
 $(C_4) \ b_3 = a_6 + a_9, \quad (C_5) \ b_6 + b_9 = a_7 + a_8, \quad (C_6) \ b_7 + b_8 = a_{11}.$

Taking into account the (C_i) here above and e(f), g(g), g(g), g(g), we find first:

$$\begin{cases} b_{12} = a_{13} - b_{14}, & b_{10} = a_{12} + a_{14} + a_{11}b_{14}, \\ b_{9} = a_{8} + a_{12}a_{13} + (a_{12} + a_{14})b_{14}, & b_{8} = a_{11} + a_{13}b_{14}, \\ b_{7} = -a_{13}b_{14}, & b_{6} = a_{7} - a_{12}a_{13} - (a_{12} + a_{14})b_{14}, \\ b_{5} = -a_{11}b_{14}, \\ b_{4} = a_{5} - a_{7}a_{13} - a_{11}a_{12} + a_{12}a_{13} - (2a_{7} + a_{8} - a_{12}a_{13})b_{14}. \end{cases}$$

Now $a_{16} \neq 0 \Rightarrow F_z G_z \neq 0 \mod I(C_4)$, so we can use formulas (1_3) and (2) with the notations $H_{1,3}(n)$ and $H_2(n)$ introduced in the proof of B). Taking into account equalities (&) listed above, we find:

$$H_{1,3}(15) = -2(b_{14} + a_{13})(a_7 - a_{12}a_{13}) = 0$$
.

It can be seen that $a_7 - a_{12}a_{13} = 0$ would imply for the tangent cones to \mathcal{F} and \tilde{g} in Z_{∞} to have the common component $\{X + a_{13} = 0\}$

The curve $\tilde{\mathbf{C}}_4 = (\lambda^4, \lambda^3 \mu, \lambda \mu^3, \mu^4) \subset \mathbf{P}_k^3$ is not set-theoretic etc.

against what has been stated in Remark 11. So it must be $b_{14} = -a_{13}$ and the (&) become:

$$(\&\&) \quad \begin{cases} b_{14} = -a_{13}, & b_{12} = 2a_{13}, & b_{10} = a_{12} + a_{14} - a_{11}a_{13}, \\ b_{9} = a_{8} - a_{13}a_{14}, & b_{8} = a_{11} - a_{13}^{2}, & b_{7} = a_{13}^{2}, \\ b_{6} = a_{7} + a_{13}a_{14}, & b_{5} = a_{11}a_{13}, & b_{4} = a_{5} + a_{7}a_{13} + a_{8}a_{13} - a_{11}a_{12}. \end{cases}$$

From i) of list 1) we get:

$$(C_2) 2b_3 = a_5a_{13} - a_7a_{11} - a_{12}^2 - a_{12}a_{14} + 2a_6 + a_9$$

and by comparing (C_7) with (C_4) we get:

$$(C_8) a_9 = a_5 a_{13} - a_7 a_{11} - a_{12} (a_{12} + a_{14}).$$

Given this, we find: $H_{1,3}(14) = 2(a_5 a_{13} - a_7 a_{11})$, whence

$$a_5 a_{13} - a_7 a_{11} = 0.$$

Hence (C_8) becomes:

$$(C_{10}) a_9 = -a_{12}(a_{12} + a_{14}).$$

Now from l) and m) of list 1), in view of (C_0) and (C_{10}) , we obtain

$$(C_{11}) a_4 = -2a_6a_{13} + 3a_7a_{12} + a_7a_{14} + a_8a_{12} + a_{12}a_{13}a_{14},$$

$$\begin{aligned} (C_{12}) \quad & 2a_3 = -3a_7a_{12}a_{13} - a_8a_{12}a_{13} - a_{12}a_{13}^2a_{14} + \\ & + a_6a_{13}^2 + a_5a_{12} + 2a_7^2 + a_7a_8 - a_{11}a_{12}^2 \,. \end{aligned}$$

Given this, we find

$$H_{1,3}(13) = 2(a_6 a_{13} + a_{12}^2 a_{13} - a_7 a_{14} - 2a_7 a_{12})$$

and

$$\begin{split} H_{1,3}(12) = & -2(a_3 - a_{12}a_{13}^2 a_{14} + a_7 a_{13}a_{14} - a_{11}a_{12}^2 - \\ & - a_8 a_{12}a_{13} - 3a_7 a_{12}a_{13} + a_7 a_8 + 3a_7^2 + a_5 a_{12}) \,. \end{split}$$

From these two last equations it follows

$$a_{\bf 6}a_{13} = -a_{12}^2a_{13} + a_{14} + 2a_{14}a_{12},$$

$$(C_{14}) \quad a_3 = a_{12}a_{13}^2a_{14} - a_7a_{13}a_{14} + a_{11}a_{12}^2 + a_8a_{12}a_{13} + \\ + 3a_7a_{12}a_{13} - a_7a_8 - 3a_7^2 - a_5a_{12}.$$

Summing both members of (C_{12}) and (C_{14}) and taking into account (C_{13}) , we obtain:

$$3a_3 = -(a_7 - a_{12}a_{13})^2.$$

Now we turn to formula (2) of Cor. 3: we find

$$\begin{split} H_2(17) &= 12 (-5a_3 + a_{12}^2 a_{13}^2 - 2a_{12} a_{13}^2 a_{14} - 2a_{11} a_{12}^2 - \\ &- 2a_8 a_{12} a_{13} - 2a_7 a_{13} a_{14} - 8a_7 a_{12} a_{13} + \\ &+ 4a_8 a_{13}^2 + 3a_7^2 + 2a_7 a_8 + 2a_5 a_{12} \end{split}$$

whence

$$\begin{aligned} (C_{16}) \quad & 5a_3 = a_{12}^2 a_{13}^2 - 2a_{12} a_{13}^2 a_{14} - 2a_{11} a_{12}^2 - 2a_8 a_{12} a_{13} - \\ & - 2a_7 a_{13} a_{14} - 8a_7 a_{12} a_{13} + 4a_6 a_{13}^2 + 3a_7^2 + 2a_7 a_8 + 2a_5 a_{12} \,. \end{aligned}$$

Summing both members of (C_{12}) , multiplied by -2, and (C_{16}) , we get in view of (C_{9}) , (C_{13}) :

$$(C_{17}) a_3 = -(a_7 - a_{12}a_{13})^2.$$

Comparing (C_{15}) with (C_{17}) , we find $(a_3 = 0)$ and

$$a_7 = a_{12}a_{13}$$
:

again by Remark 11 this is inconsistent with (*) because the affine tangent cones to $\tilde{\mathcal{F}}$ and $\tilde{\mathcal{G}}$ in Z_{∞} would have the common component $\{X + a_{13} \equiv 0\}$.

This concludes the proof of (C) in the case $b_{17} \neq 0$.

Second case: $b_{17} = 0$.

We assume again $a_{16} = 1$. From b, c, d, e, and f, of list 1) we

have

$$b_{13}=b_{11}=0\;,\quad b_{14}=-\,b_{12}\;,$$
 $b_{8}=-\,2\,b_{7}+\,a_{13}\,b_{12}\;,\quad b_{10}=-\,2\,b_{5}+\,a_{11}\,b_{12}\;.$

Given these equalities, we find moreover

$$H_{1.3}(18) = -2(b_7 - a_{13}b_{12}), \quad H_{1.3}(17) = -2(b_5 - a_{11}b_{12}).$$

Hence

$$(C_{18}) b_7 = a_{13}b_{12},$$

$$(C_{19}) b_5 = a_{11}b_{12}.$$

Now from $b_8 = -2b_7 + a_{13}b_{12}$ and $b_{10} = -2b_5 + a_{11}b_{12}$ we get

$$(C_{20}) b_8 = -a_{13}b_{12},$$

$$(C_{21}) b_{10} = -a_{11}b_{12}.$$

From g) of list 1) we find on one hand

$$b_9 = (a_{12} + a_{14} - a_{13}a_{17})b_{12} - 2b_6;$$

on the other hand we get, in view of (C_{18}) and (C_{19})

$$H_{1,3}(16) = (-8a_{13}a_{17} + 8a_{14} + 8a_{12})b_{12} - 6b_{9} - 16b_{6}$$
.

From the last equalities one derives

$$(C_{22}) b_6 = (a_{12} + a_{14} - a_{13}a_{17})b_{12},$$

$$(C_{23}) \hspace{3.1em} b_{\,\bf 9} = (-\,a_{12} - a_{14} + \,a_{13}\,a_{17})\,b_{12}\,.$$

Now, from h) and i) of list 1), we find

$$(C_{24}) b_4 = (2a_7 + a_8 - a_{11}a_{17} - a_{12}a_{13} + a_1^2 a_{17})b_{12},$$

$$(C_{25}) \quad 2b_3 = (2a_5 + a_{10} - a_{11}a_{12} - a_{12}a_{17} - a_{14}a_{17} + a_{11}a_{13}a_{17} + a_{13}a_{17}^2) \, b_{12} \, .$$

Finally, taking into account all the previous results, we find

$$H_{1,3}(15) = 2(a_7 - a_{12}a_{13} + a_{13}^2 a_{17})b_{12} = 0$$
:

beeing $b_{12} \neq 0$, or else G would be the null polynomial, from the last equality it follows

$$a_7 = a_{12} a_{13} - a_{13}^2 a_{17}$$
.

Now the tangent cones to $\widetilde{\mathcal{F}}$ and $\widetilde{\mathfrak{G}}$ in Z_{∞} have the affine equations:

$$(X + a_{13})(a_{17}X + Y + a_{12} - a_{13}a_{17}) = 0$$
 and $b_{13}(X + a_{13}) = 0$

and again applying Remark 11, we reach the conclusion of the proof of (C).

REFERENCES

- [1] P. C. CRAIGHERO, Una osservazione sulla curva di Cremona di $\tilde{\mathbf{P}}_{k}^{3}$ C: $(\lambda \mu^{3}, \lambda^{3} \mu, \lambda^{4}, \mu^{4})$, Rend. Sem. Mat. Univ. Padova, 65 (1981), pp. 177-190.
- [2] E. STAGNARO, Sulle curve razionali non singolari di ordine 4 di \mathbf{P}_k^3 , Rend. Acc. Naz. Scienze dei XL (memorie di matematica), **104**, VII, 6 (1983), pp. 51-88.

Manoscritto pervenuto in redazione il 17 giugno 1985.