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Permutation Models and Topological Groups.

NORBERT BBUNNER - JEAN E. RUBIN (*)

SUMMARY - We investigate the symmetry structure of permutation models
with topological methods. The main result is: The automorphism group
of a permutation model is locally compact, if and only if the model sat-
isfies a class form of the multiple choice axiom. The model is then a

finite support model

1. Introduction.

Permutation models are the standard device for proving independ-
ence results for the axiom of choice (AC) in set theory without the
axiom of foundation. In this note we investigate topological properties
of automorphism groups. We use the following notation:

In the sequel, V denotes the real world, satisfying NBG° --f- AC
(v. Neumann-Bernays-G6del set theory without the axiom of founda-
tion), U E v’ is a set of urelements (u = Jul for u E U) and E V
is a transitive model of NBG°. In the examples we will use only

J C ~‘ ( U ) _ ~ J x ( U ) , where x &#x3E; ~ I UI ( ( ~ ~ ~ = cardinality in V ) is

inaccessible and
transitive closure of x), where x - ]U] I is inaccessible. 

(*) Indirizzo degli A.A.: N. BpUNNER: Purdue University (visiting) and
Universitat f. Bodenkultur, Gregor Mendel Strasse 33, A-1180 Wien, Austria
(Europe); J. E. RUBIN: Purdue University, Dept. of Mathernatics, West
Lafayette, Indiana 47907, USA.
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ordinal, and S is the power set operation.) For our proofs, we
just assume, that U C SM (possibly U is a proper class in SM, e.g.
in SM satisfies weak foundation with respect to U (i.e. in

= ») and in V the cardinality On8-". Then

every E-automorphism R of (we write n E Aut can be coded

by the permutation ~z r U on U (i.e. U E S(U), the symmetric gronp
of all permutations on U in V). We also assume, that is a

class, if and only if r e V; hence in particular satisfies the

global A C ( CA C) . It follows, that can be uniquely
extended to a SM-class 5i E Aut SM, such R; recursively

y c- xl - 5i"r. (In the future we will not distinguish
between 7 and y~.) If (a means subgroup) and Y is a

normal filter of subgroups of G (normal means, that Y is closed
under inner automorphisms ) , then P(G, Y) C SlVl is the corresponding
permutation model: If x E V and x ç P, then x is a class in P if

and only if x is symmetric (i.e. for some ~~c E G : ~"x =
and x E P (i.e. x is a set in P), if and only if in ad-

dition x E SM. Our assumptions on SM ensure, that permutation
models can be described in the usual way (e.g. Felgner [3 ~) within
SM (not invoking V). The need for our assumption, that is a
set in V arises, when we want to speak about the automorphism group
of a model with a proper class of urelements. SM can also be used,
to add various cardinality restrictions on the sets of the permutation
model (e.g. 8M2). Since we are only interested in the symmetry struc-
ture of the models, we will not consider the more general notion of
« permutation models », where classes need not be symmetric. More-

over, because we need CAC in our results will not extend, if

Cohen’s nonstandard models [1] are used for These models permit
nontrivial e-automorphisms, but cannot satisfy AC, since the axiom
of foundation holds (a well known observation due to H. Friedman).

2. Symmetry structures.

In this section we discuss topologies on subgroups of Aut ~ and
we refer the reader to Hewitt and Ross [5] for the definition and

elementary properties of topological groups. We note the fact that ~
need not be a permutation model.

It is easy to check (see Hewitt and Ross [5], p. 18) that the normal
filter Y of a permutation model P(G, 5;-) is a neighborhood base of
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the identity mapping, id, of G and thus induces a group topology Gs-
on G. The question arises, y whether the models induced by a normal
filter are the most general « symmetric models ~. We will include the
easy proof of the positive answer to this question (2.2 (ii)), but first
we introduce some notation. In the sequel, when we speak of a model,
we will always assume, that it contains all urelements (i.e. for permuta-
tion models we have to verify sym, u for all u E U), c SM is a
transitive class, U C axiom of pairing (F= is the satisfac-
tion relation). For a group G, G will always denote some group
topology on G.

2.1. DEFINITION. Let Gv ~g E Aut 8M: (This
is a set in the real world V’ but not necessarily in A.)

(i) E V, x c is (G, G)-symmetric, if there is a G
such that sym,, z D 0.

(ii) ( G, G ) generates if x E V is an A-class if and only if

r c A and x is ( G, G)-symmetric; and x E A if and only E SM
and x is an M-class. 0

Since groups with a nonempty interior are open in a topological
group, x is symmetric if and only if sym x E G (we suppress the sub-
scripts). is generated by ( G, (Formally this is also true
without our permanent assumption U C P(G, T).) Conversely we have:

2.2. LEMMA. Let G  Aut M and G a group topology.

(i) ~T = z e fl) is a normal filter.

The topology induced by F, Gnat (the natural topology), is a zero-
dimensional T2 group topology on G. (In Gnat’ F is a neighborhood
base of id.)

(ii) If ( G, G ) generates ~, then also (G, generates ~ and

PROOF. Since sym x n sym y = sym x, y) Y is a filter base

of groups. 5 is normal, since n(sym sym (nx) E Y for n E G
and x It follows that !F is a neighborhood base of id for a group
topology Gnat . U C ~ gives ~id~ = 0 {sym u : u E whence Gnat is
To ; therefore it is also completely regular. For x E JK" sym x is open,
since it is a group containing id in its interior, whence its cosets form
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an open partition of G. Therefore sym x is clopen and Gnat is zero
dimensional. If id E n sym x, then n sym x = sym x, and so Y con-
sists of exactly the base open neighborhoods of id. If (G, G) generates
Jc, then Gnat ç G and Gnat-symmetric is equivalent to G-symmetric,
whence Gnat generates also. is proved by
induction on rank. Since it follows, that P, and so for
x E SM, is true for rank (x) = 0. If it is true for

rank (y)  rank (x), s C fl - s C P. If x E A, then (sym x) Î U E 5~’r U,
whence x E P. If x E P, then (sym x) I U = symatu(x) -2 for some
F e fi, whence sym x -2 .F’ ~ 0. I.e. x is Gnat-symmetric and therefore
in A. Since (5~- ~’ U) ^ - .~ and = Gnat’ ~ and P have the same
classes. D

Other interesting topologies besides the natural topology, Gnat , are
which is induced by the normal filter of groups generated by

a finite subset of and Gwo, induced by 5"w.
e :  e ~ U and e is well orderable ») = (n e G: n íe =

- i d r e). If e C U is well ordered by  E ~ and ~z E A, then
~ze is well ordered by n(), whence :two is in fact a normal filter of
groups. Moreover, fix e = sym (), whence Gwoc Gnat . The fact that

Gwo is obvious. These topologies correspond to special cases of
the permutation model construction. FM-models are defined from a
filter which is induced by a « normal » ideal I of SM-subsets of U
(i.e. I is a G-inv ariant ideal, containing all singletons tul, u E U; the
latter condition is to ensure, that the model contains all urelements)
where = e : e E I}. Finite support models are .FM-models, where I
is the ideal of all finite subsets of U.

2.3. COROLLARY. If u1(, = P(G, 5’]) is a FM-model, then Gnat .
Conversely, if Gwo generates A, then M is a FM-model. Similarly, A.
is a finite support model if and only if Giln generates A, in which case
Gfin == Gwo - Gnat ·

PROOF. Since GWO generates Gnat C Gwo C Gnat by 2.2.
Conversely, if Gwo generates fl, then Gnat = Gw. from above and A
= by 2.2, whence Gg = Gnat = where I = 

is well orderable}, and so ~ = P(G, ,~~ ,) . The same

argument works for CI

In view of this observation it is of interest to find topological
conditions for Grn. Lemma 2.4 gives an answer in a special
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case. It will also follow from our main result, that Gnat == G,,. holds
if Gnat is totally bounded (3.4). A topological group is totally bounded,
if for each Q, # # Q E G, there is a finite F C G such that G (i.e.
the left uniformity is totally bounded). For example, a pseudocompact
group is totally bounded ([2]).

2.4. LEMMA. Let not necessarily a permutation
model.

(i) If Gnat is compact, then Gnat = Gin - In particular, if a

compact (G, G) generates M, then G = Gnat = Gfin and M is a finite
support model.

(ii) If Gwo is totally bounded, then

PROOF. (i) Since U C A, ~id~ = n {fix E U~, so Gfln is T2 .
Since compact T2 spaces are minimal Hausdorff spaces, it follows
from Gnat’ that Gfln = Gnat’ if Gnat is compact. If G is compact
and generates A, then Gnatk G, whence we again have equality.
In this case, A is a finite support model by 2.3.

(ii) be well orderable in A. Since G,,o is totally
bounded, for some finite .E = We may assume
that the Ri are coset representatives of fix e and that R0 = id. Since
ni 0 fix e for 0  i  n, there are such ui - We set

f = 0  i  Then fix f = fix e. Clearly fix e k fix f . In the

other direction, take any R E fix f. Then Ri.y, where 

and But i ~ 0 is impossible, since then So

R = y E fix e. D

2.5. EXAMPLE. A permutation model ~1 such that Gfln is compact,

PROOF. For we take (defined in the introduction) and
index U as U = U (P«: where the P1X are pairwise disjoint
two-element sets. G is the group of all permutations on U which
respect each P1X (i.e. = P1X for all g E G and a E I is generated

uct topology) is compact, while G,.. = Gnat is the G,,-modification of
Gftn and therefore a P-space (countable intersections of open sets are
open). This implies, that compact subsets are finite in Gwo (anticom-
pact). 0
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As this example shows, it can be of interest, to study topologies G
on Ga Aut A which do not generate A; e.g. Gfin describes the ele-
ments x c A which are definable from finitely many urelements.

2.6. EXAMPLE. A finite support model tiK,2 and a group Ha Aut ~2
such that Hln = Hwo=l= Hnat and (B’, Hnat) generates ~2 .

PROOF. We set SM = 8MI. Let U and G be as in example 2.5;
I = [ U]~~, the set of finite subsets of U, and is
the group of all permutations on U which respect all but finitely
many Pa (i.e. each R E H is a and

Of course .g’a Aut tiK,2 and sym,,, P,,: a E Hfin. Thus

Hnat* Hftn. Since U is Dedekind-finite, Hln = In order to verify
that Hnat generates ~2 we use the following general observations:
If and (G, G ) generates A, then Hnat generates 
For if then sym., x E Hnat from the definition, and if symh x E
E Hnat, then symG x = SYMH x n G E Gnat (Gnat is the subspace topology
of Hnat), whence by 2.2 and 0

It follows from 2.6 that two groups which generate the same model
need not induce the same support structure on it, not even for clopen
subgroups. A property which is more general than « generate the
same model » is « induce the same symmetry structure»: G, H a Aut A
and for all if and only if If G gen-
erates A and induces the same symmetry structure as H, then H
generates A. For example (for Aut ~), if H is open, then G

and .H’ induce the same symmetry structure 

2.7. LEMMA. Let G and HfinC H, G the sub-
space topology from H and G dense in .g (G- - H) . Then G and H

induce the same symmetry structure on A.

PROOF. If sym~ x E H, then SYMG X = SYMH x r1 G E G. For the con-
verse, let and choose Q = Q-1, such that

Q (-) G = SYMG x. Then sym,, Q # 0 and E H. For otherwise,
let x be a counterexample of minimal rank (&#x3E; 0, since H) . There
is and an such that b (It suffices to show
nfl x C x; for n’x D x take n-1 E Q-1= Q. ) Then W = n - symB a E H, since
a sym, a E G and rank  rank x, the minimal rank counter-

example ; also n E W r1 Q . As G is dense, there is W n Q r1 G.
Because y E W, b E and because T E Q r1 G = SYMG x, 99’X == x,
a contradiction. It follows in particular, that C7
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As for some applications of these concepts, let us just mention the
following observation. Felgner [3] defines the Fraenkel-Halpern model
from a countable (in SM) set U of urelements H = and the

finite topology. He also considers the Specker model defined from

the dense subgroup G of all permutations on U with finite supports.
It follows that these models are identical. While the proof of the
Kurepa Antichain Principle in the Specker model is a trivial conse-
quence of the fact that the generating group is a torsion group, it

requires some work in the Fraenkel-Halpern model setting.
The observation that the proof can be simplified since these models

are equal was the starting point of this paper. It is also interesting
to observe that Z with some totally bounded group topology can
generate a model. Just take a compact monothetic group (contains a
dense cyclic subgroup) like]G Zp and let :g be the dense cyclic

p prime

subgroup of G. Since the finite support model A generated by G does
not satisfy CAC, .H is not discrete (3.1 ) and by 2.7 H generates ~.
Moreover, by 3.1, fl p CMC, a class form of the multiple choice axiom.

3. Multiple choice axiom.

It follows from section 2 that the property to generate a model is
shared by so many topologically different groups that it seems unlikely
that we could come up with theorems of the form « fl p some form
of AC « a group (G, G) generating ~ satisfies some topological
property)) (c.f. 3.2). We show, however, that a class form CMC of
the multiple choice axiom can be characterized in that way. In the

sequel CA C is C W04 from Rubin and Rubin’s new monograph [9]
(i.e. in A there is wellordering of A) and CMC is C WO 9 (in A
there is a family ce E OnA) of finite sets such that JC 
a E OnM}).

3.1. LEMMA. Let ( G, G ) generate ~ .

(i) CAC if and only if G is discrete.

(ii) CMC if and only if Gnat is locally bounded (i.e. Gnat
has a totally bounded nonempty open set).

PROOF. (i) If ..A(, 1= CA C, then there is a wellordering  of J6
in A (as a symmetric proper class). Then sym
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E Gnatç G, and G is discrete. Conversely, if  E V’ is a wellordering
of p CA C and  is a class in SM) , then sym () D ~id~ E G,
whence  is symmetric; CA C.

(ii) If u+L 1=== CMC, then .H~ = sym a E 0n’) E Gnat it totally
bounded. For if for some then orbH x =
- is finite, say orbH x = and 

for E = i Conversely, if Gnat is locally bounded, there
is an open, totally bounded group If then orbH x =
- n E HI - for any finite E such that j~’ SYMH X -2 H,
whence orbH x is finite. We use CA C in d (H) _ 
(follows from AC in V) to enumerate the H-orbits orb¡¡ x (they are
in 4(H)) as a E 0n’; this proves CMC in fl. Q

3.2. EXAMPLE. A permutation model such that +
--f - .RA + not CMC the universe is a wellordered union of sets),
whence no locally bounded group can generate A.

PROOF. Let be 8M2 and in index U as U = a E On},
.Pa disjoint two element sets. G respect all the Pa and I is the V-ideal
of all SM-subsets of U. ~3== P(G, Yj) then satisfies AC; RA holds
because ~3:::;:: U a E On~ = where R« = {~ e TG(x) n
r1 P~ _ ~ for all ~8 &#x3E; « and rank ( x )  ocl; and Gnat = Cwo is not locally
bounded, since orb,, x is infinite for H = fix e and xBe infinite. It

follows from 3.1 (and the fact that totally boundedness is inherited

by coarser topologies), that no generating topology can be locally
bounded and that not CMC. 0

The following theorem and its corollary are our main results.

3.3. THEOREM. Let M be a permutation model. Then M = CMC
if and only if Aut X with the natural topology is locally compact.

PROOF. As follows from the proof of 2.6, Aut fl with the natural
topology generates A. If it is locally compact, then some sym x is
compact and therefore totally bounded (a special case of Comfort,
Ross [2]), whence M = CMC by 3.1. For the proof of the converse,
let (Fa: a e o) be a CMC-covering of ~ and set G =
- sym a (D - we shall show that G is compact.

First of all, since each g E G respects Fa, g Therefore G
can be represented as a subgroup of . In the product

topology II on H each S(Fa) is discrete. We shall show G is closed;
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i.e. for each net gi : in G converging to g Ell, we have 
Because each g E II is a bijective map g : fl -* fl such that = Fa-
for each a E On all that we have to verify is that g"x = gx for each

(Since ~ is a permutation model, it then follows that g = # (fl
for some ’ E Aut SM. ) We note that for each x E 3l there is an I

such that for gx. For if x E I’a, then Q = 
is an open neighborhood of g in II, whence for all

by convergence, and gix = (gi,Fa)x = Hence if

y E x E A and then gy = giy E gix; i.e. gx. As II is a

topological group, also g-1 E G-, whence g’x D x. Finally we observe
that Gnat is the subspace topology from II, proving compactness (n is
compact, since each is finite). For if x E Fa, sym fix FaE 11 ,G;
and conversely, if e C S~ is finite, P = nfix ~’a = fg E =

is a 11-open neighborhood of id, then

3.4. COROLLARY. If G« Aut A (~ is not necessarily a permuta-
tion model) and Gnat is totally bounded, then Gnat = Gün.

PROOF. We set Y - (synm z : z e fl) and let jf = P(G, Y) ; since
we have U C N. Then Cy = Gnat and if sym x E Gnat , i

we shall show that there is a y E N such that sym y = sym x, then
= Gnat . It is true if x has rank zero. Suppose it is true for

each a E x. Choose in 8M a(a) e On and b(a) E JY’ such that sym b(a) ==

- sym a and oc is one to one. We set y = b(a)): a E x, n E
E sym r) ; y C X and since sym y D sym x E is an X class. Because

sym x is totally bounded, by 3.1 is finite for each
a E x, whence y is a set in SM and y E JV. It remains to be shown
that sym y C sym x. If n E sym y, and a E x, then nb(a) = yb(a) for
some y E sym x (because a is injective), whence 1p-ln E sym b(a) = sym a
and na = 1jla E x; i.e. n"x c x, proving n E sym x. As Gnat is totally
bounded, 1== CMC by 3.1, whence Aut JY’ is locally compact by 3.3.
.g is the closure of G in Aut JY’ with the natural topology. Since G

is dense in .H and IT is locally compact, Hnat) is the Weil comple-
tion of G. H is compact, because G is totally bounded (see Weil’s
monograph [10] for definitions and proofs). Therefore by 2.4. Hn.t =
= Hftn. This proves Gnat = Gftn in X (2.7) and by the above re-

marks also in A. 0

It follows from example 2.6 that Gnat need not be totally bounded
even if CMC holds.
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We conclude this section with a remark on quotient groups. If G

generates J6 and r C A is a class, then x is wellorderable, if and only
if the factor group sym x/fix x is discrete and x is a wellorderable
union of finite sets, if and only if sym x/fix x is locally bounded. As
an application, if G is monothetic, then wellorderable families .I’ _
== .F’a : a E x~, .Fa pairwise disjoint and I = n, have a choice func-
tion. For, if .g is a cyclic group supporting .F’ and generating ~ (2.7),
then HI = H/fix U F  Zkn1 which is a torsion group, whence HI is

finite and U F wellorderable, since fix (U h’), a closed group of finite
index, is open.

4. Set forms of the axiom of choice.

It follows from 3.2 that even under the condition there is no
natural way to translate set forms of AC into topological properties
of the natural topology. In this section we collect some results related
to this translation problem.

4.1. LEMMA. Let (G, G) generate ~: Gnat is a P-space, if and

only if every function f : m - fl of V’ is in A.

PROOF. If Gnat is a P-space, Ga sets are open by the definition.
So if f : c~ --~ fl is a function, then sym and

f c On the other hand, if then the

is in A by our assumption, whence
n n sym x,,, == n sym f E Gnat · D
nEw

If every function f E f1° is in then A satisfies the axiom DC
of dependent choice.

4.2. EXAMPLE. A permutation model A4 and a group (G, G)
generating A such that J(,4 F= RA + A Cwo ( A C for wellorderable fa-
milies which implies DC) and such that Gnat is metrisable but not dis-
crete-and therefore not a P-space.

PROOF. 8M = 8Ml, U is ordered like R, G the group of all order
preserving maps, I generated by the intervals (- 
- P( Q’, ,~ I ) . Since To prove that see

Levy [7]. DC is due to Jensen - e.f. Felgner [3]). Since I
is generated by a countable set, Gy, = Gwo = Gnat is first countable
and hence metrisable, but it is not discrete, whence P fails. D
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4.3. EXAMPLE. A finite support model A, and group G such that

4.4. LEMMA. Let (G, G) generate fl, where G is Abelian and

CLAIM. Let (G, G) generate A, and let J(, F= p AOw if
and only if for all f : Tr, and all G, H E there
are permutations 1lnEH such ·

nEw

PROOF OF CLAIM. Since fl F RA, we can choose N16 
so small that an RA-function

the property that symG M D H1. Then orbHtx is a set for all 
If t e define F: m - A by F(n) = orbh,. f (n ) . Then syme F D Hi ;
so F e fl. By there is a g E A such that g(n) E F(n) for all n E Co.
Choosing (in V) 7lnE HIC H such that g ( n ) = we get

Conversely, if F = is a sequence of nonempty sets with
we choose in V,t(n)EFn and set 

from the claim. Then is a choice function.
Since sym == if G is Abelian, it follows from

the claim that and Gnat is a P-space ( 4.1 ~ ,

proving (i). For (ii) we prove a similar claim for ACwo, from which
it follows that 8M-indexed intersections of open sets are open, whence

and so IXII for X e Here
we use = On8M (which also follows from CJ

One usually writes FMS for the sentences which are true in all
permutation models (Fraenkel-Mostowski-Specker models); e.g. 
F PW (H. Rubin’s axiom that the power set of an ordinal is well-
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orderable. ~ A C, see [9 ], but A C in FMS) and
FMS (Howard [ 6 ] ; the A C for families
of finite/wellorderable sets; in NBG this does not hold-see Pincus [8]).
If one writes for permutation models which are generated
by Abelian groups, then 4.4 says F MS Ab F RA + AC~ ~ DC. This
is not true for FMS as was shown by Jensen-see [3]. Example 2.5
shows that FMSAb 1* RA + Also from 4.4, t=

Example 4.2 shows that this for is not true

FMS.
We next derive another FMS theorem, whose proof relates to the

methods developed here. We do not know if it is true in NBGO. 
is the set form of CMC due to Levy ( MC ~ PW, c. f . [9]).

4.5. THEOREM.

PROOF. « « &#x3E;&#x3E; is clear and for « =») we need only A 0,,’. (countable
choice for finite sets). We prove Levy’s form WO 5 of AC: For every
set X there is an n E a) such that X = U a E x) for some function
F == (FIX: a E x), x E On, such that IFIX c n ; see Rubin and Rubin [9].
Assume not and let X be a counterexample in the permutation
model A. By finite and 

Let sym 1~’ti, F(2», H E Aut support these functions. Since
WO5 is false for X, for each nEw there is an x such that &#x3E; n ;
but for lorbH s] ~ I is finite. Using A C in TT we choose a

sequence of these orbits such that (since
sym Q 2 H, Q E JL). By there is a choice function f e X" ; f (n) E On.
Since t E -P,,2), for some a E On, m = 10rbH f c is finite. If n &#x3E; m,
then G: -+ 0n = G(g) = g(n) is in (sym G ~ H) and
G is an onto function. Hence n  ~0~~ c lorb,, f = m, a contradiction. D

Also, .ACfin + CMC =&#x3E; CAC. This follows from 3.3, since
compact P-spaces are discrete (P-property: Let H«Aut J6 be compact

well orderable, hence is open) .
We conclude this paper with the observation that the concept of a

permutation model is a geometric one, since it depends on the represen-
tation of the generating group, y as is shown next.

4.6. EXAMPLE. There are topologically and algebraically isomorphic
groups generating finite support models in the same standard model
SM which are not elementarily equivalent.



161

PROOF. U is countable, 8Mi and j(,6 is the Fraenkel-Halpern
model generated f rom G = ~S ( c~ ) with the finite topology (topology of
pointwise convergence). In we can index U as

We set

H with the topology of pointwise convergence generates Jt7, H = H . ·
Then G and .H are topologically and algebraically isomorphic. But

in J6~ U is amorphous (infinite subsets are cofinite), while in 
is Dedekind-infinite. Since U is defined by the NBG° sentence U =
== x = ~6 and ui(,7 are not elementarily equivalent. 0
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